diff mbox series

[v8,2/3] pwm: sifive: change the PWM controlled LED algorithm

Message ID 20240126074045.20159-3-nylon.chen@sifive.com
State New
Headers show
Series Change PWM-controlled LED pin active mode and algorithm | expand

Commit Message

Nylon Chen Jan. 26, 2024, 7:40 a.m. UTC
The `frac` variable represents the pulse inactive time, and the result
of this algorithm is the pulse active time. Therefore, we must reverse the result.

The reference is SiFive FU740-C000 Manual[0]

Link: https://sifive.cdn.prismic.io/sifive/1a82e600-1f93-4f41-b2d8-86ed8b16acba_fu740-c000-manual-v1p6.pdf [0]

Co-developed-by: Zong Li <zong.li@sifive.com>
Signed-off-by: Zong Li <zong.li@sifive.com>
Co-developed-by: Vincent Chen <vincent.chen@sifive.com>
Signed-off-by: Vincent Chen <vincent.chen@sifive.com>
Signed-off-by: Nylon Chen <nylon.chen@sifive.com>
---
 drivers/pwm/pwm-sifive.c | 7 ++++---
 1 file changed, 4 insertions(+), 3 deletions(-)
diff mbox series

Patch

diff --git a/drivers/pwm/pwm-sifive.c b/drivers/pwm/pwm-sifive.c
index eabddb7c7820..b07c8598bb21 100644
--- a/drivers/pwm/pwm-sifive.c
+++ b/drivers/pwm/pwm-sifive.c
@@ -113,6 +113,7 @@  static int pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
 	u32 duty, val;
 
 	duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP(pwm->hwpwm));
+	duty = (1U << PWM_SIFIVE_CMPWIDTH) - 1 - duty;
 
 	state->enabled = duty > 0;
 
@@ -123,11 +124,10 @@  static int pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
 	state->period = ddata->real_period;
 	state->duty_cycle =
 		(u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
-	state->polarity = PWM_POLARITY_INVERSED;
+	state->polarity = PWM_POLARITY_NORMAL;
 
 	return 0;
 }
-
 static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
 			    const struct pwm_state *state)
 {
@@ -139,7 +139,7 @@  static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
 	int ret = 0;
 	u32 frac;
 
-	if (state->polarity != PWM_POLARITY_INVERSED)
+	if (state->polarity != PWM_POLARITY_NORMAL)
 		return -EINVAL;
 
 	cur_state = pwm->state;
@@ -159,6 +159,7 @@  static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
 	frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
 	/* The hardware cannot generate a 100% duty cycle */
 	frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
+	frac = (1U << PWM_SIFIVE_CMPWIDTH) - 1 - frac;
 
 	mutex_lock(&ddata->lock);
 	if (state->period != ddata->approx_period) {