diff mbox

[Branch,~glmark2-dev/glmark2/trunk] Rev 226: Texture: Refactor image reading infrastructure and add support for JPEG files.

Message ID 20120628104912.29530.99912.launchpad@ackee.canonical.com
State Accepted
Headers show

Commit Message

alexandros.frantzis@linaro.org June 28, 2012, 10:49 a.m. UTC
Merge authors:
  Alexandros Frantzis (afrantzis)
  Jesse Barker (jesse-barker)
Related merge proposals:
  https://code.launchpad.net/~linaro-graphics-wg/glmark2/image-readers/+merge/112294
  proposed by: Alexandros Frantzis (afrantzis)
  review: Approve - Jesse Barker (jesse-barker)
------------------------------------------------------------
revno: 226 [merge]
committer: Alexandros Frantzis <alexandros.frantzis@linaro.org>
branch nick: trunk
timestamp: Thu 2012-06-28 13:27:55 +0300
message:
  Texture: Refactor image reading infrastructure and add support for JPEG files.
added:
  src/image-reader.cpp
  src/image-reader.h
  src/libjpeg-turbo/
  src/libjpeg-turbo/README
  src/libjpeg-turbo/README-turbo.txt
  src/libjpeg-turbo/config.h
  src/libjpeg-turbo/jaricom.c
  src/libjpeg-turbo/jcapimin.c
  src/libjpeg-turbo/jcapistd.c
  src/libjpeg-turbo/jcarith.c
  src/libjpeg-turbo/jccoefct.c
  src/libjpeg-turbo/jccolext.c.inc
  src/libjpeg-turbo/jccolor.c
  src/libjpeg-turbo/jcdctmgr.c
  src/libjpeg-turbo/jchuff.c
  src/libjpeg-turbo/jchuff.h
  src/libjpeg-turbo/jcinit.c
  src/libjpeg-turbo/jcmainct.c
  src/libjpeg-turbo/jcmarker.c
  src/libjpeg-turbo/jcmaster.c
  src/libjpeg-turbo/jcomapi.c
  src/libjpeg-turbo/jconfig.h
  src/libjpeg-turbo/jcparam.c
  src/libjpeg-turbo/jcphuff.c
  src/libjpeg-turbo/jcprepct.c
  src/libjpeg-turbo/jcsample.c
  src/libjpeg-turbo/jctrans.c
  src/libjpeg-turbo/jdapimin.c
  src/libjpeg-turbo/jdapistd.c
  src/libjpeg-turbo/jdarith.c
  src/libjpeg-turbo/jdatadst-tj.c
  src/libjpeg-turbo/jdatasrc-tj.c
  src/libjpeg-turbo/jdcoefct.c
  src/libjpeg-turbo/jdcolext.c.inc
  src/libjpeg-turbo/jdcolor.c
  src/libjpeg-turbo/jdct.h
  src/libjpeg-turbo/jddctmgr.c
  src/libjpeg-turbo/jdhuff.c
  src/libjpeg-turbo/jdhuff.h
  src/libjpeg-turbo/jdinput.c
  src/libjpeg-turbo/jdmainct.c
  src/libjpeg-turbo/jdmarker.c
  src/libjpeg-turbo/jdmaster.c
  src/libjpeg-turbo/jdmerge.c
  src/libjpeg-turbo/jdmrgext.c.inc
  src/libjpeg-turbo/jdphuff.c
  src/libjpeg-turbo/jdpostct.c
  src/libjpeg-turbo/jdsample.c
  src/libjpeg-turbo/jdtrans.c
  src/libjpeg-turbo/jerror.c
  src/libjpeg-turbo/jerror.h
  src/libjpeg-turbo/jfdctflt.c
  src/libjpeg-turbo/jfdctfst.c
  src/libjpeg-turbo/jfdctint.c
  src/libjpeg-turbo/jidctflt.c
  src/libjpeg-turbo/jidctfst.c
  src/libjpeg-turbo/jidctint.c
  src/libjpeg-turbo/jidctred.c
  src/libjpeg-turbo/jinclude.h
  src/libjpeg-turbo/jmemmgr.c
  src/libjpeg-turbo/jmemnobs.c
  src/libjpeg-turbo/jmemsys.h
  src/libjpeg-turbo/jmorecfg.h
  src/libjpeg-turbo/jpegcomp.h
  src/libjpeg-turbo/jpegint.h
  src/libjpeg-turbo/jpeglib.h
  src/libjpeg-turbo/jquant1.c
  src/libjpeg-turbo/jquant2.c
  src/libjpeg-turbo/jsimd.h
  src/libjpeg-turbo/jsimddct.h
  src/libjpeg-turbo/jutils.c
  src/libjpeg-turbo/jversion.h
  src/libjpeg-turbo/simd/
  src/libjpeg-turbo/simd/jsimd.h
  src/libjpeg-turbo/simd/jsimd_arm.c
  src/libjpeg-turbo/simd/jsimd_arm_neon.S
modified:
  android/jni/Android.mk
  android/jni/Android.ndk.mk
  src/texture.cpp
  src/texture.h
  src/wscript_build
  wscript


--
lp:glmark2
https://code.launchpad.net/~glmark2-dev/glmark2/trunk

You are subscribed to branch lp:glmark2.
To unsubscribe from this branch go to https://code.launchpad.net/~glmark2-dev/glmark2/trunk/+edit-subscription
diff mbox

Patch

=== modified file 'android/jni/Android.mk'
--- android/jni/Android.mk	2012-06-21 12:57:43 +0000
+++ android/jni/Android.mk	2012-06-27 08:13:50 +0000
@@ -24,6 +24,18 @@ 
 
 include $(CLEAR_VARS)
 
+LOCAL_MODULE := libglmark2-jpeg
+LOCAL_CFLAGS := -Werror -Wall -Wextra -Wno-error=attributes \
+                -Wno-error=unused-parameter -Wno-error=unused-function -Wno-error=unused-variable
+LOCAL_C_INCLUDES := $(LOCAL_PATH)/src/libjpeg-turbo/
+LOCAL_SRC_FILES := $(subst $(LOCAL_PATH)/,,$(wildcard $(LOCAL_PATH)/src/libjpeg-turbo/simd/*.c)) \
+                   $(subst $(LOCAL_PATH)/,,$(wildcard $(LOCAL_PATH)/src/libjpeg-turbo/simd/*.S)) \
+                   $(subst $(LOCAL_PATH)/,,$(wildcard $(LOCAL_PATH)/src/libjpeg-turbo/*.c))
+
+include $(BUILD_STATIC_LIBRARY)
+
+include $(CLEAR_VARS)
+
 LOCAL_CPP_EXTENSION := .cc
 LOCAL_MODULE := libglmark2-ideas
 LOCAL_CFLAGS := -DGLMARK_DATA_PATH="" -DUSE_GLESv2 -Werror -Wall -Wextra\
@@ -41,7 +53,7 @@ 
 
 LOCAL_MODULE_TAGS := optional
 LOCAL_MODULE := libglmark2-android
-LOCAL_STATIC_LIBRARIES := libglmark2-matrix libglmark2-png libglmark2-ideas
+LOCAL_STATIC_LIBRARIES := libglmark2-matrix libglmark2-png libglmark2-ideas libglmark2-jpeg
 LOCAL_CFLAGS := -DGLMARK_DATA_PATH="" -DGLMARK_VERSION="\"2012.06\"" \
                 -DUSE_GLESv2 -Werror -Wall -Wextra -Wnon-virtual-dtor \
                 -Wno-error=unused-parameter
@@ -49,6 +61,7 @@ 
 LOCAL_C_INCLUDES := $(LOCAL_PATH)/src \
                     $(LOCAL_PATH)/src/libmatrix \
                     $(LOCAL_PATH)/src/scene-ideas \
+                    $(LOCAL_PATH)/src/libjpeg-turbo \
                     $(LOCAL_PATH)/src/libpng \
                     external/zlib
 LOCAL_SRC_FILES := $(filter-out src/canvas% src/main.cpp, \

=== modified file 'android/jni/Android.ndk.mk'
--- android/jni/Android.ndk.mk	2012-06-21 12:57:43 +0000
+++ android/jni/Android.ndk.mk	2012-06-27 08:13:50 +0000
@@ -20,6 +20,18 @@ 
 
 include $(CLEAR_VARS)
 
+LOCAL_MODULE := libglmark2-jpeg
+LOCAL_CFLAGS := -Werror -Wall -Wextra -Wno-error=attributes \
+                -Wno-error=unused-parameter -Wno-error=unused-function -Wno-error=unused-variable
+LOCAL_C_INCLUDES := $(LOCAL_PATH)/src/libjpeg-turbo/
+LOCAL_SRC_FILES := $(subst $(LOCAL_PATH)/,,$(wildcard $(LOCAL_PATH)/src/libjpeg-turbo/simd/*.c)) \
+                   $(subst $(LOCAL_PATH)/,,$(wildcard $(LOCAL_PATH)/src/libjpeg-turbo/simd/*.S)) \
+                   $(subst $(LOCAL_PATH)/,,$(wildcard $(LOCAL_PATH)/src/libjpeg-turbo/*.c))
+
+include $(BUILD_STATIC_LIBRARY)
+
+include $(CLEAR_VARS)
+
 LOCAL_CPP_EXTENSION := .cc
 LOCAL_MODULE := libglmark2-ideas
 LOCAL_CFLAGS := -DGLMARK_DATA_PATH="" -DUSE_GLESv2 -Werror -Wall -Wextra\
@@ -34,7 +46,7 @@ 
 
 LOCAL_MODULE_TAGS := optional
 LOCAL_MODULE := libglmark2-android
-LOCAL_STATIC_LIBRARIES := libglmark2-matrix libglmark2-png libglmark2-ideas
+LOCAL_STATIC_LIBRARIES := libglmark2-matrix libglmark2-png libglmark2-ideas libglmark2-jpeg
 LOCAL_CFLAGS := -DGLMARK_DATA_PATH="" -DGLMARK_VERSION="\"2012.06\"" \
                 -DUSE_GLESv2 -Werror -Wall -Wextra -Wnon-virtual-dtor \
                 -Wno-error=unused-parameter
@@ -42,6 +54,7 @@ 
 LOCAL_C_INCLUDES := $(LOCAL_PATH)/src \
                     $(LOCAL_PATH)/src/libmatrix \
                     $(LOCAL_PATH)/src/scene-ideas \
+                    $(LOCAL_PATH)/src/libjpeg-turbo \
                     $(LOCAL_PATH)/src/libpng
 LOCAL_SRC_FILES := $(filter-out src/canvas% src/main.cpp, \
                      $(subst $(LOCAL_PATH)/,,$(wildcard $(LOCAL_PATH)/src/*.cpp))) \

=== added file 'src/image-reader.cpp'
--- src/image-reader.cpp	1970-01-01 00:00:00 +0000
+++ src/image-reader.cpp	2012-06-27 16:17:42 +0000
@@ -0,0 +1,386 @@ 
+/*
+ * Copyright © 2012 Linaro Limited
+ *
+ * This file is part of the glmark2 OpenGL (ES) 2.0 benchmark.
+ *
+ * glmark2 is free software: you can redistribute it and/or modify it under the
+ * terms of the GNU General Public License as published by the Free Software
+ * Foundation, either version 3 of the License, or (at your option) any later
+ * version.
+ *
+ * glmark2 is distributed in the hope that it will be useful, but WITHOUT ANY
+ * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * glmark2.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ * Authors:
+ *  Alexandros Frantzis
+ */
+#include <cstdio>
+#include <png.h>
+#include <jpeglib.h>
+#include <memory>
+
+#include "image-reader.h"
+#include "log.h"
+#include "util.h"
+
+/*******
+ * PNG *
+ *******/
+
+struct PNGReaderPrivate
+{
+    PNGReaderPrivate() :
+        png(0), info(0), rows(0), png_error(0),
+        current_row(0), row_stride(0) {}
+
+    static void png_read_fn(png_structp png_ptr, png_bytep data, png_size_t length)
+    {
+        std::istream *is = reinterpret_cast<std::istream*>(png_get_io_ptr(png_ptr));
+        is->read(reinterpret_cast<char *>(data), length);
+    }
+
+    png_structp png;
+    png_infop info;
+    png_bytepp rows;
+    bool png_error;
+    unsigned int current_row;
+    unsigned int row_stride;
+};
+
+PNGReader::PNGReader(const std::string& filename):
+    priv_(new PNGReaderPrivate())
+{
+    priv_->png_error = !init(filename);
+}
+
+PNGReader::~PNGReader()
+{
+    finish();
+    delete priv_;
+}
+
+bool
+PNGReader::error()
+{
+    return priv_->png_error;
+}
+
+bool
+PNGReader::nextRow(unsigned char *dst)
+{
+    bool ret;
+
+    if (priv_->current_row < height()) {
+        memcpy(dst, priv_->rows[priv_->current_row], priv_->row_stride);
+        priv_->current_row++;
+        ret = true;
+    }
+    else {
+        ret = false;
+    }
+
+    return ret;
+}
+
+unsigned int
+PNGReader::width() const
+{ 
+    return png_get_image_width(priv_->png, priv_->info);
+}
+
+unsigned int
+PNGReader::height() const
+{ 
+    return png_get_image_height(priv_->png, priv_->info);
+}
+
+unsigned int
+PNGReader::pixelBytes() const
+{
+    if (png_get_color_type(priv_->png, priv_->info) == PNG_COLOR_TYPE_RGB)
+    {
+        return 3;
+    }
+    return 4;
+}
+
+
+bool
+PNGReader::init(const std::string& filename)
+{
+    static const int png_transforms = PNG_TRANSFORM_STRIP_16 |
+                                      PNG_TRANSFORM_GRAY_TO_RGB |
+                                      PNG_TRANSFORM_PACKING |
+                                      PNG_TRANSFORM_EXPAND;
+
+    Log::debug("Reading PNG file %s\n", filename.c_str());
+
+    const std::auto_ptr<std::istream> is_ptr(Util::get_resource(filename));
+    if (!(*is_ptr)) {
+        Log::error("Cannot open file %s!\n", filename.c_str());
+        return false;
+    }
+
+    /* Set up all the libpng structs we need */
+    priv_->png = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, 0, 0);
+    if (!priv_->png) {
+        Log::error("Couldn't create libpng read struct\n");
+        return false;
+    }
+
+    priv_->info = png_create_info_struct(priv_->png);
+    if (!priv_->info) {
+        Log::error("Couldn't create libpng info struct\n");
+        return false;
+    }
+
+    /* Set up libpng error handling */
+    if (setjmp(png_jmpbuf(priv_->png))) {
+        Log::error("libpng error while reading file %s\n", filename.c_str());
+        return false;
+    }
+
+    /* Read the image information and data */
+    png_set_read_fn(priv_->png, reinterpret_cast<voidp>(is_ptr.get()),
+                    PNGReaderPrivate::png_read_fn);
+
+    png_read_png(priv_->png, priv_->info, png_transforms, 0);
+
+    priv_->rows = png_get_rows(priv_->png, priv_->info);
+
+    priv_->current_row = 0;
+    priv_->row_stride = width() * pixelBytes();
+
+    return true;
+}
+
+void
+PNGReader::finish()
+{
+    if (priv_->png)
+    {
+        png_destroy_read_struct(&priv_->png, &priv_->info, 0);
+    }
+}
+
+
+/********
+ * JPEG *
+ ********/
+
+struct JPEGErrorMgr
+{
+    struct jpeg_error_mgr pub;
+    jmp_buf jmp_buffer;
+
+    JPEGErrorMgr()
+    {
+        jpeg_std_error(&pub);
+        pub.error_exit = error_exit;
+    }
+
+    static void error_exit(j_common_ptr cinfo)
+    {
+        JPEGErrorMgr *err =
+            reinterpret_cast<JPEGErrorMgr *>(cinfo->err);
+
+        char buffer[JMSG_LENGTH_MAX];
+
+        /* Create the message */
+        (*cinfo->err->format_message)(cinfo, buffer);
+        std::string msg(std::string(buffer) + "\n");
+        Log::error(msg.c_str());
+
+        longjmp(err->jmp_buffer, 1);
+    }
+};
+
+struct JPEGIStreamSourceMgr
+{
+    static const int BUFFER_SIZE = 4096;
+    struct jpeg_source_mgr pub;
+    std::istream *is;
+    JOCTET buffer[BUFFER_SIZE];
+
+    JPEGIStreamSourceMgr(const std::string& filename) : is(0)
+    {
+        is = Util::get_resource(filename);
+
+        /* Fill in jpeg_source_mgr pub struct */
+        pub.init_source = init_source;
+        pub.fill_input_buffer = fill_input_buffer;
+        pub.skip_input_data = skip_input_data;
+        pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
+        pub.term_source = term_source;
+        pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
+        pub.next_input_byte = NULL; /* until buffer loaded */
+    }
+
+    ~JPEGIStreamSourceMgr()
+    {
+        delete is;
+    }
+
+    bool error()
+    {
+        return !is || (is->fail() && !is->eof());
+    }
+
+    static void init_source(j_decompress_ptr cinfo)
+    {
+        static_cast<void>(cinfo);
+    }
+
+    static boolean fill_input_buffer(j_decompress_ptr cinfo)
+    {
+        JPEGIStreamSourceMgr *src =
+            reinterpret_cast<JPEGIStreamSourceMgr *>(cinfo->src);
+
+        src->is->read(reinterpret_cast<char *>(src->buffer), BUFFER_SIZE);
+
+        src->pub.next_input_byte = src->buffer;
+        src->pub.bytes_in_buffer = src->is->gcount();
+
+        /* 
+         * If the decoder needs more data, but we have no more bytes left to
+         * read mark the end of input.
+         */
+        if (src->pub.bytes_in_buffer == 0) {
+            src->pub.bytes_in_buffer = 2;
+            src->buffer[0] = 0xFF;
+            src->buffer[0] = JPEG_EOI;
+        }
+
+        return TRUE;
+    }
+
+    static void skip_input_data(j_decompress_ptr cinfo, long num_bytes)
+    {
+        JPEGIStreamSourceMgr *src =
+            reinterpret_cast<JPEGIStreamSourceMgr *>(cinfo->src);
+
+        if (num_bytes > 0) {
+            size_t n = static_cast<size_t>(num_bytes);
+            while (n > src->pub.bytes_in_buffer) {
+                n -= src->pub.bytes_in_buffer;
+                (*src->fill_input_buffer)(cinfo);
+            }
+            src->pub.next_input_byte += n;
+            src->pub.bytes_in_buffer -= n;
+        }
+    }
+
+    static void term_source(j_decompress_ptr cinfo)
+    {
+        static_cast<void>(cinfo);
+    }
+};
+
+struct JPEGReaderPrivate
+{
+    JPEGReaderPrivate(const std::string& filename) :
+        source_mgr(filename), jpeg_error(false) {}
+
+    struct jpeg_decompress_struct cinfo;
+    JPEGErrorMgr error_mgr;
+    JPEGIStreamSourceMgr source_mgr;
+    bool jpeg_error;
+};
+
+
+JPEGReader::JPEGReader(const std::string& filename) :
+    priv_(new JPEGReaderPrivate(filename))
+{
+    priv_->jpeg_error = !init(filename);
+}
+
+JPEGReader::~JPEGReader()
+{
+    finish();
+    delete priv_;
+}
+
+bool
+JPEGReader::error()
+{
+    return priv_->jpeg_error || priv_->source_mgr.error();
+}
+
+bool
+JPEGReader::nextRow(unsigned char *dst)
+{
+    bool ret = true;
+    unsigned char *buffer[1];
+    buffer[0] = dst;
+
+    /* Set up error handling */
+    if (setjmp(priv_->error_mgr.jmp_buffer)) {
+        return false;
+    }
+
+    /* While there are lines left, read next line */
+    if (priv_->cinfo.output_scanline < priv_->cinfo.output_height) {
+        jpeg_read_scanlines(&priv_->cinfo, buffer, 1);
+    }
+    else {
+        jpeg_finish_decompress(&priv_->cinfo);
+        ret = false;
+    }
+
+    return ret;
+}
+
+unsigned int
+JPEGReader::width() const
+{ 
+    return priv_->cinfo.output_width;
+}
+
+unsigned int
+JPEGReader::height() const
+{ 
+    return priv_->cinfo.output_height;
+}
+
+unsigned int
+JPEGReader::pixelBytes() const
+{ 
+    return priv_->cinfo.output_components;
+}
+
+bool
+JPEGReader::init(const std::string& filename)
+{
+    Log::debug("Reading JPEG file %s\n", filename.c_str());
+
+    /* Initialize error manager */
+    priv_->cinfo.err = reinterpret_cast<jpeg_error_mgr*>(&priv_->error_mgr);
+
+    if (setjmp(priv_->error_mgr.jmp_buffer)) {
+        return false;
+    }
+
+    jpeg_create_decompress(&priv_->cinfo);
+    priv_->cinfo.src = reinterpret_cast<jpeg_source_mgr*>(&priv_->source_mgr);
+
+    /* Read header */
+    jpeg_read_header(&priv_->cinfo, TRUE);
+
+    jpeg_start_decompress(&priv_->cinfo);
+
+    return true;
+}
+
+void
+JPEGReader::finish()
+{
+    jpeg_destroy_decompress(&priv_->cinfo);
+}
+
+
+

=== added file 'src/image-reader.h'
--- src/image-reader.h	1970-01-01 00:00:00 +0000
+++ src/image-reader.h	2012-06-25 13:16:32 +0000
@@ -0,0 +1,77 @@ 
+/*
+ * Copyright © 2012 Linaro Limited
+ *
+ * This file is part of the glmark2 OpenGL (ES) 2.0 benchmark.
+ *
+ * glmark2 is free software: you can redistribute it and/or modify it under the
+ * terms of the GNU General Public License as published by the Free Software
+ * Foundation, either version 3 of the License, or (at your option) any later
+ * version.
+ *
+ * glmark2 is distributed in the hope that it will be useful, but WITHOUT ANY
+ * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * glmark2.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ * Authors:
+ *  Alexandros Frantzis
+ */
+#include <string>
+
+class ImageReader
+{
+public:
+    virtual bool error() = 0;
+    virtual bool nextRow(unsigned char *dst) = 0;
+    virtual unsigned int width() const = 0;
+    virtual unsigned int height() const = 0;
+    virtual unsigned int pixelBytes() const = 0;
+    virtual ~ImageReader() {}
+};
+
+class PNGReaderPrivate;
+
+class PNGReader : public ImageReader
+{
+public:
+    PNGReader(const std::string& filename);
+
+    virtual ~PNGReader();
+    bool error();
+    bool nextRow(unsigned char *dst);
+
+    unsigned int width() const;
+    unsigned int height() const;
+    unsigned int pixelBytes() const;
+
+private:
+    bool init(const std::string& filename);
+    void finish();
+
+    PNGReaderPrivate *priv_;
+};
+
+class JPEGReaderPrivate;
+
+class JPEGReader : public ImageReader
+{
+public:
+    JPEGReader(const std::string& filename);
+
+    virtual ~JPEGReader();
+    bool error();
+    bool nextRow(unsigned char *dst);
+    unsigned int width() const;
+    unsigned int height() const;
+    unsigned int pixelBytes() const;
+
+private:
+    bool init(const std::string& filename);
+    void finish();
+
+    JPEGReaderPrivate *priv_;
+};
+

=== added directory 'src/libjpeg-turbo'
=== added file 'src/libjpeg-turbo/README'
--- src/libjpeg-turbo/README	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/README	2012-06-27 08:13:27 +0000
@@ -0,0 +1,290 @@ 
+libjpeg-turbo note:  This file contains portions of the libjpeg v6b and v8
+README files, with additional wordsmithing by The libjpeg-turbo Project.
+It is included only for reference, as some parts of it may not apply to
+libjpeg-turbo.  Please see README-turbo.txt for information specific to
+libjpeg-turbo.
+
+
+The Independent JPEG Group's JPEG software
+==========================================
+
+This distribution contains a release of the Independent JPEG Group's free JPEG
+software.  You are welcome to redistribute this software and to use it for any
+purpose, subject to the conditions under LEGAL ISSUES, below.
+
+This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone,
+Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson,
+Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Ge' Weijers,
+and other members of the Independent JPEG Group.
+
+IJG is not affiliated with the official ISO JPEG standards committee.
+
+
+DOCUMENTATION ROADMAP
+=====================
+
+This file contains the following sections:
+
+OVERVIEW            General description of JPEG and the IJG software.
+LEGAL ISSUES        Copyright, lack of warranty, terms of distribution.
+REFERENCES          Where to learn more about JPEG.
+ARCHIVE LOCATIONS   Where to find newer versions of this software.
+FILE FORMAT WARS    Software *not* to get.
+TO DO               Plans for future IJG releases.
+
+Other documentation files in the distribution are:
+
+User documentation:
+  install.txt       How to configure and install the IJG software.
+  usage.txt         Usage instructions for cjpeg, djpeg, jpegtran,
+                    rdjpgcom, and wrjpgcom.
+  *.1               Unix-style man pages for programs (same info as usage.txt).
+  wizard.txt        Advanced usage instructions for JPEG wizards only.
+  change.log        Version-to-version change highlights.
+Programmer and internal documentation:
+  libjpeg.txt       How to use the JPEG library in your own programs.
+  example.c         Sample code for calling the JPEG library.
+  structure.txt     Overview of the JPEG library's internal structure.
+  filelist.txt      Road map of IJG files.
+  coderules.txt     Coding style rules --- please read if you contribute code.
+
+Please read at least the files install.txt and usage.txt.  Some information
+can also be found in the JPEG FAQ (Frequently Asked Questions) article.  See
+ARCHIVE LOCATIONS below to find out where to obtain the FAQ article.
+
+If you want to understand how the JPEG code works, we suggest reading one or
+more of the REFERENCES, then looking at the documentation files (in roughly
+the order listed) before diving into the code.
+
+
+OVERVIEW
+========
+
+This package contains C software to implement JPEG image encoding, decoding,
+and transcoding.  JPEG (pronounced "jay-peg") is a standardized compression
+method for full-color and gray-scale images.  JPEG's strong suit is compressing
+photographic images or other types of images that have smooth color and
+brightness transitions between neighboring pixels.  Images with sharp lines or
+other abrupt features may not compress well with JPEG, and a higher JPEG
+quality may have to be used to avoid visible compression artifacts with such
+images.
+
+JPEG is lossy, meaning that the output pixels are not necessarily identical to
+the input pixels.  However, on photographic content and other "smooth" images,
+very good compression ratios can be obtained with no visible compression
+artifacts, and extremely high compression ratios are possible if you are
+willing to sacrifice image quality (by reducing the "quality" setting in the
+compressor.)
+
+This software implements JPEG baseline, extended-sequential, and progressive
+compression processes.  Provision is made for supporting all variants of these
+processes, although some uncommon parameter settings aren't implemented yet.
+We have made no provision for supporting the hierarchical or lossless
+processes defined in the standard.
+
+We provide a set of library routines for reading and writing JPEG image files,
+plus two sample applications "cjpeg" and "djpeg", which use the library to
+perform conversion between JPEG and some other popular image file formats.
+The library is intended to be reused in other applications.
+
+In order to support file conversion and viewing software, we have included
+considerable functionality beyond the bare JPEG coding/decoding capability;
+for example, the color quantization modules are not strictly part of JPEG
+decoding, but they are essential for output to colormapped file formats or
+colormapped displays.  These extra functions can be compiled out of the
+library if not required for a particular application.
+
+We have also included "jpegtran", a utility for lossless transcoding between
+different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple
+applications for inserting and extracting textual comments in JFIF files.
+
+The emphasis in designing this software has been on achieving portability and
+flexibility, while also making it fast enough to be useful.  In particular,
+the software is not intended to be read as a tutorial on JPEG.  (See the
+REFERENCES section for introductory material.)  Rather, it is intended to
+be reliable, portable, industrial-strength code.  We do not claim to have
+achieved that goal in every aspect of the software, but we strive for it.
+
+We welcome the use of this software as a component of commercial products.
+No royalty is required, but we do ask for an acknowledgement in product
+documentation, as described under LEGAL ISSUES.
+
+
+LEGAL ISSUES
+============
+
+In plain English:
+
+1. We don't promise that this software works.  (But if you find any bugs,
+   please let us know!)
+2. You can use this software for whatever you want.  You don't have to pay us.
+3. You may not pretend that you wrote this software.  If you use it in a
+   program, you must acknowledge somewhere in your documentation that
+   you've used the IJG code.
+
+In legalese:
+
+The authors make NO WARRANTY or representation, either express or implied,
+with respect to this software, its quality, accuracy, merchantability, or
+fitness for a particular purpose.  This software is provided "AS IS", and you,
+its user, assume the entire risk as to its quality and accuracy.
+
+This software is copyright (C) 1991-2010, Thomas G. Lane, Guido Vollbeding.
+All Rights Reserved except as specified below.
+
+Permission is hereby granted to use, copy, modify, and distribute this
+software (or portions thereof) for any purpose, without fee, subject to these
+conditions:
+(1) If any part of the source code for this software is distributed, then this
+README file must be included, with this copyright and no-warranty notice
+unaltered; and any additions, deletions, or changes to the original files
+must be clearly indicated in accompanying documentation.
+(2) If only executable code is distributed, then the accompanying
+documentation must state that "this software is based in part on the work of
+the Independent JPEG Group".
+(3) Permission for use of this software is granted only if the user accepts
+full responsibility for any undesirable consequences; the authors accept
+NO LIABILITY for damages of any kind.
+
+These conditions apply to any software derived from or based on the IJG code,
+not just to the unmodified library.  If you use our work, you ought to
+acknowledge us.
+
+Permission is NOT granted for the use of any IJG author's name or company name
+in advertising or publicity relating to this software or products derived from
+it.  This software may be referred to only as "the Independent JPEG Group's
+software".
+
+We specifically permit and encourage the use of this software as the basis of
+commercial products, provided that all warranty or liability claims are
+assumed by the product vendor.
+
+
+ansi2knr.c is included in this distribution by permission of L. Peter Deutsch,
+sole proprietor of its copyright holder, Aladdin Enterprises of Menlo Park, CA.
+ansi2knr.c is NOT covered by the above copyright and conditions, but instead
+by the usual distribution terms of the Free Software Foundation; principally,
+that you must include source code if you redistribute it.  (See the file
+ansi2knr.c for full details.)  However, since ansi2knr.c is not needed as part
+of any program generated from the IJG code, this does not limit you more than
+the foregoing paragraphs do.
+
+The Unix configuration script "configure" was produced with GNU Autoconf.
+It is copyright by the Free Software Foundation but is freely distributable.
+The same holds for its supporting scripts (config.guess, config.sub,
+ltmain.sh).  Another support script, install-sh, is copyright by X Consortium
+but is also freely distributable.
+
+The IJG distribution formerly included code to read and write GIF files.
+To avoid entanglement with the Unisys LZW patent, GIF reading support has
+been removed altogether, and the GIF writer has been simplified to produce
+"uncompressed GIFs".  This technique does not use the LZW algorithm; the
+resulting GIF files are larger than usual, but are readable by all standard
+GIF decoders.
+
+We are required to state that
+    "The Graphics Interchange Format(c) is the Copyright property of
+    CompuServe Incorporated.  GIF(sm) is a Service Mark property of
+    CompuServe Incorporated."
+
+
+REFERENCES
+==========
+
+We recommend reading one or more of these references before trying to
+understand the innards of the JPEG software.
+
+The best short technical introduction to the JPEG compression algorithm is
+	Wallace, Gregory K.  "The JPEG Still Picture Compression Standard",
+	Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.
+(Adjacent articles in that issue discuss MPEG motion picture compression,
+applications of JPEG, and related topics.)  If you don't have the CACM issue
+handy, a PostScript file containing a revised version of Wallace's article is
+available at http://www.ijg.org/files/wallace.ps.gz.  The file (actually
+a preprint for an article that appeared in IEEE Trans. Consumer Electronics)
+omits the sample images that appeared in CACM, but it includes corrections
+and some added material.  Note: the Wallace article is copyright ACM and IEEE,
+and it may not be used for commercial purposes.
+
+A somewhat less technical, more leisurely introduction to JPEG can be found in
+"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by
+M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1.  This book provides
+good explanations and example C code for a multitude of compression methods
+including JPEG.  It is an excellent source if you are comfortable reading C
+code but don't know much about data compression in general.  The book's JPEG
+sample code is far from industrial-strength, but when you are ready to look
+at a full implementation, you've got one here...
+
+The best currently available description of JPEG is the textbook "JPEG Still
+Image Data Compression Standard" by William B. Pennebaker and Joan L.
+Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.
+Price US$59.95, 638 pp.  The book includes the complete text of the ISO JPEG
+standards (DIS 10918-1 and draft DIS 10918-2).
+
+The original JPEG standard is divided into two parts, Part 1 being the actual
+specification, while Part 2 covers compliance testing methods.  Part 1 is
+titled "Digital Compression and Coding of Continuous-tone Still Images,
+Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS
+10918-1, ITU-T T.81.  Part 2 is titled "Digital Compression and Coding of
+Continuous-tone Still Images, Part 2: Compliance testing" and has document
+numbers ISO/IEC IS 10918-2, ITU-T T.83.
+
+The JPEG standard does not specify all details of an interchangeable file
+format.  For the omitted details we follow the "JFIF" conventions, revision
+1.02.  JFIF 1.02 has been adopted as an Ecma International Technical Report
+and thus received a formal publication status.  It is available as a free
+download in PDF format from
+http://www.ecma-international.org/publications/techreports/E-TR-098.htm.
+A PostScript version of the JFIF document is available at
+http://www.ijg.org/files/jfif.ps.gz.  There is also a plain text version at
+http://www.ijg.org/files/jfif.txt.gz, but it is missing the figures.
+
+The TIFF 6.0 file format specification can be obtained by FTP from
+ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz.  The JPEG incorporation scheme
+found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems.
+IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6).
+Instead, we recommend the JPEG design proposed by TIFF Technical Note #2
+(Compression tag 7).  Copies of this Note can be obtained from
+http://www.ijg.org/files/.  It is expected that the next revision
+of the TIFF spec will replace the 6.0 JPEG design with the Note's design.
+Although IJG's own code does not support TIFF/JPEG, the free libtiff library
+uses our library to implement TIFF/JPEG per the Note.
+
+
+ARCHIVE LOCATIONS
+=================
+
+The "official" archive site for this software is www.ijg.org.
+The most recent released version can always be found there in
+directory "files".  This particular version will be archived as
+http://www.ijg.org/files/jpegsrc.v8d.tar.gz, and in Windows-compatible
+"zip" archive format as http://www.ijg.org/files/jpegsr8d.zip.
+
+The JPEG FAQ (Frequently Asked Questions) article is a source of some
+general information about JPEG.
+It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/
+and other news.answers archive sites, including the official news.answers
+archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/.
+If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu
+with body
+	send usenet/news.answers/jpeg-faq/part1
+	send usenet/news.answers/jpeg-faq/part2
+
+
+FILE FORMAT WARS
+================
+
+The ISO JPEG standards committee actually promotes different formats like
+"JPEG 2000" or "JPEG XR", which are incompatible with original DCT-based
+JPEG.  IJG therefore does not support these formats (see REFERENCES).  Indeed,
+one of the original reasons for developing this free software was to help
+force convergence on common, interoperable format standards for JPEG files.
+Don't use an incompatible file format!
+(In any case, our decoder will remain capable of reading existing JPEG
+image files indefinitely.)
+
+
+TO DO
+=====
+
+Please send bug reports, offers of help, etc. to jpeg-info@jpegclub.org.

=== added file 'src/libjpeg-turbo/README-turbo.txt'
--- src/libjpeg-turbo/README-turbo.txt	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/README-turbo.txt	2012-06-27 08:13:27 +0000
@@ -0,0 +1,361 @@ 
+*******************************************************************************
+**     Background
+*******************************************************************************
+
+libjpeg-turbo is a derivative of libjpeg that uses SIMD instructions (MMX,
+SSE2, NEON) to accelerate baseline JPEG compression and decompression on x86,
+x86-64, and ARM systems.  On such systems, libjpeg-turbo is generally 2-4x as
+fast as the unmodified version of libjpeg, all else being equal.
+
+libjpeg-turbo was originally based on libjpeg/SIMD by Miyasaka Masaru, but
+the TigerVNC and VirtualGL projects made numerous enhancements to the codec in
+2009, including improved support for Mac OS X, 64-bit support, support for
+32-bit and big-endian pixel formats (RGBX, XBGR, etc.), accelerated Huffman
+encoding/decoding, and various bug fixes.  The goal was to produce a fully
+open-source codec that could replace the partially closed-source TurboJPEG/IPP
+codec used by VirtualGL and TurboVNC.  libjpeg-turbo generally achieves 80-120%
+of the performance of TurboJPEG/IPP.  It is faster in some areas but slower in
+others.
+
+In early 2010, libjpeg-turbo spun off into its own independent project, with
+the goal of making high-speed JPEG compression/decompression technology
+available to a broader range of users and developers.
+
+
+*******************************************************************************
+**     License
+*******************************************************************************
+
+Most of libjpeg-turbo inherits the non-restrictive, BSD-style license used by
+libjpeg (see README.)  The TurboJPEG/OSS wrapper (both C and Java versions) and
+associated test programs bear a similar license, which is reproduced below:
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+- Redistributions of source code must retain the above copyright notice,
+  this list of conditions and the following disclaimer.
+- Redistributions in binary form must reproduce the above copyright notice,
+  this list of conditions and the following disclaimer in the documentation
+  and/or other materials provided with the distribution.
+- Neither the name of the libjpeg-turbo Project nor the names of its
+  contributors may be used to endorse or promote products derived from this
+  software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS",
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+
+*******************************************************************************
+**     Using libjpeg-turbo
+*******************************************************************************
+
+libjpeg-turbo includes two APIs that can be used to compress and decompress
+JPEG images:
+
+  TurboJPEG API:  This API provides an easy-to-use interface for compressing
+  and decompressing JPEG images in memory.  It also provides some functionality
+  that would not be straightforward to achieve using the underlying libjpeg
+  API, such as generating planar YUV images and performing multiple
+  simultaneous lossless transforms on an image.  The Java interface for
+  libjpeg-turbo is written on top of the TurboJPEG API.
+
+  libjpeg API:  This is the de facto industry-standard API for compressing and
+  decompressing JPEG images.  It is more difficult to use than the TurboJPEG
+  API but also more powerful.  libjpeg-turbo is both API/ABI-compatible and
+  mathematically compatible with libjpeg v6b.  It can also optionally be
+  configured to be API/ABI-compatible with libjpeg v7 and v8 (see below.)
+
+
+=============================
+Replacing libjpeg at Run Time
+=============================
+
+If a Unix application is dynamically linked with libjpeg, then you can replace
+libjpeg with libjpeg-turbo at run time by manipulating LD_LIBRARY_PATH.
+For instance:
+
+  [Using libjpeg]
+  > time cjpeg <vgl_5674_0098.ppm >vgl_5674_0098.jpg
+  real  0m0.392s
+  user  0m0.074s
+  sys   0m0.020s
+
+  [Using libjpeg-turbo]
+  > export LD_LIBRARY_PATH=/opt/libjpeg-turbo/{lib}:$LD_LIBRARY_PATH
+  > time cjpeg <vgl_5674_0098.ppm >vgl_5674_0098.jpg
+  real  0m0.109s
+  user  0m0.029s
+  sys   0m0.010s
+
+NOTE: {lib} can be lib, lib32, lib64, or lib/64, depending on the O/S and
+architecture.
+
+System administrators can also replace the libjpeg sym links in /usr/{lib} with
+links to the libjpeg-turbo dynamic library located in /opt/libjpeg-turbo/{lib}.
+This will effectively accelerate every application that uses the libjpeg
+dynamic library on the system.
+
+The libjpeg-turbo SDK for Visual C++ installs the libjpeg-turbo DLL
+(jpeg62.dll, jpeg7.dll, or jpeg8.dll, depending on whether it was built with
+libjpeg v6b, v7, or v8 emulation) into c:\libjpeg-turbo[64]\bin, and the PATH
+environment variable can be modified such that this directory is searched
+before any others that might contain a libjpeg DLL.  However, if a libjpeg
+DLL exists in an application's install directory, then Windows will load this
+DLL first whenever the application is launched.  Thus, if an application ships
+with jpeg62.dll, jpeg7.dll, or jpeg8.dll, then back up the application's
+version of this DLL and copy c:\libjpeg-turbo[64]\bin\jpeg*.dll into the
+application's install directory to accelerate it.
+
+The version of the libjpeg-turbo DLL distributed in the libjpeg-turbo SDK for
+Visual C++ requires the Visual C++ 2008 C run-time DLL (msvcr90.dll).
+msvcr90.dll ships with more recent versions of Windows, but users of older
+Windows releases can obtain it from the Visual C++ 2008 Redistributable
+Package, which is available as a free download from Microsoft's web site.
+
+NOTE:  Features of libjpeg that require passing a C run-time structure, such
+as a file handle, from an application to libjpeg will probably not work with
+the version of the libjpeg-turbo DLL distributed in the libjpeg-turbo SDK for
+Visual C++, unless the application is also built to use the Visual C++ 2008 C
+run-time DLL.  In particular, this affects jpeg_stdio_dest() and
+jpeg_stdio_src().
+
+Mac applications typically embed their own copies of the libjpeg dylib inside
+the (hidden) application bundle, so it is not possible to globally replace
+libjpeg on OS X systems.  If an application uses a shared library version of
+libjpeg, then it may be possible to replace the application's version of it.
+This would generally involve copying libjpeg.*.dylib from libjpeg-turbo into
+the appropriate place in the application bundle and using install_name_tool to
+repoint the dylib to the new directory.  This requires an advanced knowledge of
+OS X and would not survive an upgrade or a re-install of the application.
+Thus, it is not recommended for most users.
+
+=======================
+Replacing TurboJPEG/IPP
+=======================
+
+libjpeg-turbo is a drop-in replacement for the TurboJPEG/IPP SDK used by
+VirtualGL 2.1.x and TurboVNC 0.6 (and prior.)  libjpeg-turbo contains a wrapper
+library (TurboJPEG/OSS) that emulates the TurboJPEG API using libjpeg-turbo
+instead of the closed-source Intel Performance Primitives.  You can replace the
+TurboJPEG/IPP package on Linux systems with the libjpeg-turbo package in order
+to make existing releases of VirtualGL 2.1.x and TurboVNC 0.x use the new codec
+at run time.  Note that the 64-bit libjpeg-turbo packages contain only 64-bit
+binaries, whereas the TurboJPEG/IPP 64-bit packages contained both 64-bit and
+32-bit binaries.  Thus, to replace a TurboJPEG/IPP 64-bit package, install
+both the 64-bit and 32-bit versions of libjpeg-turbo.
+
+You can also build the VirtualGL 2.1.x and TurboVNC 0.6 source code with
+the libjpeg-turbo SDK instead of TurboJPEG/IPP.  It should work identically.
+libjpeg-turbo also includes static library versions of TurboJPEG/OSS, which
+are used to build VirtualGL 2.2 and TurboVNC 1.0 and later.
+
+========================================
+Using libjpeg-turbo in Your Own Programs
+========================================
+
+For the most part, libjpeg-turbo should work identically to libjpeg, so in
+most cases, an application can be built against libjpeg and then run against
+libjpeg-turbo.  On Unix systems (including Cygwin), you can build against
+libjpeg-turbo instead of libjpeg by setting
+
+  CPATH=/opt/libjpeg-turbo/include
+  and
+  LIBRARY_PATH=/opt/libjpeg-turbo/{lib}
+
+({lib} = lib32 or lib64, depending on whether you are building a 32-bit or a
+64-bit application.)
+
+If using MinGW, then set
+
+  CPATH=/c/libjpeg-turbo-gcc[64]/include
+  and
+  LIBRARY_PATH=/c/libjpeg-turbo-gcc[64]/lib
+
+Building against libjpeg-turbo is useful, for instance, if you want to build an
+application that leverages the libjpeg-turbo colorspace extensions (see below.)
+On Linux and Solaris systems, you would still need to manipulate
+LD_LIBRARY_PATH or create appropriate sym links to use libjpeg-turbo at run
+time.  On such systems, you can pass -R /opt/libjpeg-turbo/{lib} to the linker
+to force the use of libjpeg-turbo at run time rather than libjpeg (also useful
+if you want to leverage the colorspace extensions), or you can link against the
+libjpeg-turbo static library.
+
+To force a Linux, Solaris, or MinGW application to link against the static
+version of libjpeg-turbo, you can use the following linker options:
+
+  -Wl,-Bstatic -ljpeg -Wl,-Bdynamic
+
+On OS X, simply add /opt/libjpeg-turbo/lib/libjpeg.a to the linker command
+line (this also works on Linux and Solaris.)
+
+To build Visual C++ applications using libjpeg-turbo, add
+c:\libjpeg-turbo[64]\include to the system or user INCLUDE environment
+variable and c:\libjpeg-turbo[64]\lib to the system or user LIB environment
+variable, and then link against either jpeg.lib (to use the DLL version of
+libjpeg-turbo) or jpeg-static.lib (to use the static version of libjpeg-turbo.)
+
+=====================
+Colorspace Extensions
+=====================
+
+libjpeg-turbo includes extensions that allow JPEG images to be compressed
+directly from (and decompressed directly to) buffers that use BGR, BGRX,
+RGBX, XBGR, and XRGB pixel ordering.  This is implemented with ten new
+colorspace constants:
+
+  JCS_EXT_RGB   /* red/green/blue */
+  JCS_EXT_RGBX  /* red/green/blue/x */
+  JCS_EXT_BGR   /* blue/green/red */
+  JCS_EXT_BGRX  /* blue/green/red/x */
+  JCS_EXT_XBGR  /* x/blue/green/red */
+  JCS_EXT_XRGB  /* x/red/green/blue */
+  JCS_EXT_RGBA  /* red/green/blue/alpha */
+  JCS_EXT_BGRA  /* blue/green/red/alpha */
+  JCS_EXT_ABGR  /* alpha/blue/green/red */
+  JCS_EXT_ARGB  /* alpha/red/green/blue */
+
+Setting cinfo.in_color_space (compression) or cinfo.out_color_space
+(decompression) to one of these values will cause libjpeg-turbo to read the
+red, green, and blue values from (or write them to) the appropriate position in
+the pixel when compressing from/decompressing to an RGB buffer.
+
+Your application can check for the existence of these extensions at compile
+time with:
+
+  #ifdef JCS_EXTENSIONS
+
+At run time, attempting to use these extensions with a version of libjpeg
+that doesn't support them will result in a "Bogus input colorspace" error.
+
+When using the RGBX, BGRX, XBGR, and XRGB colorspaces during decompression, the
+X byte is undefined, and in order to ensure the best performance, libjpeg-turbo
+can set that byte to whatever value it wishes.  If an application expects the X
+byte to be used as an alpha channel, then it should specify JCS_EXT_RGBA,
+JCS_EXT_BGRA, JCS_EXT_ABGR, or JCS_EXT_ARGB.  When these colorspace constants
+are used, the X byte is guaranteed to be 0xFF, which is interpreted as opaque.
+
+Your application can check for the existence of the alpha channel colorspace
+extensions at compile time with:
+
+  #ifdef JCS_ALPHA_EXTENSIONS
+
+jcstest.c, located in the libjpeg-turbo source tree, demonstrates how to check
+for the existence of the colorspace extensions at compile time and run time.
+
+=================================
+libjpeg v7 and v8 API/ABI support
+=================================
+
+With libjpeg v7 and v8, new features were added that necessitated extending the
+compression and decompression structures.  Unfortunately, due to the exposed
+nature of those structures, extending them also necessitated breaking backward
+ABI compatibility with previous libjpeg releases.  Thus, programs that are
+built to use libjpeg v7 or v8 did not work with libjpeg-turbo, since it is
+based on the libjpeg v6b code base.  Although libjpeg v7 and v8 are still not
+as widely used as v6b, enough programs (including a few Linux distros) have
+made the switch that it was desirable to provide support for the libjpeg v7/v8
+API/ABI in libjpeg-turbo.  Although libjpeg-turbo can now be configured as a
+drop-in replacement for libjpeg v7 or v8, it should be noted that not all of
+the features in libjpeg v7 and v8 are supported (see below.)
+
+By passing an argument of --with-jpeg7 or --with-jpeg8 to configure, or an
+argument of -DWITH_JPEG7=1 or -DWITH_JPEG8=1 to cmake, you can build a version
+of libjpeg-turbo that emulates the libjpeg v7 or v8 API/ABI, so that programs
+that are built against libjpeg v7 or v8 can be run with libjpeg-turbo.  The
+following section describes which libjpeg v7+ features are supported and which
+aren't.
+
+libjpeg v7 and v8 Features:
+---------------------------
+
+Fully supported:
+
+-- cjpeg: Separate quality settings for luminance and chrominance
+   Note that the libpjeg v7+ API was extended to accommodate this feature only
+   for convenience purposes.  It has always been possible to implement this
+   feature with libjpeg v6b (see rdswitch.c for an example.)
+
+-- cjpeg: 32-bit BMP support
+
+-- jpegtran: lossless cropping
+
+-- jpegtran: -perfect option
+
+-- rdjpgcom: -raw option
+
+-- rdjpgcom: locale awareness
+
+
+Fully supported when using libjpeg v7/v8 emulation:
+
+-- libjpeg: In-memory source and destination managers
+
+
+Not supported:
+
+-- libjpeg: DCT scaling in compressor
+   cinfo.scale_num and cinfo.scale_denom are silently ignored.
+   There is no technical reason why DCT scaling cannot be supported, but
+   without the SmartScale extension (see below), it would only be able to
+   down-scale using ratios of 1/2, 8/15, 4/7, 8/13, 2/3, 8/11, 4/5, and 8/9,
+   which is of limited usefulness.
+
+-- libjpeg: SmartScale
+   cinfo.block_size is silently ignored.
+   SmartScale is an extension to the JPEG format that allows for DCT block
+   sizes other than 8x8.  It would be difficult to support this feature while
+   retaining backward compatibility with libjpeg v6b.
+
+-- libjpeg: IDCT scaling extensions in decompressor
+   libjpeg-turbo still supports IDCT scaling with scaling factors of 1/2, 1/4,
+   and 1/8 (same as libjpeg v6b.)
+
+-- libjpeg: Fancy downsampling in compressor
+   cinfo.do_fancy_downsampling is silently ignored.
+   This requires the DCT scaling feature, which is not supported.
+
+-- jpegtran: Scaling
+   This requires both the DCT scaling and SmartScale features, which are not
+   supported.
+
+-- Lossless RGB JPEG files
+   This requires the SmartScale feature, which is not supported.
+
+
+*******************************************************************************
+**     Performance pitfalls
+*******************************************************************************
+
+===============
+Restart Markers
+===============
+
+The optimized Huffman decoder in libjpeg-turbo does not handle restart markers
+in a way that makes the rest of the libjpeg infrastructure happy, so it is
+necessary to use the slow Huffman decoder when decompressing a JPEG image that
+has restart markers.  This can cause the decompression performance to drop by
+as much as 20%, but the performance will still be much greater than that of
+libjpeg.  Many consumer packages, such as PhotoShop, use restart markers when
+generating JPEG images, so images generated by those programs will experience
+this issue.
+
+===============================================
+Fast Integer Forward DCT at High Quality Levels
+===============================================
+
+The algorithm used by the SIMD-accelerated quantization function cannot produce
+correct results whenever the fast integer forward DCT is used along with a JPEG
+quality of 98-100.  Thus, libjpeg-turbo must use the non-SIMD quantization
+function in those cases.  This causes performance to drop by as much as 40%.
+It is therefore strongly advised that you use the slow integer forward DCT
+whenever encoding images with a JPEG quality of 98 or higher.

=== added file 'src/libjpeg-turbo/config.h'
--- src/libjpeg-turbo/config.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/config.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,137 @@ 
+/* config.h.  Generated from config.h.in by configure.  */
+/* config.h.in.  Generated from configure.ac by autoheader.  */
+
+/* Build number */
+#define BUILD "20120626"
+
+/* Support arithmetic encoding */
+#define C_ARITH_CODING_SUPPORTED 1
+
+/* Support arithmetic decoding */
+#define D_ARITH_CODING_SUPPORTED 1
+
+/* Define to 1 if you have the <dlfcn.h> header file. */
+#define HAVE_DLFCN_H 1
+
+/* Define to 1 if you have the <inttypes.h> header file. */
+#define HAVE_INTTYPES_H 1
+
+/* Define to 1 if you have the <jni.h> header file. */
+/* #undef HAVE_JNI_H */
+
+/* Define to 1 if you have the `memcpy' function. */
+#define HAVE_MEMCPY 1
+
+/* Define to 1 if you have the <memory.h> header file. */
+#define HAVE_MEMORY_H 1
+
+/* Define to 1 if you have the `memset' function. */
+#define HAVE_MEMSET 1
+
+/* Define if your compiler supports prototypes */
+#define HAVE_PROTOTYPES 1
+
+/* Define to 1 if you have the <stddef.h> header file. */
+#define HAVE_STDDEF_H 1
+
+/* Define to 1 if you have the <stdint.h> header file. */
+#define HAVE_STDINT_H 1
+
+/* Define to 1 if you have the <stdlib.h> header file. */
+#define HAVE_STDLIB_H 1
+
+/* Define to 1 if you have the <strings.h> header file. */
+#define HAVE_STRINGS_H 1
+
+/* Define to 1 if you have the <string.h> header file. */
+#define HAVE_STRING_H 1
+
+/* Define to 1 if you have the <sys/stat.h> header file. */
+#define HAVE_SYS_STAT_H 1
+
+/* Define to 1 if you have the <sys/types.h> header file. */
+#define HAVE_SYS_TYPES_H 1
+
+/* Define to 1 if you have the <unistd.h> header file. */
+#define HAVE_UNISTD_H 1
+
+/* Define to 1 if the system has the type `unsigned char'. */
+#define HAVE_UNSIGNED_CHAR 1
+
+/* Define to 1 if the system has the type `unsigned short'. */
+#define HAVE_UNSIGNED_SHORT 1
+
+/* Compiler does not support pointers to undefined structures. */
+/* #undef INCOMPLETE_TYPES_BROKEN */
+
+/* How to obtain function inlining. */
+#define INLINE __attribute__((always_inline))
+
+/* libjpeg API version */
+#define JPEG_LIB_VERSION 62
+
+/* libjpeg-turbo version */
+#define LIBJPEG_TURBO_VERSION 1.2.0
+
+/* Define to the sub-directory in which libtool stores uninstalled libraries.
+   */
+#define LT_OBJDIR ".libs/"
+
+/* Define if you have BSD-like bzero and bcopy */
+/* #undef NEED_BSD_STRINGS */
+
+/* Define if you need short function names */
+/* #undef NEED_SHORT_EXTERNAL_NAMES */
+
+/* Define if you have sys/types.h */
+#define NEED_SYS_TYPES_H 1
+
+/* Name of package */
+#define PACKAGE "libjpeg-turbo"
+
+/* Define to the address where bug reports for this package should be sent. */
+#define PACKAGE_BUGREPORT ""
+
+/* Define to the full name of this package. */
+#define PACKAGE_NAME "libjpeg-turbo"
+
+/* Define to the full name and version of this package. */
+#define PACKAGE_STRING "libjpeg-turbo 1.2.0"
+
+/* Define to the one symbol short name of this package. */
+#define PACKAGE_TARNAME "libjpeg-turbo"
+
+/* Define to the home page for this package. */
+#define PACKAGE_URL ""
+
+/* Define to the version of this package. */
+#define PACKAGE_VERSION "1.2.0"
+
+/* Define if shift is unsigned */
+/* #undef RIGHT_SHIFT_IS_UNSIGNED */
+
+/* Define to 1 if you have the ANSI C header files. */
+#define STDC_HEADERS 1
+
+/* Version number of package */
+#define VERSION "1.2.0"
+
+/* Use accelerated SIMD routines. */
+#define WITH_SIMD 1
+
+/* Define to 1 if type `char' is unsigned and you are not using gcc.  */
+#ifndef __CHAR_UNSIGNED__
+/* # undef __CHAR_UNSIGNED__ */
+#endif
+
+/* Define to empty if `const' does not conform to ANSI C. */
+/* #undef const */
+
+/* Define to `__inline__' or `__inline' if that's what the C compiler
+   calls it, or to nothing if 'inline' is not supported under any name.  */
+#ifndef __cplusplus
+/* #undef inline */
+#endif
+
+/* Define to `unsigned int' if <sys/types.h> does not define. */
+/* #undef size_t */

=== added file 'src/libjpeg-turbo/jaricom.c'
--- src/libjpeg-turbo/jaricom.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jaricom.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,153 @@ 
+/*
+ * jaricom.c
+ *
+ * Developed 1997-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains probability estimation tables for common use in
+ * arithmetic entropy encoding and decoding routines.
+ *
+ * This data represents Table D.2 in the JPEG spec (ISO/IEC IS 10918-1
+ * and CCITT Recommendation ITU-T T.81) and Table 24 in the JBIG spec
+ * (ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82).
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+/* The following #define specifies the packing of the four components
+ * into the compact INT32 representation.
+ * Note that this formula must match the actual arithmetic encoder
+ * and decoder implementation.  The implementation has to be changed
+ * if this formula is changed.
+ * The current organization is leaned on Markus Kuhn's JBIG
+ * implementation (jbig_tab.c).
+ */
+
+#define V(i,a,b,c,d) (((INT32)a << 16) | ((INT32)c << 8) | ((INT32)d << 7) | b)
+
+const INT32 jpeg_aritab[113+1] = {
+/*
+ * Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS
+ */
+  V(   0, 0x5a1d,   1,   1, 1 ),
+  V(   1, 0x2586,  14,   2, 0 ),
+  V(   2, 0x1114,  16,   3, 0 ),
+  V(   3, 0x080b,  18,   4, 0 ),
+  V(   4, 0x03d8,  20,   5, 0 ),
+  V(   5, 0x01da,  23,   6, 0 ),
+  V(   6, 0x00e5,  25,   7, 0 ),
+  V(   7, 0x006f,  28,   8, 0 ),
+  V(   8, 0x0036,  30,   9, 0 ),
+  V(   9, 0x001a,  33,  10, 0 ),
+  V(  10, 0x000d,  35,  11, 0 ),
+  V(  11, 0x0006,   9,  12, 0 ),
+  V(  12, 0x0003,  10,  13, 0 ),
+  V(  13, 0x0001,  12,  13, 0 ),
+  V(  14, 0x5a7f,  15,  15, 1 ),
+  V(  15, 0x3f25,  36,  16, 0 ),
+  V(  16, 0x2cf2,  38,  17, 0 ),
+  V(  17, 0x207c,  39,  18, 0 ),
+  V(  18, 0x17b9,  40,  19, 0 ),
+  V(  19, 0x1182,  42,  20, 0 ),
+  V(  20, 0x0cef,  43,  21, 0 ),
+  V(  21, 0x09a1,  45,  22, 0 ),
+  V(  22, 0x072f,  46,  23, 0 ),
+  V(  23, 0x055c,  48,  24, 0 ),
+  V(  24, 0x0406,  49,  25, 0 ),
+  V(  25, 0x0303,  51,  26, 0 ),
+  V(  26, 0x0240,  52,  27, 0 ),
+  V(  27, 0x01b1,  54,  28, 0 ),
+  V(  28, 0x0144,  56,  29, 0 ),
+  V(  29, 0x00f5,  57,  30, 0 ),
+  V(  30, 0x00b7,  59,  31, 0 ),
+  V(  31, 0x008a,  60,  32, 0 ),
+  V(  32, 0x0068,  62,  33, 0 ),
+  V(  33, 0x004e,  63,  34, 0 ),
+  V(  34, 0x003b,  32,  35, 0 ),
+  V(  35, 0x002c,  33,   9, 0 ),
+  V(  36, 0x5ae1,  37,  37, 1 ),
+  V(  37, 0x484c,  64,  38, 0 ),
+  V(  38, 0x3a0d,  65,  39, 0 ),
+  V(  39, 0x2ef1,  67,  40, 0 ),
+  V(  40, 0x261f,  68,  41, 0 ),
+  V(  41, 0x1f33,  69,  42, 0 ),
+  V(  42, 0x19a8,  70,  43, 0 ),
+  V(  43, 0x1518,  72,  44, 0 ),
+  V(  44, 0x1177,  73,  45, 0 ),
+  V(  45, 0x0e74,  74,  46, 0 ),
+  V(  46, 0x0bfb,  75,  47, 0 ),
+  V(  47, 0x09f8,  77,  48, 0 ),
+  V(  48, 0x0861,  78,  49, 0 ),
+  V(  49, 0x0706,  79,  50, 0 ),
+  V(  50, 0x05cd,  48,  51, 0 ),
+  V(  51, 0x04de,  50,  52, 0 ),
+  V(  52, 0x040f,  50,  53, 0 ),
+  V(  53, 0x0363,  51,  54, 0 ),
+  V(  54, 0x02d4,  52,  55, 0 ),
+  V(  55, 0x025c,  53,  56, 0 ),
+  V(  56, 0x01f8,  54,  57, 0 ),
+  V(  57, 0x01a4,  55,  58, 0 ),
+  V(  58, 0x0160,  56,  59, 0 ),
+  V(  59, 0x0125,  57,  60, 0 ),
+  V(  60, 0x00f6,  58,  61, 0 ),
+  V(  61, 0x00cb,  59,  62, 0 ),
+  V(  62, 0x00ab,  61,  63, 0 ),
+  V(  63, 0x008f,  61,  32, 0 ),
+  V(  64, 0x5b12,  65,  65, 1 ),
+  V(  65, 0x4d04,  80,  66, 0 ),
+  V(  66, 0x412c,  81,  67, 0 ),
+  V(  67, 0x37d8,  82,  68, 0 ),
+  V(  68, 0x2fe8,  83,  69, 0 ),
+  V(  69, 0x293c,  84,  70, 0 ),
+  V(  70, 0x2379,  86,  71, 0 ),
+  V(  71, 0x1edf,  87,  72, 0 ),
+  V(  72, 0x1aa9,  87,  73, 0 ),
+  V(  73, 0x174e,  72,  74, 0 ),
+  V(  74, 0x1424,  72,  75, 0 ),
+  V(  75, 0x119c,  74,  76, 0 ),
+  V(  76, 0x0f6b,  74,  77, 0 ),
+  V(  77, 0x0d51,  75,  78, 0 ),
+  V(  78, 0x0bb6,  77,  79, 0 ),
+  V(  79, 0x0a40,  77,  48, 0 ),
+  V(  80, 0x5832,  80,  81, 1 ),
+  V(  81, 0x4d1c,  88,  82, 0 ),
+  V(  82, 0x438e,  89,  83, 0 ),
+  V(  83, 0x3bdd,  90,  84, 0 ),
+  V(  84, 0x34ee,  91,  85, 0 ),
+  V(  85, 0x2eae,  92,  86, 0 ),
+  V(  86, 0x299a,  93,  87, 0 ),
+  V(  87, 0x2516,  86,  71, 0 ),
+  V(  88, 0x5570,  88,  89, 1 ),
+  V(  89, 0x4ca9,  95,  90, 0 ),
+  V(  90, 0x44d9,  96,  91, 0 ),
+  V(  91, 0x3e22,  97,  92, 0 ),
+  V(  92, 0x3824,  99,  93, 0 ),
+  V(  93, 0x32b4,  99,  94, 0 ),
+  V(  94, 0x2e17,  93,  86, 0 ),
+  V(  95, 0x56a8,  95,  96, 1 ),
+  V(  96, 0x4f46, 101,  97, 0 ),
+  V(  97, 0x47e5, 102,  98, 0 ),
+  V(  98, 0x41cf, 103,  99, 0 ),
+  V(  99, 0x3c3d, 104, 100, 0 ),
+  V( 100, 0x375e,  99,  93, 0 ),
+  V( 101, 0x5231, 105, 102, 0 ),
+  V( 102, 0x4c0f, 106, 103, 0 ),
+  V( 103, 0x4639, 107, 104, 0 ),
+  V( 104, 0x415e, 103,  99, 0 ),
+  V( 105, 0x5627, 105, 106, 1 ),
+  V( 106, 0x50e7, 108, 107, 0 ),
+  V( 107, 0x4b85, 109, 103, 0 ),
+  V( 108, 0x5597, 110, 109, 0 ),
+  V( 109, 0x504f, 111, 107, 0 ),
+  V( 110, 0x5a10, 110, 111, 1 ),
+  V( 111, 0x5522, 112, 109, 0 ),
+  V( 112, 0x59eb, 112, 111, 1 ),
+/*
+ * This last entry is used for fixed probability estimate of 0.5
+ * as recommended in Section 10.3 Table 5 of ITU-T Rec. T.851.
+ */
+  V( 113, 0x5a1d, 113, 113, 0 )
+};

=== added file 'src/libjpeg-turbo/jcapimin.c'
--- src/libjpeg-turbo/jcapimin.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jcapimin.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,292 @@ 
+/*
+ * jcapimin.c
+ *
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * Modified 2003-2010 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface code for the compression half
+ * of the JPEG library.  These are the "minimum" API routines that may be
+ * needed in either the normal full-compression case or the transcoding-only
+ * case.
+ *
+ * Most of the routines intended to be called directly by an application
+ * are in this file or in jcapistd.c.  But also see jcparam.c for
+ * parameter-setup helper routines, jcomapi.c for routines shared by
+ * compression and decompression, and jctrans.c for the transcoding case.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Initialization of a JPEG compression object.
+ * The error manager must already be set up (in case memory manager fails).
+ */
+
+GLOBAL(void)
+jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
+{
+  int i;
+
+  /* Guard against version mismatches between library and caller. */
+  cinfo->mem = NULL;		/* so jpeg_destroy knows mem mgr not called */
+  if (version != JPEG_LIB_VERSION)
+    ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
+  if (structsize != SIZEOF(struct jpeg_compress_struct))
+    ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, 
+	     (int) SIZEOF(struct jpeg_compress_struct), (int) structsize);
+
+  /* For debugging purposes, we zero the whole master structure.
+   * But the application has already set the err pointer, and may have set
+   * client_data, so we have to save and restore those fields.
+   * Note: if application hasn't set client_data, tools like Purify may
+   * complain here.
+   */
+  {
+    struct jpeg_error_mgr * err = cinfo->err;
+    void * client_data = cinfo->client_data; /* ignore Purify complaint here */
+    MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
+    cinfo->err = err;
+    cinfo->client_data = client_data;
+  }
+  cinfo->is_decompressor = FALSE;
+
+  /* Initialize a memory manager instance for this object */
+  jinit_memory_mgr((j_common_ptr) cinfo);
+
+  /* Zero out pointers to permanent structures. */
+  cinfo->progress = NULL;
+  cinfo->dest = NULL;
+
+  cinfo->comp_info = NULL;
+
+  for (i = 0; i < NUM_QUANT_TBLS; i++) {
+    cinfo->quant_tbl_ptrs[i] = NULL;
+#if JPEG_LIB_VERSION >= 70
+    cinfo->q_scale_factor[i] = 100;
+#endif
+  }
+
+  for (i = 0; i < NUM_HUFF_TBLS; i++) {
+    cinfo->dc_huff_tbl_ptrs[i] = NULL;
+    cinfo->ac_huff_tbl_ptrs[i] = NULL;
+  }
+
+#if JPEG_LIB_VERSION >= 80
+  /* Must do it here for emit_dqt in case jpeg_write_tables is used */
+  cinfo->block_size = DCTSIZE;
+  cinfo->natural_order = jpeg_natural_order;
+  cinfo->lim_Se = DCTSIZE2-1;
+#endif
+
+  cinfo->script_space = NULL;
+
+  cinfo->input_gamma = 1.0;	/* in case application forgets */
+
+  /* OK, I'm ready */
+  cinfo->global_state = CSTATE_START;
+}
+
+
+/*
+ * Destruction of a JPEG compression object
+ */
+
+GLOBAL(void)
+jpeg_destroy_compress (j_compress_ptr cinfo)
+{
+  jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
+}
+
+
+/*
+ * Abort processing of a JPEG compression operation,
+ * but don't destroy the object itself.
+ */
+
+GLOBAL(void)
+jpeg_abort_compress (j_compress_ptr cinfo)
+{
+  jpeg_abort((j_common_ptr) cinfo); /* use common routine */
+}
+
+
+/*
+ * Forcibly suppress or un-suppress all quantization and Huffman tables.
+ * Marks all currently defined tables as already written (if suppress)
+ * or not written (if !suppress).  This will control whether they get emitted
+ * by a subsequent jpeg_start_compress call.
+ *
+ * This routine is exported for use by applications that want to produce
+ * abbreviated JPEG datastreams.  It logically belongs in jcparam.c, but
+ * since it is called by jpeg_start_compress, we put it here --- otherwise
+ * jcparam.o would be linked whether the application used it or not.
+ */
+
+GLOBAL(void)
+jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress)
+{
+  int i;
+  JQUANT_TBL * qtbl;
+  JHUFF_TBL * htbl;
+
+  for (i = 0; i < NUM_QUANT_TBLS; i++) {
+    if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
+      qtbl->sent_table = suppress;
+  }
+
+  for (i = 0; i < NUM_HUFF_TBLS; i++) {
+    if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
+      htbl->sent_table = suppress;
+    if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
+      htbl->sent_table = suppress;
+  }
+}
+
+
+/*
+ * Finish JPEG compression.
+ *
+ * If a multipass operating mode was selected, this may do a great deal of
+ * work including most of the actual output.
+ */
+
+GLOBAL(void)
+jpeg_finish_compress (j_compress_ptr cinfo)
+{
+  JDIMENSION iMCU_row;
+
+  if (cinfo->global_state == CSTATE_SCANNING ||
+      cinfo->global_state == CSTATE_RAW_OK) {
+    /* Terminate first pass */
+    if (cinfo->next_scanline < cinfo->image_height)
+      ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
+    (*cinfo->master->finish_pass) (cinfo);
+  } else if (cinfo->global_state != CSTATE_WRCOEFS)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+  /* Perform any remaining passes */
+  while (! cinfo->master->is_last_pass) {
+    (*cinfo->master->prepare_for_pass) (cinfo);
+    for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
+      if (cinfo->progress != NULL) {
+	cinfo->progress->pass_counter = (long) iMCU_row;
+	cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
+	(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+      }
+      /* We bypass the main controller and invoke coef controller directly;
+       * all work is being done from the coefficient buffer.
+       */
+      if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL))
+	ERREXIT(cinfo, JERR_CANT_SUSPEND);
+    }
+    (*cinfo->master->finish_pass) (cinfo);
+  }
+  /* Write EOI, do final cleanup */
+  (*cinfo->marker->write_file_trailer) (cinfo);
+  (*cinfo->dest->term_destination) (cinfo);
+  /* We can use jpeg_abort to release memory and reset global_state */
+  jpeg_abort((j_common_ptr) cinfo);
+}
+
+
+/*
+ * Write a special marker.
+ * This is only recommended for writing COM or APPn markers.
+ * Must be called after jpeg_start_compress() and before
+ * first call to jpeg_write_scanlines() or jpeg_write_raw_data().
+ */
+
+GLOBAL(void)
+jpeg_write_marker (j_compress_ptr cinfo, int marker,
+		   const JOCTET *dataptr, unsigned int datalen)
+{
+  JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val));
+
+  if (cinfo->next_scanline != 0 ||
+      (cinfo->global_state != CSTATE_SCANNING &&
+       cinfo->global_state != CSTATE_RAW_OK &&
+       cinfo->global_state != CSTATE_WRCOEFS))
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+  (*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
+  write_marker_byte = cinfo->marker->write_marker_byte;	/* copy for speed */
+  while (datalen--) {
+    (*write_marker_byte) (cinfo, *dataptr);
+    dataptr++;
+  }
+}
+
+/* Same, but piecemeal. */
+
+GLOBAL(void)
+jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
+{
+  if (cinfo->next_scanline != 0 ||
+      (cinfo->global_state != CSTATE_SCANNING &&
+       cinfo->global_state != CSTATE_RAW_OK &&
+       cinfo->global_state != CSTATE_WRCOEFS))
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+  (*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
+}
+
+GLOBAL(void)
+jpeg_write_m_byte (j_compress_ptr cinfo, int val)
+{
+  (*cinfo->marker->write_marker_byte) (cinfo, val);
+}
+
+
+/*
+ * Alternate compression function: just write an abbreviated table file.
+ * Before calling this, all parameters and a data destination must be set up.
+ *
+ * To produce a pair of files containing abbreviated tables and abbreviated
+ * image data, one would proceed as follows:
+ *
+ *		initialize JPEG object
+ *		set JPEG parameters
+ *		set destination to table file
+ *		jpeg_write_tables(cinfo);
+ *		set destination to image file
+ *		jpeg_start_compress(cinfo, FALSE);
+ *		write data...
+ *		jpeg_finish_compress(cinfo);
+ *
+ * jpeg_write_tables has the side effect of marking all tables written
+ * (same as jpeg_suppress_tables(..., TRUE)).  Thus a subsequent start_compress
+ * will not re-emit the tables unless it is passed write_all_tables=TRUE.
+ */
+
+GLOBAL(void)
+jpeg_write_tables (j_compress_ptr cinfo)
+{
+  if (cinfo->global_state != CSTATE_START)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+  /* (Re)initialize error mgr and destination modules */
+  (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+  (*cinfo->dest->init_destination) (cinfo);
+  /* Initialize the marker writer ... bit of a crock to do it here. */
+  jinit_marker_writer(cinfo);
+  /* Write them tables! */
+  (*cinfo->marker->write_tables_only) (cinfo);
+  /* And clean up. */
+  (*cinfo->dest->term_destination) (cinfo);
+  /*
+   * In library releases up through v6a, we called jpeg_abort() here to free
+   * any working memory allocated by the destination manager and marker
+   * writer.  Some applications had a problem with that: they allocated space
+   * of their own from the library memory manager, and didn't want it to go
+   * away during write_tables.  So now we do nothing.  This will cause a
+   * memory leak if an app calls write_tables repeatedly without doing a full
+   * compression cycle or otherwise resetting the JPEG object.  However, that
+   * seems less bad than unexpectedly freeing memory in the normal case.
+   * An app that prefers the old behavior can call jpeg_abort for itself after
+   * each call to jpeg_write_tables().
+   */
+}

=== added file 'src/libjpeg-turbo/jcapistd.c'
--- src/libjpeg-turbo/jcapistd.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jcapistd.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,161 @@ 
+/*
+ * jcapistd.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface code for the compression half
+ * of the JPEG library.  These are the "standard" API routines that are
+ * used in the normal full-compression case.  They are not used by a
+ * transcoding-only application.  Note that if an application links in
+ * jpeg_start_compress, it will end up linking in the entire compressor.
+ * We thus must separate this file from jcapimin.c to avoid linking the
+ * whole compression library into a transcoder.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Compression initialization.
+ * Before calling this, all parameters and a data destination must be set up.
+ *
+ * We require a write_all_tables parameter as a failsafe check when writing
+ * multiple datastreams from the same compression object.  Since prior runs
+ * will have left all the tables marked sent_table=TRUE, a subsequent run
+ * would emit an abbreviated stream (no tables) by default.  This may be what
+ * is wanted, but for safety's sake it should not be the default behavior:
+ * programmers should have to make a deliberate choice to emit abbreviated
+ * images.  Therefore the documentation and examples should encourage people
+ * to pass write_all_tables=TRUE; then it will take active thought to do the
+ * wrong thing.
+ */
+
+GLOBAL(void)
+jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
+{
+  if (cinfo->global_state != CSTATE_START)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+  if (write_all_tables)
+    jpeg_suppress_tables(cinfo, FALSE);	/* mark all tables to be written */
+
+  /* (Re)initialize error mgr and destination modules */
+  (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+  (*cinfo->dest->init_destination) (cinfo);
+  /* Perform master selection of active modules */
+  jinit_compress_master(cinfo);
+  /* Set up for the first pass */
+  (*cinfo->master->prepare_for_pass) (cinfo);
+  /* Ready for application to drive first pass through jpeg_write_scanlines
+   * or jpeg_write_raw_data.
+   */
+  cinfo->next_scanline = 0;
+  cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
+}
+
+
+/*
+ * Write some scanlines of data to the JPEG compressor.
+ *
+ * The return value will be the number of lines actually written.
+ * This should be less than the supplied num_lines only in case that
+ * the data destination module has requested suspension of the compressor,
+ * or if more than image_height scanlines are passed in.
+ *
+ * Note: we warn about excess calls to jpeg_write_scanlines() since
+ * this likely signals an application programmer error.  However,
+ * excess scanlines passed in the last valid call are *silently* ignored,
+ * so that the application need not adjust num_lines for end-of-image
+ * when using a multiple-scanline buffer.
+ */
+
+GLOBAL(JDIMENSION)
+jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
+		      JDIMENSION num_lines)
+{
+  JDIMENSION row_ctr, rows_left;
+
+  if (cinfo->global_state != CSTATE_SCANNING)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+  if (cinfo->next_scanline >= cinfo->image_height)
+    WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+
+  /* Call progress monitor hook if present */
+  if (cinfo->progress != NULL) {
+    cinfo->progress->pass_counter = (long) cinfo->next_scanline;
+    cinfo->progress->pass_limit = (long) cinfo->image_height;
+    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+  }
+
+  /* Give master control module another chance if this is first call to
+   * jpeg_write_scanlines.  This lets output of the frame/scan headers be
+   * delayed so that application can write COM, etc, markers between
+   * jpeg_start_compress and jpeg_write_scanlines.
+   */
+  if (cinfo->master->call_pass_startup)
+    (*cinfo->master->pass_startup) (cinfo);
+
+  /* Ignore any extra scanlines at bottom of image. */
+  rows_left = cinfo->image_height - cinfo->next_scanline;
+  if (num_lines > rows_left)
+    num_lines = rows_left;
+
+  row_ctr = 0;
+  (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
+  cinfo->next_scanline += row_ctr;
+  return row_ctr;
+}
+
+
+/*
+ * Alternate entry point to write raw data.
+ * Processes exactly one iMCU row per call, unless suspended.
+ */
+
+GLOBAL(JDIMENSION)
+jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
+		     JDIMENSION num_lines)
+{
+  JDIMENSION lines_per_iMCU_row;
+
+  if (cinfo->global_state != CSTATE_RAW_OK)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+  if (cinfo->next_scanline >= cinfo->image_height) {
+    WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+    return 0;
+  }
+
+  /* Call progress monitor hook if present */
+  if (cinfo->progress != NULL) {
+    cinfo->progress->pass_counter = (long) cinfo->next_scanline;
+    cinfo->progress->pass_limit = (long) cinfo->image_height;
+    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+  }
+
+  /* Give master control module another chance if this is first call to
+   * jpeg_write_raw_data.  This lets output of the frame/scan headers be
+   * delayed so that application can write COM, etc, markers between
+   * jpeg_start_compress and jpeg_write_raw_data.
+   */
+  if (cinfo->master->call_pass_startup)
+    (*cinfo->master->pass_startup) (cinfo);
+
+  /* Verify that at least one iMCU row has been passed. */
+  lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE;
+  if (num_lines < lines_per_iMCU_row)
+    ERREXIT(cinfo, JERR_BUFFER_SIZE);
+
+  /* Directly compress the row. */
+  if (! (*cinfo->coef->compress_data) (cinfo, data)) {
+    /* If compressor did not consume the whole row, suspend processing. */
+    return 0;
+  }
+
+  /* OK, we processed one iMCU row. */
+  cinfo->next_scanline += lines_per_iMCU_row;
+  return lines_per_iMCU_row;
+}

=== added file 'src/libjpeg-turbo/jcarith.c'
--- src/libjpeg-turbo/jcarith.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jcarith.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,925 @@ 
+/*
+ * jcarith.c
+ *
+ * Developed 1997-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains portable arithmetic entropy encoding routines for JPEG
+ * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
+ *
+ * Both sequential and progressive modes are supported in this single module.
+ *
+ * Suspension is not currently supported in this module.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Expanded entropy encoder object for arithmetic encoding. */
+
+typedef struct {
+  struct jpeg_entropy_encoder pub; /* public fields */
+
+  INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
+  INT32 a;               /* A register, normalized size of coding interval */
+  INT32 sc;        /* counter for stacked 0xFF values which might overflow */
+  INT32 zc;          /* counter for pending 0x00 output values which might *
+                          * be discarded at the end ("Pacman" termination) */
+  int ct;  /* bit shift counter, determines when next byte will be written */
+  int buffer;                /* buffer for most recent output byte != 0xFF */
+
+  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
+
+  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
+  int next_restart_num;		/* next restart number to write (0-7) */
+
+  /* Pointers to statistics areas (these workspaces have image lifespan) */
+  unsigned char * dc_stats[NUM_ARITH_TBLS];
+  unsigned char * ac_stats[NUM_ARITH_TBLS];
+
+  /* Statistics bin for coding with fixed probability 0.5 */
+  unsigned char fixed_bin[4];
+} arith_entropy_encoder;
+
+typedef arith_entropy_encoder * arith_entropy_ptr;
+
+/* The following two definitions specify the allocation chunk size
+ * for the statistics area.
+ * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
+ * 49 statistics bins for DC, and 245 statistics bins for AC coding.
+ *
+ * We use a compact representation with 1 byte per statistics bin,
+ * thus the numbers directly represent byte sizes.
+ * This 1 byte per statistics bin contains the meaning of the MPS
+ * (more probable symbol) in the highest bit (mask 0x80), and the
+ * index into the probability estimation state machine table
+ * in the lower bits (mask 0x7F).
+ */
+
+#define DC_STAT_BINS 64
+#define AC_STAT_BINS 256
+
+/* NOTE: Uncomment the following #define if you want to use the
+ * given formula for calculating the AC conditioning parameter Kx
+ * for spectral selection progressive coding in section G.1.3.2
+ * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
+ * Although the spec and P&M authors claim that this "has proven
+ * to give good results for 8 bit precision samples", I'm not
+ * convinced yet that this is really beneficial.
+ * Early tests gave only very marginal compression enhancements
+ * (a few - around 5 or so - bytes even for very large files),
+ * which would turn out rather negative if we'd suppress the
+ * DAC (Define Arithmetic Conditioning) marker segments for
+ * the default parameters in the future.
+ * Note that currently the marker writing module emits 12-byte
+ * DAC segments for a full-component scan in a color image.
+ * This is not worth worrying about IMHO. However, since the
+ * spec defines the default values to be used if the tables
+ * are omitted (unlike Huffman tables, which are required
+ * anyway), one might optimize this behaviour in the future,
+ * and then it would be disadvantageous to use custom tables if
+ * they don't provide sufficient gain to exceed the DAC size.
+ *
+ * On the other hand, I'd consider it as a reasonable result
+ * that the conditioning has no significant influence on the
+ * compression performance. This means that the basic
+ * statistical model is already rather stable.
+ *
+ * Thus, at the moment, we use the default conditioning values
+ * anyway, and do not use the custom formula.
+ *
+#define CALCULATE_SPECTRAL_CONDITIONING
+ */
+
+/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
+ * We assume that int right shift is unsigned if INT32 right shift is,
+ * which should be safe.
+ */
+
+#ifdef RIGHT_SHIFT_IS_UNSIGNED
+#define ISHIFT_TEMPS	int ishift_temp;
+#define IRIGHT_SHIFT(x,shft)  \
+	((ishift_temp = (x)) < 0 ? \
+	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
+	 (ishift_temp >> (shft)))
+#else
+#define ISHIFT_TEMPS
+#define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
+#endif
+
+
+LOCAL(void)
+emit_byte (int val, j_compress_ptr cinfo)
+/* Write next output byte; we do not support suspension in this module. */
+{
+  struct jpeg_destination_mgr * dest = cinfo->dest;
+
+  *dest->next_output_byte++ = (JOCTET) val;
+  if (--dest->free_in_buffer == 0)
+    if (! (*dest->empty_output_buffer) (cinfo))
+      ERREXIT(cinfo, JERR_CANT_SUSPEND);
+}
+
+
+/*
+ * Finish up at the end of an arithmetic-compressed scan.
+ */
+
+METHODDEF(void)
+finish_pass (j_compress_ptr cinfo)
+{
+  arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
+  INT32 temp;
+
+  /* Section D.1.8: Termination of encoding */
+
+  /* Find the e->c in the coding interval with the largest
+   * number of trailing zero bits */
+  if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
+    e->c = temp + 0x8000L;
+  else
+    e->c = temp;
+  /* Send remaining bytes to output */
+  e->c <<= e->ct;
+  if (e->c & 0xF8000000L) {
+    /* One final overflow has to be handled */
+    if (e->buffer >= 0) {
+      if (e->zc)
+	do emit_byte(0x00, cinfo);
+	while (--e->zc);
+      emit_byte(e->buffer + 1, cinfo);
+      if (e->buffer + 1 == 0xFF)
+	emit_byte(0x00, cinfo);
+    }
+    e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
+    e->sc = 0;
+  } else {
+    if (e->buffer == 0)
+      ++e->zc;
+    else if (e->buffer >= 0) {
+      if (e->zc)
+	do emit_byte(0x00, cinfo);
+	while (--e->zc);
+      emit_byte(e->buffer, cinfo);
+    }
+    if (e->sc) {
+      if (e->zc)
+	do emit_byte(0x00, cinfo);
+	while (--e->zc);
+      do {
+	emit_byte(0xFF, cinfo);
+	emit_byte(0x00, cinfo);
+      } while (--e->sc);
+    }
+  }
+  /* Output final bytes only if they are not 0x00 */
+  if (e->c & 0x7FFF800L) {
+    if (e->zc)  /* output final pending zero bytes */
+      do emit_byte(0x00, cinfo);
+      while (--e->zc);
+    emit_byte((e->c >> 19) & 0xFF, cinfo);
+    if (((e->c >> 19) & 0xFF) == 0xFF)
+      emit_byte(0x00, cinfo);
+    if (e->c & 0x7F800L) {
+      emit_byte((e->c >> 11) & 0xFF, cinfo);
+      if (((e->c >> 11) & 0xFF) == 0xFF)
+	emit_byte(0x00, cinfo);
+    }
+  }
+}
+
+
+/*
+ * The core arithmetic encoding routine (common in JPEG and JBIG).
+ * This needs to go as fast as possible.
+ * Machine-dependent optimization facilities
+ * are not utilized in this portable implementation.
+ * However, this code should be fairly efficient and
+ * may be a good base for further optimizations anyway.
+ *
+ * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
+ *
+ * Note: I've added full "Pacman" termination support to the
+ * byte output routines, which is equivalent to the optional
+ * Discard_final_zeros procedure (Figure D.15) in the spec.
+ * Thus, we always produce the shortest possible output
+ * stream compliant to the spec (no trailing zero bytes,
+ * except for FF stuffing).
+ *
+ * I've also introduced a new scheme for accessing
+ * the probability estimation state machine table,
+ * derived from Markus Kuhn's JBIG implementation.
+ */
+
+LOCAL(void)
+arith_encode (j_compress_ptr cinfo, unsigned char *st, int val) 
+{
+  register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
+  register unsigned char nl, nm;
+  register INT32 qe, temp;
+  register int sv;
+
+  /* Fetch values from our compact representation of Table D.2:
+   * Qe values and probability estimation state machine
+   */
+  sv = *st;
+  qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
+  nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
+  nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
+
+  /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
+  e->a -= qe;
+  if (val != (sv >> 7)) {
+    /* Encode the less probable symbol */
+    if (e->a >= qe) {
+      /* If the interval size (qe) for the less probable symbol (LPS)
+       * is larger than the interval size for the MPS, then exchange
+       * the two symbols for coding efficiency, otherwise code the LPS
+       * as usual: */
+      e->c += e->a;
+      e->a = qe;
+    }
+    *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
+  } else {
+    /* Encode the more probable symbol */
+    if (e->a >= 0x8000L)
+      return;  /* A >= 0x8000 -> ready, no renormalization required */
+    if (e->a < qe) {
+      /* If the interval size (qe) for the less probable symbol (LPS)
+       * is larger than the interval size for the MPS, then exchange
+       * the two symbols for coding efficiency: */
+      e->c += e->a;
+      e->a = qe;
+    }
+    *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
+  }
+
+  /* Renormalization & data output per section D.1.6 */
+  do {
+    e->a <<= 1;
+    e->c <<= 1;
+    if (--e->ct == 0) {
+      /* Another byte is ready for output */
+      temp = e->c >> 19;
+      if (temp > 0xFF) {
+	/* Handle overflow over all stacked 0xFF bytes */
+	if (e->buffer >= 0) {
+	  if (e->zc)
+	    do emit_byte(0x00, cinfo);
+	    while (--e->zc);
+	  emit_byte(e->buffer + 1, cinfo);
+	  if (e->buffer + 1 == 0xFF)
+	    emit_byte(0x00, cinfo);
+	}
+	e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
+	e->sc = 0;
+	/* Note: The 3 spacer bits in the C register guarantee
+	 * that the new buffer byte can't be 0xFF here
+	 * (see page 160 in the P&M JPEG book). */
+	e->buffer = temp & 0xFF;  /* new output byte, might overflow later */
+      } else if (temp == 0xFF) {
+	++e->sc;  /* stack 0xFF byte (which might overflow later) */
+      } else {
+	/* Output all stacked 0xFF bytes, they will not overflow any more */
+	if (e->buffer == 0)
+	  ++e->zc;
+	else if (e->buffer >= 0) {
+	  if (e->zc)
+	    do emit_byte(0x00, cinfo);
+	    while (--e->zc);
+	  emit_byte(e->buffer, cinfo);
+	}
+	if (e->sc) {
+	  if (e->zc)
+	    do emit_byte(0x00, cinfo);
+	    while (--e->zc);
+	  do {
+	    emit_byte(0xFF, cinfo);
+	    emit_byte(0x00, cinfo);
+	  } while (--e->sc);
+	}
+	e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */
+      }
+      e->c &= 0x7FFFFL;
+      e->ct += 8;
+    }
+  } while (e->a < 0x8000L);
+}
+
+
+/*
+ * Emit a restart marker & resynchronize predictions.
+ */
+
+LOCAL(void)
+emit_restart (j_compress_ptr cinfo, int restart_num)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  int ci;
+  jpeg_component_info * compptr;
+
+  finish_pass(cinfo);
+
+  emit_byte(0xFF, cinfo);
+  emit_byte(JPEG_RST0 + restart_num, cinfo);
+
+  /* Re-initialize statistics areas */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    /* DC needs no table for refinement scan */
+    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
+      MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
+      /* Reset DC predictions to 0 */
+      entropy->last_dc_val[ci] = 0;
+      entropy->dc_context[ci] = 0;
+    }
+    /* AC needs no table when not present */
+    if (cinfo->progressive_mode == 0 || cinfo->Se) {
+      MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
+    }
+  }
+
+  /* Reset arithmetic encoding variables */
+  entropy->c = 0;
+  entropy->a = 0x10000L;
+  entropy->sc = 0;
+  entropy->zc = 0;
+  entropy->ct = 11;
+  entropy->buffer = -1;  /* empty */
+}
+
+
+/*
+ * MCU encoding for DC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  JBLOCKROW block;
+  unsigned char *st;
+  int blkn, ci, tbl;
+  int v, v2, m;
+  ISHIFT_TEMPS
+
+  /* Emit restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      emit_restart(cinfo, entropy->next_restart_num);
+      entropy->restarts_to_go = cinfo->restart_interval;
+      entropy->next_restart_num++;
+      entropy->next_restart_num &= 7;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  /* Encode the MCU data blocks */
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    block = MCU_data[blkn];
+    ci = cinfo->MCU_membership[blkn];
+    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
+
+    /* Compute the DC value after the required point transform by Al.
+     * This is simply an arithmetic right shift.
+     */
+    m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
+
+    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
+
+    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+    /* Figure F.4: Encode_DC_DIFF */
+    if ((v = m - entropy->last_dc_val[ci]) == 0) {
+      arith_encode(cinfo, st, 0);
+      entropy->dc_context[ci] = 0;	/* zero diff category */
+    } else {
+      entropy->last_dc_val[ci] = m;
+      arith_encode(cinfo, st, 1);
+      /* Figure F.6: Encoding nonzero value v */
+      /* Figure F.7: Encoding the sign of v */
+      if (v > 0) {
+	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
+	st += 2;			/* Table F.4: SP = S0 + 2 */
+	entropy->dc_context[ci] = 4;	/* small positive diff category */
+      } else {
+	v = -v;
+	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
+	st += 3;			/* Table F.4: SN = S0 + 3 */
+	entropy->dc_context[ci] = 8;	/* small negative diff category */
+      }
+      /* Figure F.8: Encoding the magnitude category of v */
+      m = 0;
+      if (v -= 1) {
+	arith_encode(cinfo, st, 1);
+	m = 1;
+	v2 = v;
+	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
+	while (v2 >>= 1) {
+	  arith_encode(cinfo, st, 1);
+	  m <<= 1;
+	  st += 1;
+	}
+      }
+      arith_encode(cinfo, st, 0);
+      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+	entropy->dc_context[ci] = 0;	/* zero diff category */
+      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+	entropy->dc_context[ci] += 8;	/* large diff category */
+      /* Figure F.9: Encoding the magnitude bit pattern of v */
+      st += 14;
+      while (m >>= 1)
+	arith_encode(cinfo, st, (m & v) ? 1 : 0);
+    }
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * MCU encoding for AC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  JBLOCKROW block;
+  unsigned char *st;
+  int tbl, k, ke;
+  int v, v2, m;
+
+  /* Emit restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      emit_restart(cinfo, entropy->next_restart_num);
+      entropy->restarts_to_go = cinfo->restart_interval;
+      entropy->next_restart_num++;
+      entropy->next_restart_num &= 7;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  /* Encode the MCU data block */
+  block = MCU_data[0];
+  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+  /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
+
+  /* Establish EOB (end-of-block) index */
+  for (ke = cinfo->Se; ke > 0; ke--)
+    /* We must apply the point transform by Al.  For AC coefficients this
+     * is an integer division with rounding towards 0.  To do this portably
+     * in C, we shift after obtaining the absolute value.
+     */
+    if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
+      if (v >>= cinfo->Al) break;
+    } else {
+      v = -v;
+      if (v >>= cinfo->Al) break;
+    }
+
+  /* Figure F.5: Encode_AC_Coefficients */
+  for (k = cinfo->Ss; k <= ke; k++) {
+    st = entropy->ac_stats[tbl] + 3 * (k - 1);
+    arith_encode(cinfo, st, 0);		/* EOB decision */
+    for (;;) {
+      if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
+	if (v >>= cinfo->Al) {
+	  arith_encode(cinfo, st + 1, 1);
+	  arith_encode(cinfo, entropy->fixed_bin, 0);
+	  break;
+	}
+      } else {
+	v = -v;
+	if (v >>= cinfo->Al) {
+	  arith_encode(cinfo, st + 1, 1);
+	  arith_encode(cinfo, entropy->fixed_bin, 1);
+	  break;
+	}
+      }
+      arith_encode(cinfo, st + 1, 0); st += 3; k++;
+    }
+    st += 2;
+    /* Figure F.8: Encoding the magnitude category of v */
+    m = 0;
+    if (v -= 1) {
+      arith_encode(cinfo, st, 1);
+      m = 1;
+      v2 = v;
+      if (v2 >>= 1) {
+	arith_encode(cinfo, st, 1);
+	m <<= 1;
+	st = entropy->ac_stats[tbl] +
+	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+	while (v2 >>= 1) {
+	  arith_encode(cinfo, st, 1);
+	  m <<= 1;
+	  st += 1;
+	}
+      }
+    }
+    arith_encode(cinfo, st, 0);
+    /* Figure F.9: Encoding the magnitude bit pattern of v */
+    st += 14;
+    while (m >>= 1)
+      arith_encode(cinfo, st, (m & v) ? 1 : 0);
+  }
+  /* Encode EOB decision only if k <= cinfo->Se */
+  if (k <= cinfo->Se) {
+    st = entropy->ac_stats[tbl] + 3 * (k - 1);
+    arith_encode(cinfo, st, 1);
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * MCU encoding for DC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  unsigned char *st;
+  int Al, blkn;
+
+  /* Emit restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      emit_restart(cinfo, entropy->next_restart_num);
+      entropy->restarts_to_go = cinfo->restart_interval;
+      entropy->next_restart_num++;
+      entropy->next_restart_num &= 7;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  st = entropy->fixed_bin;	/* use fixed probability estimation */
+  Al = cinfo->Al;
+
+  /* Encode the MCU data blocks */
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    /* We simply emit the Al'th bit of the DC coefficient value. */
+    arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * MCU encoding for AC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  JBLOCKROW block;
+  unsigned char *st;
+  int tbl, k, ke, kex;
+  int v;
+
+  /* Emit restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      emit_restart(cinfo, entropy->next_restart_num);
+      entropy->restarts_to_go = cinfo->restart_interval;
+      entropy->next_restart_num++;
+      entropy->next_restart_num &= 7;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  /* Encode the MCU data block */
+  block = MCU_data[0];
+  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+  /* Section G.1.3.3: Encoding of AC coefficients */
+
+  /* Establish EOB (end-of-block) index */
+  for (ke = cinfo->Se; ke > 0; ke--)
+    /* We must apply the point transform by Al.  For AC coefficients this
+     * is an integer division with rounding towards 0.  To do this portably
+     * in C, we shift after obtaining the absolute value.
+     */
+    if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
+      if (v >>= cinfo->Al) break;
+    } else {
+      v = -v;
+      if (v >>= cinfo->Al) break;
+    }
+
+  /* Establish EOBx (previous stage end-of-block) index */
+  for (kex = ke; kex > 0; kex--)
+    if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) {
+      if (v >>= cinfo->Ah) break;
+    } else {
+      v = -v;
+      if (v >>= cinfo->Ah) break;
+    }
+
+  /* Figure G.10: Encode_AC_Coefficients_SA */
+  for (k = cinfo->Ss; k <= ke; k++) {
+    st = entropy->ac_stats[tbl] + 3 * (k - 1);
+    if (k > kex)
+      arith_encode(cinfo, st, 0);	/* EOB decision */
+    for (;;) {
+      if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
+	if (v >>= cinfo->Al) {
+	  if (v >> 1)			/* previously nonzero coef */
+	    arith_encode(cinfo, st + 2, (v & 1));
+	  else {			/* newly nonzero coef */
+	    arith_encode(cinfo, st + 1, 1);
+	    arith_encode(cinfo, entropy->fixed_bin, 0);
+	  }
+	  break;
+	}
+      } else {
+	v = -v;
+	if (v >>= cinfo->Al) {
+	  if (v >> 1)			/* previously nonzero coef */
+	    arith_encode(cinfo, st + 2, (v & 1));
+	  else {			/* newly nonzero coef */
+	    arith_encode(cinfo, st + 1, 1);
+	    arith_encode(cinfo, entropy->fixed_bin, 1);
+	  }
+	  break;
+	}
+      }
+      arith_encode(cinfo, st + 1, 0); st += 3; k++;
+    }
+  }
+  /* Encode EOB decision only if k <= cinfo->Se */
+  if (k <= cinfo->Se) {
+    st = entropy->ac_stats[tbl] + 3 * (k - 1);
+    arith_encode(cinfo, st, 1);
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * Encode and output one MCU's worth of arithmetic-compressed coefficients.
+ */
+
+METHODDEF(boolean)
+encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  jpeg_component_info * compptr;
+  JBLOCKROW block;
+  unsigned char *st;
+  int blkn, ci, tbl, k, ke;
+  int v, v2, m;
+
+  /* Emit restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      emit_restart(cinfo, entropy->next_restart_num);
+      entropy->restarts_to_go = cinfo->restart_interval;
+      entropy->next_restart_num++;
+      entropy->next_restart_num &= 7;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  /* Encode the MCU data blocks */
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    block = MCU_data[blkn];
+    ci = cinfo->MCU_membership[blkn];
+    compptr = cinfo->cur_comp_info[ci];
+
+    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
+
+    tbl = compptr->dc_tbl_no;
+
+    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+    /* Figure F.4: Encode_DC_DIFF */
+    if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
+      arith_encode(cinfo, st, 0);
+      entropy->dc_context[ci] = 0;	/* zero diff category */
+    } else {
+      entropy->last_dc_val[ci] = (*block)[0];
+      arith_encode(cinfo, st, 1);
+      /* Figure F.6: Encoding nonzero value v */
+      /* Figure F.7: Encoding the sign of v */
+      if (v > 0) {
+	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
+	st += 2;			/* Table F.4: SP = S0 + 2 */
+	entropy->dc_context[ci] = 4;	/* small positive diff category */
+      } else {
+	v = -v;
+	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
+	st += 3;			/* Table F.4: SN = S0 + 3 */
+	entropy->dc_context[ci] = 8;	/* small negative diff category */
+      }
+      /* Figure F.8: Encoding the magnitude category of v */
+      m = 0;
+      if (v -= 1) {
+	arith_encode(cinfo, st, 1);
+	m = 1;
+	v2 = v;
+	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
+	while (v2 >>= 1) {
+	  arith_encode(cinfo, st, 1);
+	  m <<= 1;
+	  st += 1;
+	}
+      }
+      arith_encode(cinfo, st, 0);
+      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+	entropy->dc_context[ci] = 0;	/* zero diff category */
+      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+	entropy->dc_context[ci] += 8;	/* large diff category */
+      /* Figure F.9: Encoding the magnitude bit pattern of v */
+      st += 14;
+      while (m >>= 1)
+	arith_encode(cinfo, st, (m & v) ? 1 : 0);
+    }
+
+    /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
+
+    tbl = compptr->ac_tbl_no;
+
+    /* Establish EOB (end-of-block) index */
+    for (ke = DCTSIZE2 - 1; ke > 0; ke--)
+      if ((*block)[jpeg_natural_order[ke]]) break;
+
+    /* Figure F.5: Encode_AC_Coefficients */
+    for (k = 1; k <= ke; k++) {
+      st = entropy->ac_stats[tbl] + 3 * (k - 1);
+      arith_encode(cinfo, st, 0);	/* EOB decision */
+      while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
+	arith_encode(cinfo, st + 1, 0); st += 3; k++;
+      }
+      arith_encode(cinfo, st + 1, 1);
+      /* Figure F.6: Encoding nonzero value v */
+      /* Figure F.7: Encoding the sign of v */
+      if (v > 0) {
+	arith_encode(cinfo, entropy->fixed_bin, 0);
+      } else {
+	v = -v;
+	arith_encode(cinfo, entropy->fixed_bin, 1);
+      }
+      st += 2;
+      /* Figure F.8: Encoding the magnitude category of v */
+      m = 0;
+      if (v -= 1) {
+	arith_encode(cinfo, st, 1);
+	m = 1;
+	v2 = v;
+	if (v2 >>= 1) {
+	  arith_encode(cinfo, st, 1);
+	  m <<= 1;
+	  st = entropy->ac_stats[tbl] +
+	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+	  while (v2 >>= 1) {
+	    arith_encode(cinfo, st, 1);
+	    m <<= 1;
+	    st += 1;
+	  }
+	}
+      }
+      arith_encode(cinfo, st, 0);
+      /* Figure F.9: Encoding the magnitude bit pattern of v */
+      st += 14;
+      while (m >>= 1)
+	arith_encode(cinfo, st, (m & v) ? 1 : 0);
+    }
+    /* Encode EOB decision only if k <= DCTSIZE2 - 1 */
+    if (k <= DCTSIZE2 - 1) {
+      st = entropy->ac_stats[tbl] + 3 * (k - 1);
+      arith_encode(cinfo, st, 1);
+    }
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * Initialize for an arithmetic-compressed scan.
+ */
+
+METHODDEF(void)
+start_pass (j_compress_ptr cinfo, boolean gather_statistics)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  int ci, tbl;
+  jpeg_component_info * compptr;
+
+  if (gather_statistics)
+    /* Make sure to avoid that in the master control logic!
+     * We are fully adaptive here and need no extra
+     * statistics gathering pass!
+     */
+    ERREXIT(cinfo, JERR_NOT_COMPILED);
+
+  /* We assume jcmaster.c already validated the progressive scan parameters. */
+
+  /* Select execution routines */
+  if (cinfo->progressive_mode) {
+    if (cinfo->Ah == 0) {
+      if (cinfo->Ss == 0)
+	entropy->pub.encode_mcu = encode_mcu_DC_first;
+      else
+	entropy->pub.encode_mcu = encode_mcu_AC_first;
+    } else {
+      if (cinfo->Ss == 0)
+	entropy->pub.encode_mcu = encode_mcu_DC_refine;
+      else
+	entropy->pub.encode_mcu = encode_mcu_AC_refine;
+    }
+  } else
+    entropy->pub.encode_mcu = encode_mcu;
+
+  /* Allocate & initialize requested statistics areas */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    /* DC needs no table for refinement scan */
+    if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
+      tbl = compptr->dc_tbl_no;
+      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+      if (entropy->dc_stats[tbl] == NULL)
+	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
+      MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
+      /* Initialize DC predictions to 0 */
+      entropy->last_dc_val[ci] = 0;
+      entropy->dc_context[ci] = 0;
+    }
+    /* AC needs no table when not present */
+    if (cinfo->progressive_mode == 0 || cinfo->Se) {
+      tbl = compptr->ac_tbl_no;
+      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+      if (entropy->ac_stats[tbl] == NULL)
+	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
+      MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
+#ifdef CALCULATE_SPECTRAL_CONDITIONING
+      if (cinfo->progressive_mode)
+	/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
+	cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
+#endif
+    }
+  }
+
+  /* Initialize arithmetic encoding variables */
+  entropy->c = 0;
+  entropy->a = 0x10000L;
+  entropy->sc = 0;
+  entropy->zc = 0;
+  entropy->ct = 11;
+  entropy->buffer = -1;  /* empty */
+
+  /* Initialize restart stuff */
+  entropy->restarts_to_go = cinfo->restart_interval;
+  entropy->next_restart_num = 0;
+}
+
+
+/*
+ * Module initialization routine for arithmetic entropy encoding.
+ */
+
+GLOBAL(void)
+jinit_arith_encoder (j_compress_ptr cinfo)
+{
+  arith_entropy_ptr entropy;
+  int i;
+
+  entropy = (arith_entropy_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(arith_entropy_encoder));
+  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
+  entropy->pub.start_pass = start_pass;
+  entropy->pub.finish_pass = finish_pass;
+
+  /* Mark tables unallocated */
+  for (i = 0; i < NUM_ARITH_TBLS; i++) {
+    entropy->dc_stats[i] = NULL;
+    entropy->ac_stats[i] = NULL;
+  }
+
+  /* Initialize index for fixed probability estimation */
+  entropy->fixed_bin[0] = 113;
+}

=== added file 'src/libjpeg-turbo/jccoefct.c'
--- src/libjpeg-turbo/jccoefct.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jccoefct.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,449 @@ 
+/*
+ * jccoefct.c
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the coefficient buffer controller for compression.
+ * This controller is the top level of the JPEG compressor proper.
+ * The coefficient buffer lies between forward-DCT and entropy encoding steps.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* We use a full-image coefficient buffer when doing Huffman optimization,
+ * and also for writing multiple-scan JPEG files.  In all cases, the DCT
+ * step is run during the first pass, and subsequent passes need only read
+ * the buffered coefficients.
+ */
+#ifdef ENTROPY_OPT_SUPPORTED
+#define FULL_COEF_BUFFER_SUPPORTED
+#else
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+#define FULL_COEF_BUFFER_SUPPORTED
+#endif
+#endif
+
+
+/* Private buffer controller object */
+
+typedef struct {
+  struct jpeg_c_coef_controller pub; /* public fields */
+
+  JDIMENSION iMCU_row_num;	/* iMCU row # within image */
+  JDIMENSION mcu_ctr;		/* counts MCUs processed in current row */
+  int MCU_vert_offset;		/* counts MCU rows within iMCU row */
+  int MCU_rows_per_iMCU_row;	/* number of such rows needed */
+
+  /* For single-pass compression, it's sufficient to buffer just one MCU
+   * (although this may prove a bit slow in practice).  We allocate a
+   * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
+   * MCU constructed and sent.  (On 80x86, the workspace is FAR even though
+   * it's not really very big; this is to keep the module interfaces unchanged
+   * when a large coefficient buffer is necessary.)
+   * In multi-pass modes, this array points to the current MCU's blocks
+   * within the virtual arrays.
+   */
+  JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
+
+  /* In multi-pass modes, we need a virtual block array for each component. */
+  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
+} my_coef_controller;
+
+typedef my_coef_controller * my_coef_ptr;
+
+
+/* Forward declarations */
+METHODDEF(boolean) compress_data
+    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+METHODDEF(boolean) compress_first_pass
+    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
+METHODDEF(boolean) compress_output
+    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
+#endif
+
+
+LOCAL(void)
+start_iMCU_row (j_compress_ptr cinfo)
+/* Reset within-iMCU-row counters for a new row */
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+  /* In an interleaved scan, an MCU row is the same as an iMCU row.
+   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
+   * But at the bottom of the image, process only what's left.
+   */
+  if (cinfo->comps_in_scan > 1) {
+    coef->MCU_rows_per_iMCU_row = 1;
+  } else {
+    if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
+      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
+    else
+      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
+  }
+
+  coef->mcu_ctr = 0;
+  coef->MCU_vert_offset = 0;
+}
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+  coef->iMCU_row_num = 0;
+  start_iMCU_row(cinfo);
+
+  switch (pass_mode) {
+  case JBUF_PASS_THRU:
+    if (coef->whole_image[0] != NULL)
+      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+    coef->pub.compress_data = compress_data;
+    break;
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+  case JBUF_SAVE_AND_PASS:
+    if (coef->whole_image[0] == NULL)
+      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+    coef->pub.compress_data = compress_first_pass;
+    break;
+  case JBUF_CRANK_DEST:
+    if (coef->whole_image[0] == NULL)
+      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+    coef->pub.compress_data = compress_output;
+    break;
+#endif
+  default:
+    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+    break;
+  }
+}
+
+
+/*
+ * Process some data in the single-pass case.
+ * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+ * per call, ie, v_samp_factor block rows for each component in the image.
+ * Returns TRUE if the iMCU row is completed, FALSE if suspended.
+ *
+ * NB: input_buf contains a plane for each component in image,
+ * which we index according to the component's SOF position.
+ */
+
+METHODDEF(boolean)
+compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+  JDIMENSION MCU_col_num;	/* index of current MCU within row */
+  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+  int blkn, bi, ci, yindex, yoffset, blockcnt;
+  JDIMENSION ypos, xpos;
+  jpeg_component_info *compptr;
+
+  /* Loop to write as much as one whole iMCU row */
+  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+       yoffset++) {
+    for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
+	 MCU_col_num++) {
+      /* Determine where data comes from in input_buf and do the DCT thing.
+       * Each call on forward_DCT processes a horizontal row of DCT blocks
+       * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
+       * sequentially.  Dummy blocks at the right or bottom edge are filled in
+       * specially.  The data in them does not matter for image reconstruction,
+       * so we fill them with values that will encode to the smallest amount of
+       * data, viz: all zeroes in the AC entries, DC entries equal to previous
+       * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
+       */
+      blkn = 0;
+      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+	compptr = cinfo->cur_comp_info[ci];
+	blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
+						: compptr->last_col_width;
+	xpos = MCU_col_num * compptr->MCU_sample_width;
+	ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
+	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+	  if (coef->iMCU_row_num < last_iMCU_row ||
+	      yoffset+yindex < compptr->last_row_height) {
+	    (*cinfo->fdct->forward_DCT) (cinfo, compptr,
+					 input_buf[compptr->component_index],
+					 coef->MCU_buffer[blkn],
+					 ypos, xpos, (JDIMENSION) blockcnt);
+	    if (blockcnt < compptr->MCU_width) {
+	      /* Create some dummy blocks at the right edge of the image. */
+	      jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
+			(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
+	      for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
+		coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
+	      }
+	    }
+	  } else {
+	    /* Create a row of dummy blocks at the bottom of the image. */
+	    jzero_far((void FAR *) coef->MCU_buffer[blkn],
+		      compptr->MCU_width * SIZEOF(JBLOCK));
+	    for (bi = 0; bi < compptr->MCU_width; bi++) {
+	      coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
+	    }
+	  }
+	  blkn += compptr->MCU_width;
+	  ypos += DCTSIZE;
+	}
+      }
+      /* Try to write the MCU.  In event of a suspension failure, we will
+       * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
+       */
+      if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
+	/* Suspension forced; update state counters and exit */
+	coef->MCU_vert_offset = yoffset;
+	coef->mcu_ctr = MCU_col_num;
+	return FALSE;
+      }
+    }
+    /* Completed an MCU row, but perhaps not an iMCU row */
+    coef->mcu_ctr = 0;
+  }
+  /* Completed the iMCU row, advance counters for next one */
+  coef->iMCU_row_num++;
+  start_iMCU_row(cinfo);
+  return TRUE;
+}
+
+
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+
+/*
+ * Process some data in the first pass of a multi-pass case.
+ * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+ * per call, ie, v_samp_factor block rows for each component in the image.
+ * This amount of data is read from the source buffer, DCT'd and quantized,
+ * and saved into the virtual arrays.  We also generate suitable dummy blocks
+ * as needed at the right and lower edges.  (The dummy blocks are constructed
+ * in the virtual arrays, which have been padded appropriately.)  This makes
+ * it possible for subsequent passes not to worry about real vs. dummy blocks.
+ *
+ * We must also emit the data to the entropy encoder.  This is conveniently
+ * done by calling compress_output() after we've loaded the current strip
+ * of the virtual arrays.
+ *
+ * NB: input_buf contains a plane for each component in image.  All
+ * components are DCT'd and loaded into the virtual arrays in this pass.
+ * However, it may be that only a subset of the components are emitted to
+ * the entropy encoder during this first pass; be careful about looking
+ * at the scan-dependent variables (MCU dimensions, etc).
+ */
+
+METHODDEF(boolean)
+compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+  JDIMENSION blocks_across, MCUs_across, MCUindex;
+  int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
+  JCOEF lastDC;
+  jpeg_component_info *compptr;
+  JBLOCKARRAY buffer;
+  JBLOCKROW thisblockrow, lastblockrow;
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    /* Align the virtual buffer for this component. */
+    buffer = (*cinfo->mem->access_virt_barray)
+      ((j_common_ptr) cinfo, coef->whole_image[ci],
+       coef->iMCU_row_num * compptr->v_samp_factor,
+       (JDIMENSION) compptr->v_samp_factor, TRUE);
+    /* Count non-dummy DCT block rows in this iMCU row. */
+    if (coef->iMCU_row_num < last_iMCU_row)
+      block_rows = compptr->v_samp_factor;
+    else {
+      /* NB: can't use last_row_height here, since may not be set! */
+      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+      if (block_rows == 0) block_rows = compptr->v_samp_factor;
+    }
+    blocks_across = compptr->width_in_blocks;
+    h_samp_factor = compptr->h_samp_factor;
+    /* Count number of dummy blocks to be added at the right margin. */
+    ndummy = (int) (blocks_across % h_samp_factor);
+    if (ndummy > 0)
+      ndummy = h_samp_factor - ndummy;
+    /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
+     * on forward_DCT processes a complete horizontal row of DCT blocks.
+     */
+    for (block_row = 0; block_row < block_rows; block_row++) {
+      thisblockrow = buffer[block_row];
+      (*cinfo->fdct->forward_DCT) (cinfo, compptr,
+				   input_buf[ci], thisblockrow,
+				   (JDIMENSION) (block_row * DCTSIZE),
+				   (JDIMENSION) 0, blocks_across);
+      if (ndummy > 0) {
+	/* Create dummy blocks at the right edge of the image. */
+	thisblockrow += blocks_across; /* => first dummy block */
+	jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
+	lastDC = thisblockrow[-1][0];
+	for (bi = 0; bi < ndummy; bi++) {
+	  thisblockrow[bi][0] = lastDC;
+	}
+      }
+    }
+    /* If at end of image, create dummy block rows as needed.
+     * The tricky part here is that within each MCU, we want the DC values
+     * of the dummy blocks to match the last real block's DC value.
+     * This squeezes a few more bytes out of the resulting file...
+     */
+    if (coef->iMCU_row_num == last_iMCU_row) {
+      blocks_across += ndummy;	/* include lower right corner */
+      MCUs_across = blocks_across / h_samp_factor;
+      for (block_row = block_rows; block_row < compptr->v_samp_factor;
+	   block_row++) {
+	thisblockrow = buffer[block_row];
+	lastblockrow = buffer[block_row-1];
+	jzero_far((void FAR *) thisblockrow,
+		  (size_t) (blocks_across * SIZEOF(JBLOCK)));
+	for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
+	  lastDC = lastblockrow[h_samp_factor-1][0];
+	  for (bi = 0; bi < h_samp_factor; bi++) {
+	    thisblockrow[bi][0] = lastDC;
+	  }
+	  thisblockrow += h_samp_factor; /* advance to next MCU in row */
+	  lastblockrow += h_samp_factor;
+	}
+      }
+    }
+  }
+  /* NB: compress_output will increment iMCU_row_num if successful.
+   * A suspension return will result in redoing all the work above next time.
+   */
+
+  /* Emit data to the entropy encoder, sharing code with subsequent passes */
+  return compress_output(cinfo, input_buf);
+}
+
+
+/*
+ * Process some data in subsequent passes of a multi-pass case.
+ * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+ * per call, ie, v_samp_factor block rows for each component in the scan.
+ * The data is obtained from the virtual arrays and fed to the entropy coder.
+ * Returns TRUE if the iMCU row is completed, FALSE if suspended.
+ *
+ * NB: input_buf is ignored; it is likely to be a NULL pointer.
+ */
+
+METHODDEF(boolean)
+compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+  JDIMENSION MCU_col_num;	/* index of current MCU within row */
+  int blkn, ci, xindex, yindex, yoffset;
+  JDIMENSION start_col;
+  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+  JBLOCKROW buffer_ptr;
+  jpeg_component_info *compptr;
+
+  /* Align the virtual buffers for the components used in this scan.
+   * NB: during first pass, this is safe only because the buffers will
+   * already be aligned properly, so jmemmgr.c won't need to do any I/O.
+   */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    buffer[ci] = (*cinfo->mem->access_virt_barray)
+      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
+       coef->iMCU_row_num * compptr->v_samp_factor,
+       (JDIMENSION) compptr->v_samp_factor, FALSE);
+  }
+
+  /* Loop to process one whole iMCU row */
+  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+       yoffset++) {
+    for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
+	 MCU_col_num++) {
+      /* Construct list of pointers to DCT blocks belonging to this MCU */
+      blkn = 0;			/* index of current DCT block within MCU */
+      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+	compptr = cinfo->cur_comp_info[ci];
+	start_col = MCU_col_num * compptr->MCU_width;
+	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
+	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
+	    coef->MCU_buffer[blkn++] = buffer_ptr++;
+	  }
+	}
+      }
+      /* Try to write the MCU. */
+      if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
+	/* Suspension forced; update state counters and exit */
+	coef->MCU_vert_offset = yoffset;
+	coef->mcu_ctr = MCU_col_num;
+	return FALSE;
+      }
+    }
+    /* Completed an MCU row, but perhaps not an iMCU row */
+    coef->mcu_ctr = 0;
+  }
+  /* Completed the iMCU row, advance counters for next one */
+  coef->iMCU_row_num++;
+  start_iMCU_row(cinfo);
+  return TRUE;
+}
+
+#endif /* FULL_COEF_BUFFER_SUPPORTED */
+
+
+/*
+ * Initialize coefficient buffer controller.
+ */
+
+GLOBAL(void)
+jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
+{
+  my_coef_ptr coef;
+
+  coef = (my_coef_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_coef_controller));
+  cinfo->coef = (struct jpeg_c_coef_controller *) coef;
+  coef->pub.start_pass = start_pass_coef;
+
+  /* Create the coefficient buffer. */
+  if (need_full_buffer) {
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+    /* Allocate a full-image virtual array for each component, */
+    /* padded to a multiple of samp_factor DCT blocks in each direction. */
+    int ci;
+    jpeg_component_info *compptr;
+
+    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+	 ci++, compptr++) {
+      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
+	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
+				(long) compptr->h_samp_factor),
+	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
+				(long) compptr->v_samp_factor),
+	 (JDIMENSION) compptr->v_samp_factor);
+    }
+#else
+    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+#endif
+  } else {
+    /* We only need a single-MCU buffer. */
+    JBLOCKROW buffer;
+    int i;
+
+    buffer = (JBLOCKROW)
+      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+    for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
+      coef->MCU_buffer[i] = buffer + i;
+    }
+    coef->whole_image[0] = NULL; /* flag for no virtual arrays */
+  }
+}

=== added file 'src/libjpeg-turbo/jccolext.c.inc'
--- src/libjpeg-turbo/jccolext.c.inc	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jccolext.c.inc	2012-06-27 08:13:27 +0000
@@ -0,0 +1,114 @@ 
+/*
+ * jccolext.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Copyright (C) 2009-2011, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains input colorspace conversion routines.
+ */
+
+
+/* This file is included by jccolor.c */
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ *
+ * Note that we change from the application's interleaved-pixel format
+ * to our internal noninterleaved, one-plane-per-component format.
+ * The input buffer is therefore three times as wide as the output buffer.
+ *
+ * A starting row offset is provided only for the output buffer.  The caller
+ * can easily adjust the passed input_buf value to accommodate any row
+ * offset required on that side.
+ */
+
+INLINE
+LOCAL(void)
+rgb_ycc_convert_internal (j_compress_ptr cinfo,
+                          JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+                          JDIMENSION output_row, int num_rows)
+{
+  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+  register int r, g, b;
+  register INT32 * ctab = cconvert->rgb_ycc_tab;
+  register JSAMPROW inptr;
+  register JSAMPROW outptr0, outptr1, outptr2;
+  register JDIMENSION col;
+  JDIMENSION num_cols = cinfo->image_width;
+
+  while (--num_rows >= 0) {
+    inptr = *input_buf++;
+    outptr0 = output_buf[0][output_row];
+    outptr1 = output_buf[1][output_row];
+    outptr2 = output_buf[2][output_row];
+    output_row++;
+    for (col = 0; col < num_cols; col++) {
+      r = GETJSAMPLE(inptr[RGB_RED]);
+      g = GETJSAMPLE(inptr[RGB_GREEN]);
+      b = GETJSAMPLE(inptr[RGB_BLUE]);
+      inptr += RGB_PIXELSIZE;
+      /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
+       * must be too; we do not need an explicit range-limiting operation.
+       * Hence the value being shifted is never negative, and we don't
+       * need the general RIGHT_SHIFT macro.
+       */
+      /* Y */
+      outptr0[col] = (JSAMPLE)
+		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
+		 >> SCALEBITS);
+      /* Cb */
+      outptr1[col] = (JSAMPLE)
+		((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
+		 >> SCALEBITS);
+      /* Cr */
+      outptr2[col] = (JSAMPLE)
+		((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
+		 >> SCALEBITS);
+    }
+  }
+}
+
+
+/**************** Cases other than RGB -> YCbCr **************/
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ * This version handles RGB->grayscale conversion, which is the same
+ * as the RGB->Y portion of RGB->YCbCr.
+ * We assume rgb_ycc_start has been called (we only use the Y tables).
+ */
+
+INLINE
+LOCAL(void)
+rgb_gray_convert_internal (j_compress_ptr cinfo,
+                           JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+                           JDIMENSION output_row, int num_rows)
+{
+  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+  register int r, g, b;
+  register INT32 * ctab = cconvert->rgb_ycc_tab;
+  register JSAMPROW inptr;
+  register JSAMPROW outptr;
+  register JDIMENSION col;
+  JDIMENSION num_cols = cinfo->image_width;
+
+  while (--num_rows >= 0) {
+    inptr = *input_buf++;
+    outptr = output_buf[0][output_row];
+    output_row++;
+    for (col = 0; col < num_cols; col++) {
+      r = GETJSAMPLE(inptr[RGB_RED]);
+      g = GETJSAMPLE(inptr[RGB_GREEN]);
+      b = GETJSAMPLE(inptr[RGB_BLUE]);
+      inptr += RGB_PIXELSIZE;
+      /* Y */
+      outptr[col] = (JSAMPLE)
+		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
+		 >> SCALEBITS);
+    }
+  }
+}

=== added file 'src/libjpeg-turbo/jccolor.c'
--- src/libjpeg-turbo/jccolor.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jccolor.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,599 @@ 
+/*
+ * jccolor.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
+ * Copyright (C) 2009-2011, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains input colorspace conversion routines.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jsimd.h"
+#include "config.h"
+
+
+/* Private subobject */
+
+typedef struct {
+  struct jpeg_color_converter pub; /* public fields */
+
+  /* Private state for RGB->YCC conversion */
+  INT32 * rgb_ycc_tab;		/* => table for RGB to YCbCr conversion */
+} my_color_converter;
+
+typedef my_color_converter * my_cconvert_ptr;
+
+
+/**************** RGB -> YCbCr conversion: most common case **************/
+
+/*
+ * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
+ * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
+ * The conversion equations to be implemented are therefore
+ *	Y  =  0.29900 * R + 0.58700 * G + 0.11400 * B
+ *	Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B  + CENTERJSAMPLE
+ *	Cr =  0.50000 * R - 0.41869 * G - 0.08131 * B  + CENTERJSAMPLE
+ * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
+ * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
+ * rather than CENTERJSAMPLE, for Cb and Cr.  This gave equal positive and
+ * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
+ * were not represented exactly.  Now we sacrifice exact representation of
+ * maximum red and maximum blue in order to get exact grayscales.
+ *
+ * To avoid floating-point arithmetic, we represent the fractional constants
+ * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
+ * the products by 2^16, with appropriate rounding, to get the correct answer.
+ *
+ * For even more speed, we avoid doing any multiplications in the inner loop
+ * by precalculating the constants times R,G,B for all possible values.
+ * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
+ * for 12-bit samples it is still acceptable.  It's not very reasonable for
+ * 16-bit samples, but if you want lossless storage you shouldn't be changing
+ * colorspace anyway.
+ * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
+ * in the tables to save adding them separately in the inner loop.
+ */
+
+#define SCALEBITS	16	/* speediest right-shift on some machines */
+#define CBCR_OFFSET	((INT32) CENTERJSAMPLE << SCALEBITS)
+#define ONE_HALF	((INT32) 1 << (SCALEBITS-1))
+#define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
+
+/* We allocate one big table and divide it up into eight parts, instead of
+ * doing eight alloc_small requests.  This lets us use a single table base
+ * address, which can be held in a register in the inner loops on many
+ * machines (more than can hold all eight addresses, anyway).
+ */
+
+#define R_Y_OFF		0			/* offset to R => Y section */
+#define G_Y_OFF		(1*(MAXJSAMPLE+1))	/* offset to G => Y section */
+#define B_Y_OFF		(2*(MAXJSAMPLE+1))	/* etc. */
+#define R_CB_OFF	(3*(MAXJSAMPLE+1))
+#define G_CB_OFF	(4*(MAXJSAMPLE+1))
+#define B_CB_OFF	(5*(MAXJSAMPLE+1))
+#define R_CR_OFF	B_CB_OFF		/* B=>Cb, R=>Cr are the same */
+#define G_CR_OFF	(6*(MAXJSAMPLE+1))
+#define B_CR_OFF	(7*(MAXJSAMPLE+1))
+#define TABLE_SIZE	(8*(MAXJSAMPLE+1))
+
+
+/* Include inline routines for colorspace extensions */
+
+#include "jccolext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+
+#define RGB_RED EXT_RGB_RED
+#define RGB_GREEN EXT_RGB_GREEN
+#define RGB_BLUE EXT_RGB_BLUE
+#define RGB_PIXELSIZE EXT_RGB_PIXELSIZE
+#define rgb_ycc_convert_internal extrgb_ycc_convert_internal
+#define rgb_gray_convert_internal extrgb_gray_convert_internal
+#include "jccolext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+#undef rgb_ycc_convert_internal
+#undef rgb_gray_convert_internal
+
+#define RGB_RED EXT_RGBX_RED
+#define RGB_GREEN EXT_RGBX_GREEN
+#define RGB_BLUE EXT_RGBX_BLUE
+#define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE
+#define rgb_ycc_convert_internal extrgbx_ycc_convert_internal
+#define rgb_gray_convert_internal extrgbx_gray_convert_internal
+#include "jccolext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+#undef rgb_ycc_convert_internal
+#undef rgb_gray_convert_internal
+
+#define RGB_RED EXT_BGR_RED
+#define RGB_GREEN EXT_BGR_GREEN
+#define RGB_BLUE EXT_BGR_BLUE
+#define RGB_PIXELSIZE EXT_BGR_PIXELSIZE
+#define rgb_ycc_convert_internal extbgr_ycc_convert_internal
+#define rgb_gray_convert_internal extbgr_gray_convert_internal
+#include "jccolext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+#undef rgb_ycc_convert_internal
+#undef rgb_gray_convert_internal
+
+#define RGB_RED EXT_BGRX_RED
+#define RGB_GREEN EXT_BGRX_GREEN
+#define RGB_BLUE EXT_BGRX_BLUE
+#define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE
+#define rgb_ycc_convert_internal extbgrx_ycc_convert_internal
+#define rgb_gray_convert_internal extbgrx_gray_convert_internal
+#include "jccolext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+#undef rgb_ycc_convert_internal
+#undef rgb_gray_convert_internal
+
+#define RGB_RED EXT_XBGR_RED
+#define RGB_GREEN EXT_XBGR_GREEN
+#define RGB_BLUE EXT_XBGR_BLUE
+#define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE
+#define rgb_ycc_convert_internal extxbgr_ycc_convert_internal
+#define rgb_gray_convert_internal extxbgr_gray_convert_internal
+#include "jccolext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+#undef rgb_ycc_convert_internal
+#undef rgb_gray_convert_internal
+
+#define RGB_RED EXT_XRGB_RED
+#define RGB_GREEN EXT_XRGB_GREEN
+#define RGB_BLUE EXT_XRGB_BLUE
+#define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE
+#define rgb_ycc_convert_internal extxrgb_ycc_convert_internal
+#define rgb_gray_convert_internal extxrgb_gray_convert_internal
+#include "jccolext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+#undef rgb_ycc_convert_internal
+#undef rgb_gray_convert_internal
+
+
+/*
+ * Initialize for RGB->YCC colorspace conversion.
+ */
+
+METHODDEF(void)
+rgb_ycc_start (j_compress_ptr cinfo)
+{
+  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+  INT32 * rgb_ycc_tab;
+  INT32 i;
+
+  /* Allocate and fill in the conversion tables. */
+  cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				(TABLE_SIZE * SIZEOF(INT32)));
+
+  for (i = 0; i <= MAXJSAMPLE; i++) {
+    rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i;
+    rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i;
+    rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i     + ONE_HALF;
+    rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i;
+    rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i;
+    /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
+     * This ensures that the maximum output will round to MAXJSAMPLE
+     * not MAXJSAMPLE+1, and thus that we don't have to range-limit.
+     */
+    rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i    + CBCR_OFFSET + ONE_HALF-1;
+/*  B=>Cb and R=>Cr tables are the same
+    rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i    + CBCR_OFFSET + ONE_HALF-1;
+*/
+    rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i;
+    rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i;
+  }
+}
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ */
+
+METHODDEF(void)
+rgb_ycc_convert (j_compress_ptr cinfo,
+		 JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+		 JDIMENSION output_row, int num_rows)
+{
+  switch (cinfo->in_color_space) {
+    case JCS_EXT_RGB:
+      extrgb_ycc_convert_internal(cinfo, input_buf, output_buf, output_row,
+                                  num_rows);
+      break;
+    case JCS_EXT_RGBX:
+    case JCS_EXT_RGBA:
+      extrgbx_ycc_convert_internal(cinfo, input_buf, output_buf, output_row,
+                                   num_rows);
+      break;
+    case JCS_EXT_BGR:
+      extbgr_ycc_convert_internal(cinfo, input_buf, output_buf, output_row,
+                                  num_rows);
+      break;
+    case JCS_EXT_BGRX:
+    case JCS_EXT_BGRA:
+      extbgrx_ycc_convert_internal(cinfo, input_buf, output_buf, output_row,
+                                   num_rows);
+      break;
+    case JCS_EXT_XBGR:
+    case JCS_EXT_ABGR:
+      extxbgr_ycc_convert_internal(cinfo, input_buf, output_buf, output_row,
+                                   num_rows);
+      break;
+    case JCS_EXT_XRGB:
+    case JCS_EXT_ARGB:
+      extxrgb_ycc_convert_internal(cinfo, input_buf, output_buf, output_row,
+                                   num_rows);
+      break;
+    default:
+      rgb_ycc_convert_internal(cinfo, input_buf, output_buf, output_row,
+                               num_rows);
+      break;
+  }
+}
+
+
+/**************** Cases other than RGB -> YCbCr **************/
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ */
+
+METHODDEF(void)
+rgb_gray_convert (j_compress_ptr cinfo,
+		  JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+		  JDIMENSION output_row, int num_rows)
+{
+  switch (cinfo->in_color_space) {
+    case JCS_EXT_RGB:
+      extrgb_gray_convert_internal(cinfo, input_buf, output_buf, output_row,
+                                   num_rows);
+      break;
+    case JCS_EXT_RGBX:
+    case JCS_EXT_RGBA:
+      extrgbx_gray_convert_internal(cinfo, input_buf, output_buf, output_row,
+                                    num_rows);
+      break;
+    case JCS_EXT_BGR:
+      extbgr_gray_convert_internal(cinfo, input_buf, output_buf, output_row,
+                                   num_rows);
+      break;
+    case JCS_EXT_BGRX:
+    case JCS_EXT_BGRA:
+      extbgrx_gray_convert_internal(cinfo, input_buf, output_buf, output_row,
+                                    num_rows);
+      break;
+    case JCS_EXT_XBGR:
+    case JCS_EXT_ABGR:
+      extxbgr_gray_convert_internal(cinfo, input_buf, output_buf, output_row,
+                                    num_rows);
+      break;
+    case JCS_EXT_XRGB:
+    case JCS_EXT_ARGB:
+      extxrgb_gray_convert_internal(cinfo, input_buf, output_buf, output_row,
+                                    num_rows);
+      break;
+    default:
+      rgb_gray_convert_internal(cinfo, input_buf, output_buf, output_row,
+                                num_rows);
+      break;
+  }
+}
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ * This version handles Adobe-style CMYK->YCCK conversion,
+ * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same
+ * conversion as above, while passing K (black) unchanged.
+ * We assume rgb_ycc_start has been called.
+ */
+
+METHODDEF(void)
+cmyk_ycck_convert (j_compress_ptr cinfo,
+		   JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+		   JDIMENSION output_row, int num_rows)
+{
+  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+  register int r, g, b;
+  register INT32 * ctab = cconvert->rgb_ycc_tab;
+  register JSAMPROW inptr;
+  register JSAMPROW outptr0, outptr1, outptr2, outptr3;
+  register JDIMENSION col;
+  JDIMENSION num_cols = cinfo->image_width;
+
+  while (--num_rows >= 0) {
+    inptr = *input_buf++;
+    outptr0 = output_buf[0][output_row];
+    outptr1 = output_buf[1][output_row];
+    outptr2 = output_buf[2][output_row];
+    outptr3 = output_buf[3][output_row];
+    output_row++;
+    for (col = 0; col < num_cols; col++) {
+      r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
+      g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
+      b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
+      /* K passes through as-is */
+      outptr3[col] = inptr[3];	/* don't need GETJSAMPLE here */
+      inptr += 4;
+      /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
+       * must be too; we do not need an explicit range-limiting operation.
+       * Hence the value being shifted is never negative, and we don't
+       * need the general RIGHT_SHIFT macro.
+       */
+      /* Y */
+      outptr0[col] = (JSAMPLE)
+		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
+		 >> SCALEBITS);
+      /* Cb */
+      outptr1[col] = (JSAMPLE)
+		((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
+		 >> SCALEBITS);
+      /* Cr */
+      outptr2[col] = (JSAMPLE)
+		((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
+		 >> SCALEBITS);
+    }
+  }
+}
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ * This version handles grayscale output with no conversion.
+ * The source can be either plain grayscale or YCbCr (since Y == gray).
+ */
+
+METHODDEF(void)
+grayscale_convert (j_compress_ptr cinfo,
+		   JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+		   JDIMENSION output_row, int num_rows)
+{
+  register JSAMPROW inptr;
+  register JSAMPROW outptr;
+  register JDIMENSION col;
+  JDIMENSION num_cols = cinfo->image_width;
+  int instride = cinfo->input_components;
+
+  while (--num_rows >= 0) {
+    inptr = *input_buf++;
+    outptr = output_buf[0][output_row];
+    output_row++;
+    for (col = 0; col < num_cols; col++) {
+      outptr[col] = inptr[0];	/* don't need GETJSAMPLE() here */
+      inptr += instride;
+    }
+  }
+}
+
+
+/*
+ * Convert some rows of samples to the JPEG colorspace.
+ * This version handles multi-component colorspaces without conversion.
+ * We assume input_components == num_components.
+ */
+
+METHODDEF(void)
+null_convert (j_compress_ptr cinfo,
+	      JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+	      JDIMENSION output_row, int num_rows)
+{
+  register JSAMPROW inptr;
+  register JSAMPROW outptr;
+  register JDIMENSION col;
+  register int ci;
+  int nc = cinfo->num_components;
+  JDIMENSION num_cols = cinfo->image_width;
+
+  while (--num_rows >= 0) {
+    /* It seems fastest to make a separate pass for each component. */
+    for (ci = 0; ci < nc; ci++) {
+      inptr = *input_buf;
+      outptr = output_buf[ci][output_row];
+      for (col = 0; col < num_cols; col++) {
+	outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */
+	inptr += nc;
+      }
+    }
+    input_buf++;
+    output_row++;
+  }
+}
+
+
+/*
+ * Empty method for start_pass.
+ */
+
+METHODDEF(void)
+null_method (j_compress_ptr cinfo)
+{
+  /* no work needed */
+}
+
+
+/*
+ * Module initialization routine for input colorspace conversion.
+ */
+
+GLOBAL(void)
+jinit_color_converter (j_compress_ptr cinfo)
+{
+  my_cconvert_ptr cconvert;
+
+  cconvert = (my_cconvert_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_color_converter));
+  cinfo->cconvert = (struct jpeg_color_converter *) cconvert;
+  /* set start_pass to null method until we find out differently */
+  cconvert->pub.start_pass = null_method;
+
+  /* Make sure input_components agrees with in_color_space */
+  switch (cinfo->in_color_space) {
+  case JCS_GRAYSCALE:
+    if (cinfo->input_components != 1)
+      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+    break;
+
+  case JCS_RGB:
+  case JCS_EXT_RGB:
+  case JCS_EXT_RGBX:
+  case JCS_EXT_BGR:
+  case JCS_EXT_BGRX:
+  case JCS_EXT_XBGR:
+  case JCS_EXT_XRGB:
+  case JCS_EXT_RGBA:
+  case JCS_EXT_BGRA:
+  case JCS_EXT_ABGR:
+  case JCS_EXT_ARGB:
+    if (cinfo->input_components != rgb_pixelsize[cinfo->in_color_space])
+      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+    break;
+
+  case JCS_YCbCr:
+    if (cinfo->input_components != 3)
+      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+    break;
+
+  case JCS_CMYK:
+  case JCS_YCCK:
+    if (cinfo->input_components != 4)
+      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+    break;
+
+  default:			/* JCS_UNKNOWN can be anything */
+    if (cinfo->input_components < 1)
+      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+    break;
+  }
+
+  /* Check num_components, set conversion method based on requested space */
+  switch (cinfo->jpeg_color_space) {
+  case JCS_GRAYSCALE:
+    if (cinfo->num_components != 1)
+      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+    if (cinfo->in_color_space == JCS_GRAYSCALE)
+      cconvert->pub.color_convert = grayscale_convert;
+    else if (cinfo->in_color_space == JCS_RGB ||
+             cinfo->in_color_space == JCS_EXT_RGB ||
+             cinfo->in_color_space == JCS_EXT_RGBX ||
+             cinfo->in_color_space == JCS_EXT_BGR ||
+             cinfo->in_color_space == JCS_EXT_BGRX ||
+             cinfo->in_color_space == JCS_EXT_XBGR ||
+             cinfo->in_color_space == JCS_EXT_XRGB ||
+             cinfo->in_color_space == JCS_EXT_RGBA ||
+             cinfo->in_color_space == JCS_EXT_BGRA ||
+             cinfo->in_color_space == JCS_EXT_ABGR ||
+             cinfo->in_color_space == JCS_EXT_ARGB) {
+      if (jsimd_can_rgb_gray())
+        cconvert->pub.color_convert = jsimd_rgb_gray_convert;
+      else {
+        cconvert->pub.start_pass = rgb_ycc_start;
+        cconvert->pub.color_convert = rgb_gray_convert;
+      }
+    } else if (cinfo->in_color_space == JCS_YCbCr)
+      cconvert->pub.color_convert = grayscale_convert;
+    else
+      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+    break;
+
+  case JCS_RGB:
+  case JCS_EXT_RGB:
+  case JCS_EXT_RGBX:
+  case JCS_EXT_BGR:
+  case JCS_EXT_BGRX:
+  case JCS_EXT_XBGR:
+  case JCS_EXT_XRGB:
+  case JCS_EXT_RGBA:
+  case JCS_EXT_BGRA:
+  case JCS_EXT_ABGR:
+  case JCS_EXT_ARGB:
+    if (cinfo->num_components != 3)
+      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+    if (cinfo->in_color_space == cinfo->jpeg_color_space &&
+      rgb_pixelsize[cinfo->in_color_space] == 3)
+      cconvert->pub.color_convert = null_convert;
+    else
+      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+    break;
+
+  case JCS_YCbCr:
+    if (cinfo->num_components != 3)
+      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+    if (cinfo->in_color_space == JCS_RGB ||
+        cinfo->in_color_space == JCS_EXT_RGB ||
+        cinfo->in_color_space == JCS_EXT_RGBX ||
+        cinfo->in_color_space == JCS_EXT_BGR ||
+        cinfo->in_color_space == JCS_EXT_BGRX ||
+        cinfo->in_color_space == JCS_EXT_XBGR ||
+        cinfo->in_color_space == JCS_EXT_XRGB ||
+        cinfo->in_color_space == JCS_EXT_RGBA ||
+        cinfo->in_color_space == JCS_EXT_BGRA ||
+        cinfo->in_color_space == JCS_EXT_ABGR ||
+        cinfo->in_color_space == JCS_EXT_ARGB) {
+      if (jsimd_can_rgb_ycc())
+        cconvert->pub.color_convert = jsimd_rgb_ycc_convert;
+      else {
+        cconvert->pub.start_pass = rgb_ycc_start;
+        cconvert->pub.color_convert = rgb_ycc_convert;
+      }
+    } else if (cinfo->in_color_space == JCS_YCbCr)
+      cconvert->pub.color_convert = null_convert;
+    else
+      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+    break;
+
+  case JCS_CMYK:
+    if (cinfo->num_components != 4)
+      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+    if (cinfo->in_color_space == JCS_CMYK)
+      cconvert->pub.color_convert = null_convert;
+    else
+      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+    break;
+
+  case JCS_YCCK:
+    if (cinfo->num_components != 4)
+      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+    if (cinfo->in_color_space == JCS_CMYK) {
+      cconvert->pub.start_pass = rgb_ycc_start;
+      cconvert->pub.color_convert = cmyk_ycck_convert;
+    } else if (cinfo->in_color_space == JCS_YCCK)
+      cconvert->pub.color_convert = null_convert;
+    else
+      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+    break;
+
+  default:			/* allow null conversion of JCS_UNKNOWN */
+    if (cinfo->jpeg_color_space != cinfo->in_color_space ||
+	cinfo->num_components != cinfo->input_components)
+      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+    cconvert->pub.color_convert = null_convert;
+    break;
+  }
+}

=== added file 'src/libjpeg-turbo/jcdctmgr.c'
--- src/libjpeg-turbo/jcdctmgr.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jcdctmgr.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,642 @@ 
+/*
+ * jcdctmgr.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Copyright (C) 1999-2006, MIYASAKA Masaru.
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
+ * Copyright (C) 2011 D. R. Commander
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the forward-DCT management logic.
+ * This code selects a particular DCT implementation to be used,
+ * and it performs related housekeeping chores including coefficient
+ * quantization.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h"		/* Private declarations for DCT subsystem */
+#include "jsimddct.h"
+
+
+/* Private subobject for this module */
+
+typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
+typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
+
+typedef JMETHOD(void, convsamp_method_ptr,
+                (JSAMPARRAY sample_data, JDIMENSION start_col,
+                 DCTELEM * workspace));
+typedef JMETHOD(void, float_convsamp_method_ptr,
+                (JSAMPARRAY sample_data, JDIMENSION start_col,
+                 FAST_FLOAT *workspace));
+
+typedef JMETHOD(void, quantize_method_ptr,
+                (JCOEFPTR coef_block, DCTELEM * divisors,
+                 DCTELEM * workspace));
+typedef JMETHOD(void, float_quantize_method_ptr,
+                (JCOEFPTR coef_block, FAST_FLOAT * divisors,
+                 FAST_FLOAT * workspace));
+
+METHODDEF(void) quantize (JCOEFPTR, DCTELEM *, DCTELEM *);
+
+typedef struct {
+  struct jpeg_forward_dct pub;	/* public fields */
+
+  /* Pointer to the DCT routine actually in use */
+  forward_DCT_method_ptr dct;
+  convsamp_method_ptr convsamp;
+  quantize_method_ptr quantize;
+
+  /* The actual post-DCT divisors --- not identical to the quant table
+   * entries, because of scaling (especially for an unnormalized DCT).
+   * Each table is given in normal array order.
+   */
+  DCTELEM * divisors[NUM_QUANT_TBLS];
+
+  /* work area for FDCT subroutine */
+  DCTELEM * workspace;
+
+#ifdef DCT_FLOAT_SUPPORTED
+  /* Same as above for the floating-point case. */
+  float_DCT_method_ptr float_dct;
+  float_convsamp_method_ptr float_convsamp;
+  float_quantize_method_ptr float_quantize;
+  FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
+  FAST_FLOAT * float_workspace;
+#endif
+} my_fdct_controller;
+
+typedef my_fdct_controller * my_fdct_ptr;
+
+
+/*
+ * Find the highest bit in an integer through binary search.
+ */
+LOCAL(int)
+flss (UINT16 val)
+{
+  int bit;
+
+  bit = 16;
+
+  if (!val)
+    return 0;
+
+  if (!(val & 0xff00)) {
+    bit -= 8;
+    val <<= 8;
+  }
+  if (!(val & 0xf000)) {
+    bit -= 4;
+    val <<= 4;
+  }
+  if (!(val & 0xc000)) {
+    bit -= 2;
+    val <<= 2;
+  }
+  if (!(val & 0x8000)) {
+    bit -= 1;
+    val <<= 1;
+  }
+
+  return bit;
+}
+
+/*
+ * Compute values to do a division using reciprocal.
+ *
+ * This implementation is based on an algorithm described in
+ *   "How to optimize for the Pentium family of microprocessors"
+ *   (http://www.agner.org/assem/).
+ * More information about the basic algorithm can be found in
+ * the paper "Integer Division Using Reciprocals" by Robert Alverson.
+ *
+ * The basic idea is to replace x/d by x * d^-1. In order to store
+ * d^-1 with enough precision we shift it left a few places. It turns
+ * out that this algoright gives just enough precision, and also fits
+ * into DCTELEM:
+ *
+ *   b = (the number of significant bits in divisor) - 1
+ *   r = (word size) + b
+ *   f = 2^r / divisor
+ *
+ * f will not be an integer for most cases, so we need to compensate
+ * for the rounding error introduced:
+ *
+ *   no fractional part:
+ *
+ *       result = input >> r
+ *
+ *   fractional part of f < 0.5:
+ *
+ *       round f down to nearest integer
+ *       result = ((input + 1) * f) >> r
+ *
+ *   fractional part of f > 0.5:
+ *
+ *       round f up to nearest integer
+ *       result = (input * f) >> r
+ *
+ * This is the original algorithm that gives truncated results. But we
+ * want properly rounded results, so we replace "input" with
+ * "input + divisor/2".
+ *
+ * In order to allow SIMD implementations we also tweak the values to
+ * allow the same calculation to be made at all times:
+ * 
+ *   dctbl[0] = f rounded to nearest integer
+ *   dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
+ *   dctbl[2] = 1 << ((word size) * 2 - r)
+ *   dctbl[3] = r - (word size)
+ *
+ * dctbl[2] is for stupid instruction sets where the shift operation
+ * isn't member wise (e.g. MMX).
+ *
+ * The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
+ * is that most SIMD implementations have a "multiply and store top
+ * half" operation.
+ *
+ * Lastly, we store each of the values in their own table instead
+ * of in a consecutive manner, yet again in order to allow SIMD
+ * routines.
+ */
+LOCAL(int)
+compute_reciprocal (UINT16 divisor, DCTELEM * dtbl)
+{
+  UDCTELEM2 fq, fr;
+  UDCTELEM c;
+  int b, r;
+
+  b = flss(divisor) - 1;
+  r  = sizeof(DCTELEM) * 8 + b;
+
+  fq = ((UDCTELEM2)1 << r) / divisor;
+  fr = ((UDCTELEM2)1 << r) % divisor;
+
+  c = divisor / 2; /* for rounding */
+
+  if (fr == 0) { /* divisor is power of two */
+    /* fq will be one bit too large to fit in DCTELEM, so adjust */
+    fq >>= 1;
+    r--;
+  } else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */
+    c++;
+  } else { /* fractional part is > 0.5 */
+    fq++;
+  }
+
+  dtbl[DCTSIZE2 * 0] = (DCTELEM) fq;      /* reciprocal */
+  dtbl[DCTSIZE2 * 1] = (DCTELEM) c;       /* correction + roundfactor */
+  dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r));  /* scale */
+  dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */
+
+  if(r <= 16) return 0;
+  else return 1;
+}
+
+/*
+ * Initialize for a processing pass.
+ * Verify that all referenced Q-tables are present, and set up
+ * the divisor table for each one.
+ * In the current implementation, DCT of all components is done during
+ * the first pass, even if only some components will be output in the
+ * first scan.  Hence all components should be examined here.
+ */
+
+METHODDEF(void)
+start_pass_fdctmgr (j_compress_ptr cinfo)
+{
+  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
+  int ci, qtblno, i;
+  jpeg_component_info *compptr;
+  JQUANT_TBL * qtbl;
+  DCTELEM * dtbl;
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    qtblno = compptr->quant_tbl_no;
+    /* Make sure specified quantization table is present */
+    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
+	cinfo->quant_tbl_ptrs[qtblno] == NULL)
+      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
+    qtbl = cinfo->quant_tbl_ptrs[qtblno];
+    /* Compute divisors for this quant table */
+    /* We may do this more than once for same table, but it's not a big deal */
+    switch (cinfo->dct_method) {
+#ifdef DCT_ISLOW_SUPPORTED
+    case JDCT_ISLOW:
+      /* For LL&M IDCT method, divisors are equal to raw quantization
+       * coefficients multiplied by 8 (to counteract scaling).
+       */
+      if (fdct->divisors[qtblno] == NULL) {
+	fdct->divisors[qtblno] = (DCTELEM *)
+	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				      (DCTSIZE2 * 4) * SIZEOF(DCTELEM));
+      }
+      dtbl = fdct->divisors[qtblno];
+      for (i = 0; i < DCTSIZE2; i++) {
+	if(!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i])
+	  && fdct->quantize == jsimd_quantize)
+	  fdct->quantize = quantize;
+      }
+      break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+    case JDCT_IFAST:
+      {
+	/* For AA&N IDCT method, divisors are equal to quantization
+	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
+	 *   scalefactor[0] = 1
+	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
+	 * We apply a further scale factor of 8.
+	 */
+#define CONST_BITS 14
+	static const INT16 aanscales[DCTSIZE2] = {
+	  /* precomputed values scaled up by 14 bits */
+	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
+	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
+	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
+	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
+	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
+	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
+	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
+	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
+	};
+	SHIFT_TEMPS
+
+	if (fdct->divisors[qtblno] == NULL) {
+	  fdct->divisors[qtblno] = (DCTELEM *)
+	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+					(DCTSIZE2 * 4) * SIZEOF(DCTELEM));
+	}
+	dtbl = fdct->divisors[qtblno];
+	for (i = 0; i < DCTSIZE2; i++) {
+	  if(!compute_reciprocal(
+	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
+				  (INT32) aanscales[i]),
+		    CONST_BITS-3), &dtbl[i])
+	    && fdct->quantize == jsimd_quantize)
+	    fdct->quantize = quantize;
+	}
+      }
+      break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+    case JDCT_FLOAT:
+      {
+	/* For float AA&N IDCT method, divisors are equal to quantization
+	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
+	 *   scalefactor[0] = 1
+	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
+	 * We apply a further scale factor of 8.
+	 * What's actually stored is 1/divisor so that the inner loop can
+	 * use a multiplication rather than a division.
+	 */
+	FAST_FLOAT * fdtbl;
+	int row, col;
+	static const double aanscalefactor[DCTSIZE] = {
+	  1.0, 1.387039845, 1.306562965, 1.175875602,
+	  1.0, 0.785694958, 0.541196100, 0.275899379
+	};
+
+	if (fdct->float_divisors[qtblno] == NULL) {
+	  fdct->float_divisors[qtblno] = (FAST_FLOAT *)
+	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+					DCTSIZE2 * SIZEOF(FAST_FLOAT));
+	}
+	fdtbl = fdct->float_divisors[qtblno];
+	i = 0;
+	for (row = 0; row < DCTSIZE; row++) {
+	  for (col = 0; col < DCTSIZE; col++) {
+	    fdtbl[i] = (FAST_FLOAT)
+	      (1.0 / (((double) qtbl->quantval[i] *
+		       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
+	    i++;
+	  }
+	}
+      }
+      break;
+#endif
+    default:
+      ERREXIT(cinfo, JERR_NOT_COMPILED);
+      break;
+    }
+  }
+}
+
+
+/*
+ * Load data into workspace, applying unsigned->signed conversion.
+ */
+
+METHODDEF(void)
+convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace)
+{
+  register DCTELEM *workspaceptr;
+  register JSAMPROW elemptr;
+  register int elemr;
+
+  workspaceptr = workspace;
+  for (elemr = 0; elemr < DCTSIZE; elemr++) {
+    elemptr = sample_data[elemr] + start_col;
+
+#if DCTSIZE == 8		/* unroll the inner loop */
+    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+#else
+    {
+      register int elemc;
+      for (elemc = DCTSIZE; elemc > 0; elemc--)
+        *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+    }
+#endif
+  }
+}
+
+
+/*
+ * Quantize/descale the coefficients, and store into coef_blocks[].
+ */
+
+METHODDEF(void)
+quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace)
+{
+  int i;
+  DCTELEM temp;
+  UDCTELEM recip, corr, shift;
+  UDCTELEM2 product;
+  JCOEFPTR output_ptr = coef_block;
+
+  for (i = 0; i < DCTSIZE2; i++) {
+    temp = workspace[i];
+    recip = divisors[i + DCTSIZE2 * 0];
+    corr =  divisors[i + DCTSIZE2 * 1];
+    shift = divisors[i + DCTSIZE2 * 3];
+
+    if (temp < 0) {
+      temp = -temp;
+      product = (UDCTELEM2)(temp + corr) * recip;
+      product >>= shift + sizeof(DCTELEM)*8;
+      temp = product;
+      temp = -temp;
+    } else {
+      product = (UDCTELEM2)(temp + corr) * recip;
+      product >>= shift + sizeof(DCTELEM)*8;
+      temp = product;
+    }
+
+    output_ptr[i] = (JCOEF) temp;
+  }
+}
+
+
+/*
+ * Perform forward DCT on one or more blocks of a component.
+ *
+ * The input samples are taken from the sample_data[] array starting at
+ * position start_row/start_col, and moving to the right for any additional
+ * blocks. The quantized coefficients are returned in coef_blocks[].
+ */
+
+METHODDEF(void)
+forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
+	     JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+	     JDIMENSION start_row, JDIMENSION start_col,
+	     JDIMENSION num_blocks)
+/* This version is used for integer DCT implementations. */
+{
+  /* This routine is heavily used, so it's worth coding it tightly. */
+  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
+  DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
+  DCTELEM * workspace;
+  JDIMENSION bi;
+
+  /* Make sure the compiler doesn't look up these every pass */
+  forward_DCT_method_ptr do_dct = fdct->dct;
+  convsamp_method_ptr do_convsamp = fdct->convsamp;
+  quantize_method_ptr do_quantize = fdct->quantize;
+  workspace = fdct->workspace;
+
+  sample_data += start_row;	/* fold in the vertical offset once */
+
+  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
+    /* Load data into workspace, applying unsigned->signed conversion */
+    (*do_convsamp) (sample_data, start_col, workspace);
+
+    /* Perform the DCT */
+    (*do_dct) (workspace);
+
+    /* Quantize/descale the coefficients, and store into coef_blocks[] */
+    (*do_quantize) (coef_blocks[bi], divisors, workspace);
+  }
+}
+
+
+#ifdef DCT_FLOAT_SUPPORTED
+
+
+METHODDEF(void)
+convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace)
+{
+  register FAST_FLOAT *workspaceptr;
+  register JSAMPROW elemptr;
+  register int elemr;
+
+  workspaceptr = workspace;
+  for (elemr = 0; elemr < DCTSIZE; elemr++) {
+    elemptr = sample_data[elemr] + start_col;
+#if DCTSIZE == 8		/* unroll the inner loop */
+    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+    *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+#else
+    {
+      register int elemc;
+      for (elemc = DCTSIZE; elemc > 0; elemc--)
+        *workspaceptr++ = (FAST_FLOAT)
+                          (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+    }
+#endif
+  }
+}
+
+
+METHODDEF(void)
+quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace)
+{
+  register FAST_FLOAT temp;
+  register int i;
+  register JCOEFPTR output_ptr = coef_block;
+
+  for (i = 0; i < DCTSIZE2; i++) {
+    /* Apply the quantization and scaling factor */
+    temp = workspace[i] * divisors[i];
+
+    /* Round to nearest integer.
+     * Since C does not specify the direction of rounding for negative
+     * quotients, we have to force the dividend positive for portability.
+     * The maximum coefficient size is +-16K (for 12-bit data), so this
+     * code should work for either 16-bit or 32-bit ints.
+     */
+    output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
+  }
+}
+
+
+METHODDEF(void)
+forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
+		   JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+		   JDIMENSION start_row, JDIMENSION start_col,
+		   JDIMENSION num_blocks)
+/* This version is used for floating-point DCT implementations. */
+{
+  /* This routine is heavily used, so it's worth coding it tightly. */
+  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
+  FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
+  FAST_FLOAT * workspace;
+  JDIMENSION bi;
+
+
+  /* Make sure the compiler doesn't look up these every pass */
+  float_DCT_method_ptr do_dct = fdct->float_dct;
+  float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
+  float_quantize_method_ptr do_quantize = fdct->float_quantize;
+  workspace = fdct->float_workspace;
+
+  sample_data += start_row;	/* fold in the vertical offset once */
+
+  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
+    /* Load data into workspace, applying unsigned->signed conversion */
+    (*do_convsamp) (sample_data, start_col, workspace);
+
+    /* Perform the DCT */
+    (*do_dct) (workspace);
+
+    /* Quantize/descale the coefficients, and store into coef_blocks[] */
+    (*do_quantize) (coef_blocks[bi], divisors, workspace);
+  }
+}
+
+#endif /* DCT_FLOAT_SUPPORTED */
+
+
+/*
+ * Initialize FDCT manager.
+ */
+
+GLOBAL(void)
+jinit_forward_dct (j_compress_ptr cinfo)
+{
+  my_fdct_ptr fdct;
+  int i;
+
+  fdct = (my_fdct_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_fdct_controller));
+  cinfo->fdct = (struct jpeg_forward_dct *) fdct;
+  fdct->pub.start_pass = start_pass_fdctmgr;
+
+  /* First determine the DCT... */
+  switch (cinfo->dct_method) {
+#ifdef DCT_ISLOW_SUPPORTED
+  case JDCT_ISLOW:
+    fdct->pub.forward_DCT = forward_DCT;
+    if (jsimd_can_fdct_islow())
+      fdct->dct = jsimd_fdct_islow;
+    else
+      fdct->dct = jpeg_fdct_islow;
+    break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+  case JDCT_IFAST:
+    fdct->pub.forward_DCT = forward_DCT;
+    if (jsimd_can_fdct_ifast())
+      fdct->dct = jsimd_fdct_ifast;
+    else
+      fdct->dct = jpeg_fdct_ifast;
+    break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+  case JDCT_FLOAT:
+    fdct->pub.forward_DCT = forward_DCT_float;
+    if (jsimd_can_fdct_float())
+      fdct->float_dct = jsimd_fdct_float;
+    else
+      fdct->float_dct = jpeg_fdct_float;
+    break;
+#endif
+  default:
+    ERREXIT(cinfo, JERR_NOT_COMPILED);
+    break;
+  }
+
+  /* ...then the supporting stages. */
+  switch (cinfo->dct_method) {
+#ifdef DCT_ISLOW_SUPPORTED
+  case JDCT_ISLOW:
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+  case JDCT_IFAST:
+#endif
+#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
+    if (jsimd_can_convsamp())
+      fdct->convsamp = jsimd_convsamp;
+    else
+      fdct->convsamp = convsamp;
+    if (jsimd_can_quantize())
+      fdct->quantize = jsimd_quantize;
+    else
+      fdct->quantize = quantize;
+    break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+  case JDCT_FLOAT:
+    if (jsimd_can_convsamp_float())
+      fdct->float_convsamp = jsimd_convsamp_float;
+    else
+      fdct->float_convsamp = convsamp_float;
+    if (jsimd_can_quantize_float())
+      fdct->float_quantize = jsimd_quantize_float;
+    else
+      fdct->float_quantize = quantize_float;
+    break;
+#endif
+  default:
+    ERREXIT(cinfo, JERR_NOT_COMPILED);
+    break;
+  }
+
+  /* Allocate workspace memory */
+#ifdef DCT_FLOAT_SUPPORTED
+  if (cinfo->dct_method == JDCT_FLOAT)
+    fdct->float_workspace = (FAST_FLOAT *)
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  SIZEOF(FAST_FLOAT) * DCTSIZE2);
+  else
+#endif
+    fdct->workspace = (DCTELEM *)
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  SIZEOF(DCTELEM) * DCTSIZE2);
+
+  /* Mark divisor tables unallocated */
+  for (i = 0; i < NUM_QUANT_TBLS; i++) {
+    fdct->divisors[i] = NULL;
+#ifdef DCT_FLOAT_SUPPORTED
+    fdct->float_divisors[i] = NULL;
+#endif
+  }
+}

=== added file 'src/libjpeg-turbo/jchuff.c'
--- src/libjpeg-turbo/jchuff.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jchuff.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,1026 @@ 
+/*
+ * jchuff.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Copyright (C) 2009-2011, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains Huffman entropy encoding routines.
+ *
+ * Much of the complexity here has to do with supporting output suspension.
+ * If the data destination module demands suspension, we want to be able to
+ * back up to the start of the current MCU.  To do this, we copy state
+ * variables into local working storage, and update them back to the
+ * permanent JPEG objects only upon successful completion of an MCU.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jchuff.h"		/* Declarations shared with jcphuff.c */
+#include <limits.h>
+
+static unsigned char jpeg_nbits_table[65536];
+static int jpeg_nbits_table_init = 0;
+
+#ifndef min
+ #define min(a,b) ((a)<(b)?(a):(b))
+#endif
+
+
+/* Expanded entropy encoder object for Huffman encoding.
+ *
+ * The savable_state subrecord contains fields that change within an MCU,
+ * but must not be updated permanently until we complete the MCU.
+ */
+
+typedef struct {
+  size_t put_buffer;		/* current bit-accumulation buffer */
+  int put_bits;			/* # of bits now in it */
+  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+} savable_state;
+
+/* This macro is to work around compilers with missing or broken
+ * structure assignment.  You'll need to fix this code if you have
+ * such a compiler and you change MAX_COMPS_IN_SCAN.
+ */
+
+#ifndef NO_STRUCT_ASSIGN
+#define ASSIGN_STATE(dest,src)  ((dest) = (src))
+#else
+#if MAX_COMPS_IN_SCAN == 4
+#define ASSIGN_STATE(dest,src)  \
+	((dest).put_buffer = (src).put_buffer, \
+	 (dest).put_bits = (src).put_bits, \
+	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
+	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
+	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
+	 (dest).last_dc_val[3] = (src).last_dc_val[3])
+#endif
+#endif
+
+
+typedef struct {
+  struct jpeg_entropy_encoder pub; /* public fields */
+
+  savable_state saved;		/* Bit buffer & DC state at start of MCU */
+
+  /* These fields are NOT loaded into local working state. */
+  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
+  int next_restart_num;		/* next restart number to write (0-7) */
+
+  /* Pointers to derived tables (these workspaces have image lifespan) */
+  c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
+  c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
+
+#ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
+  long * dc_count_ptrs[NUM_HUFF_TBLS];
+  long * ac_count_ptrs[NUM_HUFF_TBLS];
+#endif
+} huff_entropy_encoder;
+
+typedef huff_entropy_encoder * huff_entropy_ptr;
+
+/* Working state while writing an MCU.
+ * This struct contains all the fields that are needed by subroutines.
+ */
+
+typedef struct {
+  JOCTET * next_output_byte;	/* => next byte to write in buffer */
+  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
+  savable_state cur;		/* Current bit buffer & DC state */
+  j_compress_ptr cinfo;		/* dump_buffer needs access to this */
+} working_state;
+
+
+/* Forward declarations */
+METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
+					JBLOCKROW *MCU_data));
+METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
+#ifdef ENTROPY_OPT_SUPPORTED
+METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
+					  JBLOCKROW *MCU_data));
+METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
+#endif
+
+
+/*
+ * Initialize for a Huffman-compressed scan.
+ * If gather_statistics is TRUE, we do not output anything during the scan,
+ * just count the Huffman symbols used and generate Huffman code tables.
+ */
+
+METHODDEF(void)
+start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
+{
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  int ci, dctbl, actbl;
+  jpeg_component_info * compptr;
+
+  if (gather_statistics) {
+#ifdef ENTROPY_OPT_SUPPORTED
+    entropy->pub.encode_mcu = encode_mcu_gather;
+    entropy->pub.finish_pass = finish_pass_gather;
+#else
+    ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+  } else {
+    entropy->pub.encode_mcu = encode_mcu_huff;
+    entropy->pub.finish_pass = finish_pass_huff;
+  }
+
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    dctbl = compptr->dc_tbl_no;
+    actbl = compptr->ac_tbl_no;
+    if (gather_statistics) {
+#ifdef ENTROPY_OPT_SUPPORTED
+      /* Check for invalid table indexes */
+      /* (make_c_derived_tbl does this in the other path) */
+      if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
+	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
+      if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
+	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
+      /* Allocate and zero the statistics tables */
+      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
+      if (entropy->dc_count_ptrs[dctbl] == NULL)
+	entropy->dc_count_ptrs[dctbl] = (long *)
+	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				      257 * SIZEOF(long));
+      MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
+      if (entropy->ac_count_ptrs[actbl] == NULL)
+	entropy->ac_count_ptrs[actbl] = (long *)
+	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				      257 * SIZEOF(long));
+      MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
+#endif
+    } else {
+      /* Compute derived values for Huffman tables */
+      /* We may do this more than once for a table, but it's not expensive */
+      jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
+			      & entropy->dc_derived_tbls[dctbl]);
+      jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
+			      & entropy->ac_derived_tbls[actbl]);
+    }
+    /* Initialize DC predictions to 0 */
+    entropy->saved.last_dc_val[ci] = 0;
+  }
+
+  /* Initialize bit buffer to empty */
+  entropy->saved.put_buffer = 0;
+  entropy->saved.put_bits = 0;
+
+  /* Initialize restart stuff */
+  entropy->restarts_to_go = cinfo->restart_interval;
+  entropy->next_restart_num = 0;
+}
+
+
+/*
+ * Compute the derived values for a Huffman table.
+ * This routine also performs some validation checks on the table.
+ *
+ * Note this is also used by jcphuff.c.
+ */
+
+GLOBAL(void)
+jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
+			 c_derived_tbl ** pdtbl)
+{
+  JHUFF_TBL *htbl;
+  c_derived_tbl *dtbl;
+  int p, i, l, lastp, si, maxsymbol;
+  char huffsize[257];
+  unsigned int huffcode[257];
+  unsigned int code;
+
+  /* Note that huffsize[] and huffcode[] are filled in code-length order,
+   * paralleling the order of the symbols themselves in htbl->huffval[].
+   */
+
+  /* Find the input Huffman table */
+  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
+    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+  htbl =
+    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
+  if (htbl == NULL)
+    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+
+  /* Allocate a workspace if we haven't already done so. */
+  if (*pdtbl == NULL)
+    *pdtbl = (c_derived_tbl *)
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  SIZEOF(c_derived_tbl));
+  dtbl = *pdtbl;
+  
+  /* Figure C.1: make table of Huffman code length for each symbol */
+
+  p = 0;
+  for (l = 1; l <= 16; l++) {
+    i = (int) htbl->bits[l];
+    if (i < 0 || p + i > 256)	/* protect against table overrun */
+      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+    while (i--)
+      huffsize[p++] = (char) l;
+  }
+  huffsize[p] = 0;
+  lastp = p;
+  
+  /* Figure C.2: generate the codes themselves */
+  /* We also validate that the counts represent a legal Huffman code tree. */
+
+  code = 0;
+  si = huffsize[0];
+  p = 0;
+  while (huffsize[p]) {
+    while (((int) huffsize[p]) == si) {
+      huffcode[p++] = code;
+      code++;
+    }
+    /* code is now 1 more than the last code used for codelength si; but
+     * it must still fit in si bits, since no code is allowed to be all ones.
+     */
+    if (((INT32) code) >= (((INT32) 1) << si))
+      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+    code <<= 1;
+    si++;
+  }
+  
+  /* Figure C.3: generate encoding tables */
+  /* These are code and size indexed by symbol value */
+
+  /* Set all codeless symbols to have code length 0;
+   * this lets us detect duplicate VAL entries here, and later
+   * allows emit_bits to detect any attempt to emit such symbols.
+   */
+  MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
+
+  /* This is also a convenient place to check for out-of-range
+   * and duplicated VAL entries.  We allow 0..255 for AC symbols
+   * but only 0..15 for DC.  (We could constrain them further
+   * based on data depth and mode, but this seems enough.)
+   */
+  maxsymbol = isDC ? 15 : 255;
+
+  for (p = 0; p < lastp; p++) {
+    i = htbl->huffval[p];
+    if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
+      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+    dtbl->ehufco[i] = huffcode[p];
+    dtbl->ehufsi[i] = huffsize[p];
+  }
+
+  if(!jpeg_nbits_table_init) {
+    for(i = 0; i < 65536; i++) {
+      int nbits = 0, temp = i;
+      while (temp) {temp >>= 1;  nbits++;}
+      jpeg_nbits_table[i] = nbits;
+    }
+    jpeg_nbits_table_init = 1;
+  }
+}
+
+
+/* Outputting bytes to the file */
+
+/* Emit a byte, taking 'action' if must suspend. */
+#define emit_byte(state,val,action)  \
+	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
+	  if (--(state)->free_in_buffer == 0)  \
+	    if (! dump_buffer(state))  \
+	      { action; } }
+
+
+LOCAL(boolean)
+dump_buffer (working_state * state)
+/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
+{
+  struct jpeg_destination_mgr * dest = state->cinfo->dest;
+
+  dest->free_in_buffer = state->free_in_buffer;
+
+  if (! (*dest->empty_output_buffer) (state->cinfo))
+    return FALSE;
+  /* After a successful buffer dump, must reset buffer pointers */
+  state->next_output_byte = dest->next_output_byte;
+  state->free_in_buffer = dest->free_in_buffer;
+  return TRUE;
+}
+
+
+/* Outputting bits to the file */
+
+/* These macros perform the same task as the emit_bits() function in the
+ * original libjpeg code.  In addition to reducing overhead by explicitly
+ * inlining the code, additional performance is achieved by taking into
+ * account the size of the bit buffer and waiting until it is almost full
+ * before emptying it.  This mostly benefits 64-bit platforms, since 6
+ * bytes can be stored in a 64-bit bit buffer before it has to be emptied.
+ */
+
+#define EMIT_BYTE() { \
+  JOCTET c; \
+  put_bits -= 8; \
+  c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \
+  *buffer++ = c; \
+  if (c == 0xFF)  /* need to stuff a zero byte? */ \
+    *buffer++ = 0; \
+ }
+
+#define PUT_BITS(code, size) { \
+  put_bits += size; \
+  put_buffer = (put_buffer << size) | code; \
+}
+
+#define CHECKBUF15() { \
+  if (put_bits > 15) { \
+    EMIT_BYTE() \
+    EMIT_BYTE() \
+  } \
+}
+
+#define CHECKBUF31() { \
+  if (put_bits > 31) { \
+    EMIT_BYTE() \
+    EMIT_BYTE() \
+    EMIT_BYTE() \
+    EMIT_BYTE() \
+  } \
+}
+
+#define CHECKBUF47() { \
+  if (put_bits > 47) { \
+    EMIT_BYTE() \
+    EMIT_BYTE() \
+    EMIT_BYTE() \
+    EMIT_BYTE() \
+    EMIT_BYTE() \
+    EMIT_BYTE() \
+  } \
+}
+
+#if __WORDSIZE==64 || defined(_WIN64)
+
+#define EMIT_BITS(code, size) { \
+  CHECKBUF47() \
+  PUT_BITS(code, size) \
+}
+
+#define EMIT_CODE(code, size) { \
+  temp2 &= (((INT32) 1)<<nbits) - 1; \
+  CHECKBUF31() \
+  PUT_BITS(code, size) \
+  PUT_BITS(temp2, nbits) \
+ }
+
+#else
+
+#define EMIT_BITS(code, size) { \
+  PUT_BITS(code, size) \
+  CHECKBUF15() \
+}
+
+#define EMIT_CODE(code, size) { \
+  temp2 &= (((INT32) 1)<<nbits) - 1; \
+  PUT_BITS(code, size) \
+  CHECKBUF15() \
+  PUT_BITS(temp2, nbits) \
+  CHECKBUF15() \
+ }
+
+#endif
+
+
+#define BUFSIZE (DCTSIZE2 * 2)
+
+#define LOAD_BUFFER() { \
+  if (state->free_in_buffer < BUFSIZE) { \
+    localbuf = 1; \
+    buffer = _buffer; \
+  } \
+  else buffer = state->next_output_byte; \
+ }
+
+#define STORE_BUFFER() { \
+  if (localbuf) { \
+    bytes = buffer - _buffer; \
+    buffer = _buffer; \
+    while (bytes > 0) { \
+      bytestocopy = min(bytes, state->free_in_buffer); \
+      MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
+      state->next_output_byte += bytestocopy; \
+      buffer += bytestocopy; \
+      state->free_in_buffer -= bytestocopy; \
+      if (state->free_in_buffer == 0) \
+        if (! dump_buffer(state)) return FALSE; \
+      bytes -= bytestocopy; \
+    } \
+  } \
+  else { \
+    state->free_in_buffer -= (buffer - state->next_output_byte); \
+    state->next_output_byte = buffer; \
+  } \
+ }
+
+
+LOCAL(boolean)
+flush_bits (working_state * state)
+{
+  JOCTET _buffer[BUFSIZE], *buffer;
+  size_t put_buffer;  int put_bits;
+  size_t bytes, bytestocopy;  int localbuf = 0;
+
+  put_buffer = state->cur.put_buffer;
+  put_bits = state->cur.put_bits;
+  LOAD_BUFFER()
+
+  /* fill any partial byte with ones */
+  PUT_BITS(0x7F, 7)
+  while (put_bits >= 8) EMIT_BYTE()
+
+  state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
+  state->cur.put_bits = 0;
+  STORE_BUFFER()
+
+  return TRUE;
+}
+
+
+/* Encode a single block's worth of coefficients */
+
+LOCAL(boolean)
+encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
+		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
+{
+  int temp, temp2, temp3;
+  int nbits;
+  int r, code, size;
+  JOCTET _buffer[BUFSIZE], *buffer;
+  size_t put_buffer;  int put_bits;
+  int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0];
+  size_t bytes, bytestocopy;  int localbuf = 0;
+
+  put_buffer = state->cur.put_buffer;
+  put_bits = state->cur.put_bits;
+  LOAD_BUFFER()
+
+  /* Encode the DC coefficient difference per section F.1.2.1 */
+  
+  temp = temp2 = block[0] - last_dc_val;
+
+ /* This is a well-known technique for obtaining the absolute value without a
+  * branch.  It is derived from an assembly language technique presented in
+  * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
+  * Agner Fog.
+  */
+  temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
+  temp ^= temp3;
+  temp -= temp3;
+
+  /* For a negative input, want temp2 = bitwise complement of abs(input) */
+  /* This code assumes we are on a two's complement machine */
+  temp2 += temp3;
+
+  /* Find the number of bits needed for the magnitude of the coefficient */
+  nbits = jpeg_nbits_table[temp];
+
+  /* Emit the Huffman-coded symbol for the number of bits */
+  code = dctbl->ehufco[nbits];
+  size = dctbl->ehufsi[nbits];
+  PUT_BITS(code, size)
+  CHECKBUF15()
+
+  /* Mask off any extra bits in code */
+  temp2 &= (((INT32) 1)<<nbits) - 1;
+
+  /* Emit that number of bits of the value, if positive, */
+  /* or the complement of its magnitude, if negative. */
+  PUT_BITS(temp2, nbits)
+  CHECKBUF15()
+
+  /* Encode the AC coefficients per section F.1.2.2 */
+  
+  r = 0;			/* r = run length of zeros */
+
+/* Manually unroll the k loop to eliminate the counter variable.  This
+ * improves performance greatly on systems with a limited number of
+ * registers (such as x86.)
+ */
+#define kloop(jpeg_natural_order_of_k) {  \
+  if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
+    r++; \
+  } else { \
+    temp2 = temp; \
+    /* Branch-less absolute value, bitwise complement, etc., same as above */ \
+    temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \
+    temp ^= temp3; \
+    temp -= temp3; \
+    temp2 += temp3; \
+    nbits = jpeg_nbits_table[temp]; \
+    /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
+    while (r > 15) { \
+      EMIT_BITS(code_0xf0, size_0xf0) \
+      r -= 16; \
+    } \
+    /* Emit Huffman symbol for run length / number of bits */ \
+    temp3 = (r << 4) + nbits;  \
+    code = actbl->ehufco[temp3]; \
+    size = actbl->ehufsi[temp3]; \
+    EMIT_CODE(code, size) \
+    r = 0;  \
+  } \
+}
+
+  /* One iteration for each value in jpeg_natural_order[] */
+  kloop(1);   kloop(8);   kloop(16);  kloop(9);   kloop(2);   kloop(3);
+  kloop(10);  kloop(17);  kloop(24);  kloop(32);  kloop(25);  kloop(18);
+  kloop(11);  kloop(4);   kloop(5);   kloop(12);  kloop(19);  kloop(26);
+  kloop(33);  kloop(40);  kloop(48);  kloop(41);  kloop(34);  kloop(27);
+  kloop(20);  kloop(13);  kloop(6);   kloop(7);   kloop(14);  kloop(21);
+  kloop(28);  kloop(35);  kloop(42);  kloop(49);  kloop(56);  kloop(57);
+  kloop(50);  kloop(43);  kloop(36);  kloop(29);  kloop(22);  kloop(15);
+  kloop(23);  kloop(30);  kloop(37);  kloop(44);  kloop(51);  kloop(58);
+  kloop(59);  kloop(52);  kloop(45);  kloop(38);  kloop(31);  kloop(39);
+  kloop(46);  kloop(53);  kloop(60);  kloop(61);  kloop(54);  kloop(47);
+  kloop(55);  kloop(62);  kloop(63);
+
+  /* If the last coef(s) were zero, emit an end-of-block code */
+  if (r > 0) {
+    code = actbl->ehufco[0];
+    size = actbl->ehufsi[0];
+    EMIT_BITS(code, size)
+  }
+
+  state->cur.put_buffer = put_buffer;
+  state->cur.put_bits = put_bits;
+  STORE_BUFFER()
+
+  return TRUE;
+}
+
+
+/*
+ * Emit a restart marker & resynchronize predictions.
+ */
+
+LOCAL(boolean)
+emit_restart (working_state * state, int restart_num)
+{
+  int ci;
+
+  if (! flush_bits(state))
+    return FALSE;
+
+  emit_byte(state, 0xFF, return FALSE);
+  emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
+
+  /* Re-initialize DC predictions to 0 */
+  for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
+    state->cur.last_dc_val[ci] = 0;
+
+  /* The restart counter is not updated until we successfully write the MCU. */
+
+  return TRUE;
+}
+
+
+/*
+ * Encode and output one MCU's worth of Huffman-compressed coefficients.
+ */
+
+METHODDEF(boolean)
+encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  working_state state;
+  int blkn, ci;
+  jpeg_component_info * compptr;
+
+  /* Load up working state */
+  state.next_output_byte = cinfo->dest->next_output_byte;
+  state.free_in_buffer = cinfo->dest->free_in_buffer;
+  ASSIGN_STATE(state.cur, entropy->saved);
+  state.cinfo = cinfo;
+
+  /* Emit restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      if (! emit_restart(&state, entropy->next_restart_num))
+	return FALSE;
+  }
+
+  /* Encode the MCU data blocks */
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    ci = cinfo->MCU_membership[blkn];
+    compptr = cinfo->cur_comp_info[ci];
+    if (! encode_one_block(&state,
+			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
+			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
+			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
+      return FALSE;
+    /* Update last_dc_val */
+    state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
+  }
+
+  /* Completed MCU, so update state */
+  cinfo->dest->next_output_byte = state.next_output_byte;
+  cinfo->dest->free_in_buffer = state.free_in_buffer;
+  ASSIGN_STATE(entropy->saved, state.cur);
+
+  /* Update restart-interval state too */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      entropy->restarts_to_go = cinfo->restart_interval;
+      entropy->next_restart_num++;
+      entropy->next_restart_num &= 7;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * Finish up at the end of a Huffman-compressed scan.
+ */
+
+METHODDEF(void)
+finish_pass_huff (j_compress_ptr cinfo)
+{
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  working_state state;
+
+  /* Load up working state ... flush_bits needs it */
+  state.next_output_byte = cinfo->dest->next_output_byte;
+  state.free_in_buffer = cinfo->dest->free_in_buffer;
+  ASSIGN_STATE(state.cur, entropy->saved);
+  state.cinfo = cinfo;
+
+  /* Flush out the last data */
+  if (! flush_bits(&state))
+    ERREXIT(cinfo, JERR_CANT_SUSPEND);
+
+  /* Update state */
+  cinfo->dest->next_output_byte = state.next_output_byte;
+  cinfo->dest->free_in_buffer = state.free_in_buffer;
+  ASSIGN_STATE(entropy->saved, state.cur);
+}
+
+
+/*
+ * Huffman coding optimization.
+ *
+ * We first scan the supplied data and count the number of uses of each symbol
+ * that is to be Huffman-coded. (This process MUST agree with the code above.)
+ * Then we build a Huffman coding tree for the observed counts.
+ * Symbols which are not needed at all for the particular image are not
+ * assigned any code, which saves space in the DHT marker as well as in
+ * the compressed data.
+ */
+
+#ifdef ENTROPY_OPT_SUPPORTED
+
+
+/* Process a single block's worth of coefficients */
+
+LOCAL(void)
+htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
+		 long dc_counts[], long ac_counts[])
+{
+  register int temp;
+  register int nbits;
+  register int k, r;
+  
+  /* Encode the DC coefficient difference per section F.1.2.1 */
+  
+  temp = block[0] - last_dc_val;
+  if (temp < 0)
+    temp = -temp;
+  
+  /* Find the number of bits needed for the magnitude of the coefficient */
+  nbits = 0;
+  while (temp) {
+    nbits++;
+    temp >>= 1;
+  }
+  /* Check for out-of-range coefficient values.
+   * Since we're encoding a difference, the range limit is twice as much.
+   */
+  if (nbits > MAX_COEF_BITS+1)
+    ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+
+  /* Count the Huffman symbol for the number of bits */
+  dc_counts[nbits]++;
+  
+  /* Encode the AC coefficients per section F.1.2.2 */
+  
+  r = 0;			/* r = run length of zeros */
+  
+  for (k = 1; k < DCTSIZE2; k++) {
+    if ((temp = block[jpeg_natural_order[k]]) == 0) {
+      r++;
+    } else {
+      /* if run length > 15, must emit special run-length-16 codes (0xF0) */
+      while (r > 15) {
+	ac_counts[0xF0]++;
+	r -= 16;
+      }
+      
+      /* Find the number of bits needed for the magnitude of the coefficient */
+      if (temp < 0)
+	temp = -temp;
+      
+      /* Find the number of bits needed for the magnitude of the coefficient */
+      nbits = 1;		/* there must be at least one 1 bit */
+      while ((temp >>= 1))
+	nbits++;
+      /* Check for out-of-range coefficient values */
+      if (nbits > MAX_COEF_BITS)
+	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+      
+      /* Count Huffman symbol for run length / number of bits */
+      ac_counts[(r << 4) + nbits]++;
+      
+      r = 0;
+    }
+  }
+
+  /* If the last coef(s) were zero, emit an end-of-block code */
+  if (r > 0)
+    ac_counts[0]++;
+}
+
+
+/*
+ * Trial-encode one MCU's worth of Huffman-compressed coefficients.
+ * No data is actually output, so no suspension return is possible.
+ */
+
+METHODDEF(boolean)
+encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  int blkn, ci;
+  jpeg_component_info * compptr;
+
+  /* Take care of restart intervals if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      /* Re-initialize DC predictions to 0 */
+      for (ci = 0; ci < cinfo->comps_in_scan; ci++)
+	entropy->saved.last_dc_val[ci] = 0;
+      /* Update restart state */
+      entropy->restarts_to_go = cinfo->restart_interval;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    ci = cinfo->MCU_membership[blkn];
+    compptr = cinfo->cur_comp_info[ci];
+    htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
+		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
+		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
+    entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * Generate the best Huffman code table for the given counts, fill htbl.
+ * Note this is also used by jcphuff.c.
+ *
+ * The JPEG standard requires that no symbol be assigned a codeword of all
+ * one bits (so that padding bits added at the end of a compressed segment
+ * can't look like a valid code).  Because of the canonical ordering of
+ * codewords, this just means that there must be an unused slot in the
+ * longest codeword length category.  Section K.2 of the JPEG spec suggests
+ * reserving such a slot by pretending that symbol 256 is a valid symbol
+ * with count 1.  In theory that's not optimal; giving it count zero but
+ * including it in the symbol set anyway should give a better Huffman code.
+ * But the theoretically better code actually seems to come out worse in
+ * practice, because it produces more all-ones bytes (which incur stuffed
+ * zero bytes in the final file).  In any case the difference is tiny.
+ *
+ * The JPEG standard requires Huffman codes to be no more than 16 bits long.
+ * If some symbols have a very small but nonzero probability, the Huffman tree
+ * must be adjusted to meet the code length restriction.  We currently use
+ * the adjustment method suggested in JPEG section K.2.  This method is *not*
+ * optimal; it may not choose the best possible limited-length code.  But
+ * typically only very-low-frequency symbols will be given less-than-optimal
+ * lengths, so the code is almost optimal.  Experimental comparisons against
+ * an optimal limited-length-code algorithm indicate that the difference is
+ * microscopic --- usually less than a hundredth of a percent of total size.
+ * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
+ */
+
+GLOBAL(void)
+jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
+{
+#define MAX_CLEN 32		/* assumed maximum initial code length */
+  UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
+  int codesize[257];		/* codesize[k] = code length of symbol k */
+  int others[257];		/* next symbol in current branch of tree */
+  int c1, c2;
+  int p, i, j;
+  long v;
+
+  /* This algorithm is explained in section K.2 of the JPEG standard */
+
+  MEMZERO(bits, SIZEOF(bits));
+  MEMZERO(codesize, SIZEOF(codesize));
+  for (i = 0; i < 257; i++)
+    others[i] = -1;		/* init links to empty */
+  
+  freq[256] = 1;		/* make sure 256 has a nonzero count */
+  /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
+   * that no real symbol is given code-value of all ones, because 256
+   * will be placed last in the largest codeword category.
+   */
+
+  /* Huffman's basic algorithm to assign optimal code lengths to symbols */
+
+  for (;;) {
+    /* Find the smallest nonzero frequency, set c1 = its symbol */
+    /* In case of ties, take the larger symbol number */
+    c1 = -1;
+    v = 1000000000L;
+    for (i = 0; i <= 256; i++) {
+      if (freq[i] && freq[i] <= v) {
+	v = freq[i];
+	c1 = i;
+      }
+    }
+
+    /* Find the next smallest nonzero frequency, set c2 = its symbol */
+    /* In case of ties, take the larger symbol number */
+    c2 = -1;
+    v = 1000000000L;
+    for (i = 0; i <= 256; i++) {
+      if (freq[i] && freq[i] <= v && i != c1) {
+	v = freq[i];
+	c2 = i;
+      }
+    }
+
+    /* Done if we've merged everything into one frequency */
+    if (c2 < 0)
+      break;
+    
+    /* Else merge the two counts/trees */
+    freq[c1] += freq[c2];
+    freq[c2] = 0;
+
+    /* Increment the codesize of everything in c1's tree branch */
+    codesize[c1]++;
+    while (others[c1] >= 0) {
+      c1 = others[c1];
+      codesize[c1]++;
+    }
+    
+    others[c1] = c2;		/* chain c2 onto c1's tree branch */
+    
+    /* Increment the codesize of everything in c2's tree branch */
+    codesize[c2]++;
+    while (others[c2] >= 0) {
+      c2 = others[c2];
+      codesize[c2]++;
+    }
+  }
+
+  /* Now count the number of symbols of each code length */
+  for (i = 0; i <= 256; i++) {
+    if (codesize[i]) {
+      /* The JPEG standard seems to think that this can't happen, */
+      /* but I'm paranoid... */
+      if (codesize[i] > MAX_CLEN)
+	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
+
+      bits[codesize[i]]++;
+    }
+  }
+
+  /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
+   * Huffman procedure assigned any such lengths, we must adjust the coding.
+   * Here is what the JPEG spec says about how this next bit works:
+   * Since symbols are paired for the longest Huffman code, the symbols are
+   * removed from this length category two at a time.  The prefix for the pair
+   * (which is one bit shorter) is allocated to one of the pair; then,
+   * skipping the BITS entry for that prefix length, a code word from the next
+   * shortest nonzero BITS entry is converted into a prefix for two code words
+   * one bit longer.
+   */
+  
+  for (i = MAX_CLEN; i > 16; i--) {
+    while (bits[i] > 0) {
+      j = i - 2;		/* find length of new prefix to be used */
+      while (bits[j] == 0)
+	j--;
+      
+      bits[i] -= 2;		/* remove two symbols */
+      bits[i-1]++;		/* one goes in this length */
+      bits[j+1] += 2;		/* two new symbols in this length */
+      bits[j]--;		/* symbol of this length is now a prefix */
+    }
+  }
+
+  /* Remove the count for the pseudo-symbol 256 from the largest codelength */
+  while (bits[i] == 0)		/* find largest codelength still in use */
+    i--;
+  bits[i]--;
+  
+  /* Return final symbol counts (only for lengths 0..16) */
+  MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
+  
+  /* Return a list of the symbols sorted by code length */
+  /* It's not real clear to me why we don't need to consider the codelength
+   * changes made above, but the JPEG spec seems to think this works.
+   */
+  p = 0;
+  for (i = 1; i <= MAX_CLEN; i++) {
+    for (j = 0; j <= 255; j++) {
+      if (codesize[j] == i) {
+	htbl->huffval[p] = (UINT8) j;
+	p++;
+      }
+    }
+  }
+
+  /* Set sent_table FALSE so updated table will be written to JPEG file. */
+  htbl->sent_table = FALSE;
+}
+
+
+/*
+ * Finish up a statistics-gathering pass and create the new Huffman tables.
+ */
+
+METHODDEF(void)
+finish_pass_gather (j_compress_ptr cinfo)
+{
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  int ci, dctbl, actbl;
+  jpeg_component_info * compptr;
+  JHUFF_TBL **htblptr;
+  boolean did_dc[NUM_HUFF_TBLS];
+  boolean did_ac[NUM_HUFF_TBLS];
+
+  /* It's important not to apply jpeg_gen_optimal_table more than once
+   * per table, because it clobbers the input frequency counts!
+   */
+  MEMZERO(did_dc, SIZEOF(did_dc));
+  MEMZERO(did_ac, SIZEOF(did_ac));
+
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    dctbl = compptr->dc_tbl_no;
+    actbl = compptr->ac_tbl_no;
+    if (! did_dc[dctbl]) {
+      htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
+      if (*htblptr == NULL)
+	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
+      did_dc[dctbl] = TRUE;
+    }
+    if (! did_ac[actbl]) {
+      htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
+      if (*htblptr == NULL)
+	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
+      did_ac[actbl] = TRUE;
+    }
+  }
+}
+
+
+#endif /* ENTROPY_OPT_SUPPORTED */
+
+
+/*
+ * Module initialization routine for Huffman entropy encoding.
+ */
+
+GLOBAL(void)
+jinit_huff_encoder (j_compress_ptr cinfo)
+{
+  huff_entropy_ptr entropy;
+  int i;
+
+  entropy = (huff_entropy_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(huff_entropy_encoder));
+  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
+  entropy->pub.start_pass = start_pass_huff;
+
+  /* Mark tables unallocated */
+  for (i = 0; i < NUM_HUFF_TBLS; i++) {
+    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
+#ifdef ENTROPY_OPT_SUPPORTED
+    entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
+#endif
+  }
+}

=== added file 'src/libjpeg-turbo/jchuff.h'
--- src/libjpeg-turbo/jchuff.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jchuff.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,47 @@ 
+/*
+ * jchuff.h
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains declarations for Huffman entropy encoding routines
+ * that are shared between the sequential encoder (jchuff.c) and the
+ * progressive encoder (jcphuff.c).  No other modules need to see these.
+ */
+
+/* The legal range of a DCT coefficient is
+ *  -1024 .. +1023  for 8-bit data;
+ * -16384 .. +16383 for 12-bit data.
+ * Hence the magnitude should always fit in 10 or 14 bits respectively.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define MAX_COEF_BITS 10
+#else
+#define MAX_COEF_BITS 14
+#endif
+
+/* Derived data constructed for each Huffman table */
+
+typedef struct {
+  unsigned int ehufco[256];	/* code for each symbol */
+  char ehufsi[256];		/* length of code for each symbol */
+  /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
+} c_derived_tbl;
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_make_c_derived_tbl	jMkCDerived
+#define jpeg_gen_optimal_table	jGenOptTbl
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+/* Expand a Huffman table definition into the derived format */
+EXTERN(void) jpeg_make_c_derived_tbl
+	JPP((j_compress_ptr cinfo, boolean isDC, int tblno,
+	     c_derived_tbl ** pdtbl));
+
+/* Generate an optimal table definition given the specified counts */
+EXTERN(void) jpeg_gen_optimal_table
+	JPP((j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]));

=== added file 'src/libjpeg-turbo/jcinit.c'
--- src/libjpeg-turbo/jcinit.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jcinit.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,76 @@ 
+/*
+ * jcinit.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains initialization logic for the JPEG compressor.
+ * This routine is in charge of selecting the modules to be executed and
+ * making an initialization call to each one.
+ *
+ * Logically, this code belongs in jcmaster.c.  It's split out because
+ * linking this routine implies linking the entire compression library.
+ * For a transcoding-only application, we want to be able to use jcmaster.c
+ * without linking in the whole library.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Master selection of compression modules.
+ * This is done once at the start of processing an image.  We determine
+ * which modules will be used and give them appropriate initialization calls.
+ */
+
+GLOBAL(void)
+jinit_compress_master (j_compress_ptr cinfo)
+{
+  /* Initialize master control (includes parameter checking/processing) */
+  jinit_c_master_control(cinfo, FALSE /* full compression */);
+
+  /* Preprocessing */
+  if (! cinfo->raw_data_in) {
+    jinit_color_converter(cinfo);
+    jinit_downsampler(cinfo);
+    jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
+  }
+  /* Forward DCT */
+  jinit_forward_dct(cinfo);
+  /* Entropy encoding: either Huffman or arithmetic coding. */
+  if (cinfo->arith_code) {
+#ifdef C_ARITH_CODING_SUPPORTED
+    jinit_arith_encoder(cinfo);
+#else
+    ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
+#endif
+  } else {
+    if (cinfo->progressive_mode) {
+#ifdef C_PROGRESSIVE_SUPPORTED
+      jinit_phuff_encoder(cinfo);
+#else
+      ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+    } else
+      jinit_huff_encoder(cinfo);
+  }
+
+  /* Need a full-image coefficient buffer in any multi-pass mode. */
+  jinit_c_coef_controller(cinfo,
+		(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
+  jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
+
+  jinit_marker_writer(cinfo);
+
+  /* We can now tell the memory manager to allocate virtual arrays. */
+  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+
+  /* Write the datastream header (SOI) immediately.
+   * Frame and scan headers are postponed till later.
+   * This lets application insert special markers after the SOI.
+   */
+  (*cinfo->marker->write_file_header) (cinfo);
+}

=== added file 'src/libjpeg-turbo/jcmainct.c'
--- src/libjpeg-turbo/jcmainct.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jcmainct.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,293 @@ 
+/*
+ * jcmainct.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the main buffer controller for compression.
+ * The main buffer lies between the pre-processor and the JPEG
+ * compressor proper; it holds downsampled data in the JPEG colorspace.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Note: currently, there is no operating mode in which a full-image buffer
+ * is needed at this step.  If there were, that mode could not be used with
+ * "raw data" input, since this module is bypassed in that case.  However,
+ * we've left the code here for possible use in special applications.
+ */
+#undef FULL_MAIN_BUFFER_SUPPORTED
+
+
+/* Private buffer controller object */
+
+typedef struct {
+  struct jpeg_c_main_controller pub; /* public fields */
+
+  JDIMENSION cur_iMCU_row;	/* number of current iMCU row */
+  JDIMENSION rowgroup_ctr;	/* counts row groups received in iMCU row */
+  boolean suspended;		/* remember if we suspended output */
+  J_BUF_MODE pass_mode;		/* current operating mode */
+
+  /* If using just a strip buffer, this points to the entire set of buffers
+   * (we allocate one for each component).  In the full-image case, this
+   * points to the currently accessible strips of the virtual arrays.
+   */
+  JSAMPARRAY buffer[MAX_COMPONENTS];
+
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+  /* If using full-image storage, this array holds pointers to virtual-array
+   * control blocks for each component.  Unused if not full-image storage.
+   */
+  jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
+#endif
+} my_main_controller;
+
+typedef my_main_controller * my_main_ptr;
+
+
+/* Forward declarations */
+METHODDEF(void) process_data_simple_main
+	JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
+	     JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+METHODDEF(void) process_data_buffer_main
+	JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
+	     JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
+#endif
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+  my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
+
+  /* Do nothing in raw-data mode. */
+  if (cinfo->raw_data_in)
+    return;
+
+  main_ptr->cur_iMCU_row = 0;	/* initialize counters */
+  main_ptr->rowgroup_ctr = 0;
+  main_ptr->suspended = FALSE;
+  main_ptr->pass_mode = pass_mode;	/* save mode for use by process_data */
+
+  switch (pass_mode) {
+  case JBUF_PASS_THRU:
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+    if (main_ptr->whole_image[0] != NULL)
+      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+#endif
+    main_ptr->pub.process_data = process_data_simple_main;
+    break;
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+  case JBUF_SAVE_SOURCE:
+  case JBUF_CRANK_DEST:
+  case JBUF_SAVE_AND_PASS:
+    if (main_ptr->whole_image[0] == NULL)
+      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+    main_ptr->pub.process_data = process_data_buffer_main;
+    break;
+#endif
+  default:
+    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+    break;
+  }
+}
+
+
+/*
+ * Process some data.
+ * This routine handles the simple pass-through mode,
+ * where we have only a strip buffer.
+ */
+
+METHODDEF(void)
+process_data_simple_main (j_compress_ptr cinfo,
+			  JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+			  JDIMENSION in_rows_avail)
+{
+  my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
+
+  while (main_ptr->cur_iMCU_row < cinfo->total_iMCU_rows) {
+    /* Read input data if we haven't filled the main buffer yet */
+    if (main_ptr->rowgroup_ctr < DCTSIZE)
+      (*cinfo->prep->pre_process_data) (cinfo,
+					input_buf, in_row_ctr, in_rows_avail,
+					main_ptr->buffer, &main_ptr->rowgroup_ctr,
+					(JDIMENSION) DCTSIZE);
+
+    /* If we don't have a full iMCU row buffered, return to application for
+     * more data.  Note that preprocessor will always pad to fill the iMCU row
+     * at the bottom of the image.
+     */
+    if (main_ptr->rowgroup_ctr != DCTSIZE)
+      return;
+
+    /* Send the completed row to the compressor */
+    if (! (*cinfo->coef->compress_data) (cinfo, main_ptr->buffer)) {
+      /* If compressor did not consume the whole row, then we must need to
+       * suspend processing and return to the application.  In this situation
+       * we pretend we didn't yet consume the last input row; otherwise, if
+       * it happened to be the last row of the image, the application would
+       * think we were done.
+       */
+      if (! main_ptr->suspended) {
+	(*in_row_ctr)--;
+	main_ptr->suspended = TRUE;
+      }
+      return;
+    }
+    /* We did finish the row.  Undo our little suspension hack if a previous
+     * call suspended; then mark the main buffer empty.
+     */
+    if (main_ptr->suspended) {
+      (*in_row_ctr)++;
+      main_ptr->suspended = FALSE;
+    }
+    main_ptr->rowgroup_ctr = 0;
+    main_ptr->cur_iMCU_row++;
+  }
+}
+
+
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+
+/*
+ * Process some data.
+ * This routine handles all of the modes that use a full-size buffer.
+ */
+
+METHODDEF(void)
+process_data_buffer_main (j_compress_ptr cinfo,
+			  JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+			  JDIMENSION in_rows_avail)
+{
+  my_main_ptr main = (my_main_ptr) cinfo->main;
+  int ci;
+  jpeg_component_info *compptr;
+  boolean writing = (main_ptr->pass_mode != JBUF_CRANK_DEST);
+
+  while (main_ptr->cur_iMCU_row < cinfo->total_iMCU_rows) {
+    /* Realign the virtual buffers if at the start of an iMCU row. */
+    if (main_ptr->rowgroup_ctr == 0) {
+      for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+	   ci++, compptr++) {
+	main_ptr->buffer[ci] = (*cinfo->mem->access_virt_sarray)
+	  ((j_common_ptr) cinfo, main_ptr->whole_image[ci],
+	   main_ptr->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE),
+	   (JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing);
+      }
+      /* In a read pass, pretend we just read some source data. */
+      if (! writing) {
+	*in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE;
+	main_ptr->rowgroup_ctr = DCTSIZE;
+      }
+    }
+
+    /* If a write pass, read input data until the current iMCU row is full. */
+    /* Note: preprocessor will pad if necessary to fill the last iMCU row. */
+    if (writing) {
+      (*cinfo->prep->pre_process_data) (cinfo,
+					input_buf, in_row_ctr, in_rows_avail,
+					main_ptr->buffer, &main_ptr->rowgroup_ctr,
+					(JDIMENSION) DCTSIZE);
+      /* Return to application if we need more data to fill the iMCU row. */
+      if (main_ptr->rowgroup_ctr < DCTSIZE)
+	return;
+    }
+
+    /* Emit data, unless this is a sink-only pass. */
+    if (main_ptr->pass_mode != JBUF_SAVE_SOURCE) {
+      if (! (*cinfo->coef->compress_data) (cinfo, main_ptr->buffer)) {
+	/* If compressor did not consume the whole row, then we must need to
+	 * suspend processing and return to the application.  In this situation
+	 * we pretend we didn't yet consume the last input row; otherwise, if
+	 * it happened to be the last row of the image, the application would
+	 * think we were done.
+	 */
+	if (! main_ptr->suspended) {
+	  (*in_row_ctr)--;
+	  main_ptr->suspended = TRUE;
+	}
+	return;
+      }
+      /* We did finish the row.  Undo our little suspension hack if a previous
+       * call suspended; then mark the main buffer empty.
+       */
+      if (main_ptr->suspended) {
+	(*in_row_ctr)++;
+	main_ptr->suspended = FALSE;
+      }
+    }
+
+    /* If get here, we are done with this iMCU row.  Mark buffer empty. */
+    main_ptr->rowgroup_ctr = 0;
+    main_ptr->cur_iMCU_row++;
+  }
+}
+
+#endif /* FULL_MAIN_BUFFER_SUPPORTED */
+
+
+/*
+ * Initialize main buffer controller.
+ */
+
+GLOBAL(void)
+jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
+{
+  my_main_ptr main_ptr;
+  int ci;
+  jpeg_component_info *compptr;
+
+  main_ptr = (my_main_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_main_controller));
+  cinfo->main = (struct jpeg_c_main_controller *) main_ptr;
+  main_ptr->pub.start_pass = start_pass_main;
+
+  /* We don't need to create a buffer in raw-data mode. */
+  if (cinfo->raw_data_in)
+    return;
+
+  /* Create the buffer.  It holds downsampled data, so each component
+   * may be of a different size.
+   */
+  if (need_full_buffer) {
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+    /* Allocate a full-image virtual array for each component */
+    /* Note we pad the bottom to a multiple of the iMCU height */
+    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+	 ci++, compptr++) {
+      main_ptr->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
+	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+	 compptr->width_in_blocks * DCTSIZE,
+	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
+				(long) compptr->v_samp_factor) * DCTSIZE,
+	 (JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
+    }
+#else
+    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+#endif
+  } else {
+#ifdef FULL_MAIN_BUFFER_SUPPORTED
+    main_ptr->whole_image[0] = NULL; /* flag for no virtual arrays */
+#endif
+    /* Allocate a strip buffer for each component */
+    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+	 ci++, compptr++) {
+      main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray)
+	((j_common_ptr) cinfo, JPOOL_IMAGE,
+	 compptr->width_in_blocks * DCTSIZE,
+	 (JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
+    }
+  }
+}

=== added file 'src/libjpeg-turbo/jcmarker.c'
--- src/libjpeg-turbo/jcmarker.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jcmarker.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,666 @@ 
+/*
+ * jcmarker.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * Copyright (C) 2010, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to write JPEG datastream markers.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jpegcomp.h"
+
+
+typedef enum {			/* JPEG marker codes */
+  M_SOF0  = 0xc0,
+  M_SOF1  = 0xc1,
+  M_SOF2  = 0xc2,
+  M_SOF3  = 0xc3,
+  
+  M_SOF5  = 0xc5,
+  M_SOF6  = 0xc6,
+  M_SOF7  = 0xc7,
+  
+  M_JPG   = 0xc8,
+  M_SOF9  = 0xc9,
+  M_SOF10 = 0xca,
+  M_SOF11 = 0xcb,
+  
+  M_SOF13 = 0xcd,
+  M_SOF14 = 0xce,
+  M_SOF15 = 0xcf,
+  
+  M_DHT   = 0xc4,
+  
+  M_DAC   = 0xcc,
+  
+  M_RST0  = 0xd0,
+  M_RST1  = 0xd1,
+  M_RST2  = 0xd2,
+  M_RST3  = 0xd3,
+  M_RST4  = 0xd4,
+  M_RST5  = 0xd5,
+  M_RST6  = 0xd6,
+  M_RST7  = 0xd7,
+  
+  M_SOI   = 0xd8,
+  M_EOI   = 0xd9,
+  M_SOS   = 0xda,
+  M_DQT   = 0xdb,
+  M_DNL   = 0xdc,
+  M_DRI   = 0xdd,
+  M_DHP   = 0xde,
+  M_EXP   = 0xdf,
+  
+  M_APP0  = 0xe0,
+  M_APP1  = 0xe1,
+  M_APP2  = 0xe2,
+  M_APP3  = 0xe3,
+  M_APP4  = 0xe4,
+  M_APP5  = 0xe5,
+  M_APP6  = 0xe6,
+  M_APP7  = 0xe7,
+  M_APP8  = 0xe8,
+  M_APP9  = 0xe9,
+  M_APP10 = 0xea,
+  M_APP11 = 0xeb,
+  M_APP12 = 0xec,
+  M_APP13 = 0xed,
+  M_APP14 = 0xee,
+  M_APP15 = 0xef,
+  
+  M_JPG0  = 0xf0,
+  M_JPG13 = 0xfd,
+  M_COM   = 0xfe,
+  
+  M_TEM   = 0x01,
+  
+  M_ERROR = 0x100
+} JPEG_MARKER;
+
+
+/* Private state */
+
+typedef struct {
+  struct jpeg_marker_writer pub; /* public fields */
+
+  unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */
+} my_marker_writer;
+
+typedef my_marker_writer * my_marker_ptr;
+
+
+/*
+ * Basic output routines.
+ *
+ * Note that we do not support suspension while writing a marker.
+ * Therefore, an application using suspension must ensure that there is
+ * enough buffer space for the initial markers (typ. 600-700 bytes) before
+ * calling jpeg_start_compress, and enough space to write the trailing EOI
+ * (a few bytes) before calling jpeg_finish_compress.  Multipass compression
+ * modes are not supported at all with suspension, so those two are the only
+ * points where markers will be written.
+ */
+
+LOCAL(void)
+emit_byte (j_compress_ptr cinfo, int val)
+/* Emit a byte */
+{
+  struct jpeg_destination_mgr * dest = cinfo->dest;
+
+  *(dest->next_output_byte)++ = (JOCTET) val;
+  if (--dest->free_in_buffer == 0) {
+    if (! (*dest->empty_output_buffer) (cinfo))
+      ERREXIT(cinfo, JERR_CANT_SUSPEND);
+  }
+}
+
+
+LOCAL(void)
+emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark)
+/* Emit a marker code */
+{
+  emit_byte(cinfo, 0xFF);
+  emit_byte(cinfo, (int) mark);
+}
+
+
+LOCAL(void)
+emit_2bytes (j_compress_ptr cinfo, int value)
+/* Emit a 2-byte integer; these are always MSB first in JPEG files */
+{
+  emit_byte(cinfo, (value >> 8) & 0xFF);
+  emit_byte(cinfo, value & 0xFF);
+}
+
+
+/*
+ * Routines to write specific marker types.
+ */
+
+LOCAL(int)
+emit_dqt (j_compress_ptr cinfo, int index)
+/* Emit a DQT marker */
+/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */
+{
+  JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index];
+  int prec;
+  int i;
+
+  if (qtbl == NULL)
+    ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index);
+
+  prec = 0;
+  for (i = 0; i < DCTSIZE2; i++) {
+    if (qtbl->quantval[i] > 255)
+      prec = 1;
+  }
+
+  if (! qtbl->sent_table) {
+    emit_marker(cinfo, M_DQT);
+
+    emit_2bytes(cinfo, prec ? DCTSIZE2*2 + 1 + 2 : DCTSIZE2 + 1 + 2);
+
+    emit_byte(cinfo, index + (prec<<4));
+
+    for (i = 0; i < DCTSIZE2; i++) {
+      /* The table entries must be emitted in zigzag order. */
+      unsigned int qval = qtbl->quantval[jpeg_natural_order[i]];
+      if (prec)
+	emit_byte(cinfo, (int) (qval >> 8));
+      emit_byte(cinfo, (int) (qval & 0xFF));
+    }
+
+    qtbl->sent_table = TRUE;
+  }
+
+  return prec;
+}
+
+
+LOCAL(void)
+emit_dht (j_compress_ptr cinfo, int index, boolean is_ac)
+/* Emit a DHT marker */
+{
+  JHUFF_TBL * htbl;
+  int length, i;
+  
+  if (is_ac) {
+    htbl = cinfo->ac_huff_tbl_ptrs[index];
+    index += 0x10;		/* output index has AC bit set */
+  } else {
+    htbl = cinfo->dc_huff_tbl_ptrs[index];
+  }
+
+  if (htbl == NULL)
+    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index);
+  
+  if (! htbl->sent_table) {
+    emit_marker(cinfo, M_DHT);
+    
+    length = 0;
+    for (i = 1; i <= 16; i++)
+      length += htbl->bits[i];
+    
+    emit_2bytes(cinfo, length + 2 + 1 + 16);
+    emit_byte(cinfo, index);
+    
+    for (i = 1; i <= 16; i++)
+      emit_byte(cinfo, htbl->bits[i]);
+    
+    for (i = 0; i < length; i++)
+      emit_byte(cinfo, htbl->huffval[i]);
+    
+    htbl->sent_table = TRUE;
+  }
+}
+
+
+LOCAL(void)
+emit_dac (j_compress_ptr cinfo)
+/* Emit a DAC marker */
+/* Since the useful info is so small, we want to emit all the tables in */
+/* one DAC marker.  Therefore this routine does its own scan of the table. */
+{
+#ifdef C_ARITH_CODING_SUPPORTED
+  char dc_in_use[NUM_ARITH_TBLS];
+  char ac_in_use[NUM_ARITH_TBLS];
+  int length, i;
+  jpeg_component_info *compptr;
+  
+  for (i = 0; i < NUM_ARITH_TBLS; i++)
+    dc_in_use[i] = ac_in_use[i] = 0;
+  
+  for (i = 0; i < cinfo->comps_in_scan; i++) {
+    compptr = cinfo->cur_comp_info[i];
+    dc_in_use[compptr->dc_tbl_no] = 1;
+    ac_in_use[compptr->ac_tbl_no] = 1;
+  }
+  
+  length = 0;
+  for (i = 0; i < NUM_ARITH_TBLS; i++)
+    length += dc_in_use[i] + ac_in_use[i];
+  
+  emit_marker(cinfo, M_DAC);
+  
+  emit_2bytes(cinfo, length*2 + 2);
+  
+  for (i = 0; i < NUM_ARITH_TBLS; i++) {
+    if (dc_in_use[i]) {
+      emit_byte(cinfo, i);
+      emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4));
+    }
+    if (ac_in_use[i]) {
+      emit_byte(cinfo, i + 0x10);
+      emit_byte(cinfo, cinfo->arith_ac_K[i]);
+    }
+  }
+#endif /* C_ARITH_CODING_SUPPORTED */
+}
+
+
+LOCAL(void)
+emit_dri (j_compress_ptr cinfo)
+/* Emit a DRI marker */
+{
+  emit_marker(cinfo, M_DRI);
+  
+  emit_2bytes(cinfo, 4);	/* fixed length */
+
+  emit_2bytes(cinfo, (int) cinfo->restart_interval);
+}
+
+
+LOCAL(void)
+emit_sof (j_compress_ptr cinfo, JPEG_MARKER code)
+/* Emit a SOF marker */
+{
+  int ci;
+  jpeg_component_info *compptr;
+  
+  emit_marker(cinfo, code);
+  
+  emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */
+
+  /* Make sure image isn't bigger than SOF field can handle */
+  if ((long) cinfo->_jpeg_height > 65535L ||
+      (long) cinfo->_jpeg_width > 65535L)
+    ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535);
+
+  emit_byte(cinfo, cinfo->data_precision);
+  emit_2bytes(cinfo, (int) cinfo->_jpeg_height);
+  emit_2bytes(cinfo, (int) cinfo->_jpeg_width);
+
+  emit_byte(cinfo, cinfo->num_components);
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    emit_byte(cinfo, compptr->component_id);
+    emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor);
+    emit_byte(cinfo, compptr->quant_tbl_no);
+  }
+}
+
+
+LOCAL(void)
+emit_sos (j_compress_ptr cinfo)
+/* Emit a SOS marker */
+{
+  int i, td, ta;
+  jpeg_component_info *compptr;
+  
+  emit_marker(cinfo, M_SOS);
+  
+  emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */
+  
+  emit_byte(cinfo, cinfo->comps_in_scan);
+  
+  for (i = 0; i < cinfo->comps_in_scan; i++) {
+    compptr = cinfo->cur_comp_info[i];
+    emit_byte(cinfo, compptr->component_id);
+    td = compptr->dc_tbl_no;
+    ta = compptr->ac_tbl_no;
+    if (cinfo->progressive_mode) {
+      /* Progressive mode: only DC or only AC tables are used in one scan;
+       * furthermore, Huffman coding of DC refinement uses no table at all.
+       * We emit 0 for unused field(s); this is recommended by the P&M text
+       * but does not seem to be specified in the standard.
+       */
+      if (cinfo->Ss == 0) {
+	ta = 0;			/* DC scan */
+	if (cinfo->Ah != 0 && !cinfo->arith_code)
+	  td = 0;		/* no DC table either */
+      } else {
+	td = 0;			/* AC scan */
+      }
+    }
+    emit_byte(cinfo, (td << 4) + ta);
+  }
+
+  emit_byte(cinfo, cinfo->Ss);
+  emit_byte(cinfo, cinfo->Se);
+  emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al);
+}
+
+
+LOCAL(void)
+emit_jfif_app0 (j_compress_ptr cinfo)
+/* Emit a JFIF-compliant APP0 marker */
+{
+  /*
+   * Length of APP0 block	(2 bytes)
+   * Block ID			(4 bytes - ASCII "JFIF")
+   * Zero byte			(1 byte to terminate the ID string)
+   * Version Major, Minor	(2 bytes - major first)
+   * Units			(1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm)
+   * Xdpu			(2 bytes - dots per unit horizontal)
+   * Ydpu			(2 bytes - dots per unit vertical)
+   * Thumbnail X size		(1 byte)
+   * Thumbnail Y size		(1 byte)
+   */
+  
+  emit_marker(cinfo, M_APP0);
+  
+  emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */
+
+  emit_byte(cinfo, 0x4A);	/* Identifier: ASCII "JFIF" */
+  emit_byte(cinfo, 0x46);
+  emit_byte(cinfo, 0x49);
+  emit_byte(cinfo, 0x46);
+  emit_byte(cinfo, 0);
+  emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */
+  emit_byte(cinfo, cinfo->JFIF_minor_version);
+  emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */
+  emit_2bytes(cinfo, (int) cinfo->X_density);
+  emit_2bytes(cinfo, (int) cinfo->Y_density);
+  emit_byte(cinfo, 0);		/* No thumbnail image */
+  emit_byte(cinfo, 0);
+}
+
+
+LOCAL(void)
+emit_adobe_app14 (j_compress_ptr cinfo)
+/* Emit an Adobe APP14 marker */
+{
+  /*
+   * Length of APP14 block	(2 bytes)
+   * Block ID			(5 bytes - ASCII "Adobe")
+   * Version Number		(2 bytes - currently 100)
+   * Flags0			(2 bytes - currently 0)
+   * Flags1			(2 bytes - currently 0)
+   * Color transform		(1 byte)
+   *
+   * Although Adobe TN 5116 mentions Version = 101, all the Adobe files
+   * now in circulation seem to use Version = 100, so that's what we write.
+   *
+   * We write the color transform byte as 1 if the JPEG color space is
+   * YCbCr, 2 if it's YCCK, 0 otherwise.  Adobe's definition has to do with
+   * whether the encoder performed a transformation, which is pretty useless.
+   */
+  
+  emit_marker(cinfo, M_APP14);
+  
+  emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */
+
+  emit_byte(cinfo, 0x41);	/* Identifier: ASCII "Adobe" */
+  emit_byte(cinfo, 0x64);
+  emit_byte(cinfo, 0x6F);
+  emit_byte(cinfo, 0x62);
+  emit_byte(cinfo, 0x65);
+  emit_2bytes(cinfo, 100);	/* Version */
+  emit_2bytes(cinfo, 0);	/* Flags0 */
+  emit_2bytes(cinfo, 0);	/* Flags1 */
+  switch (cinfo->jpeg_color_space) {
+  case JCS_YCbCr:
+    emit_byte(cinfo, 1);	/* Color transform = 1 */
+    break;
+  case JCS_YCCK:
+    emit_byte(cinfo, 2);	/* Color transform = 2 */
+    break;
+  default:
+    emit_byte(cinfo, 0);	/* Color transform = 0 */
+    break;
+  }
+}
+
+
+/*
+ * These routines allow writing an arbitrary marker with parameters.
+ * The only intended use is to emit COM or APPn markers after calling
+ * write_file_header and before calling write_frame_header.
+ * Other uses are not guaranteed to produce desirable results.
+ * Counting the parameter bytes properly is the caller's responsibility.
+ */
+
+METHODDEF(void)
+write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
+/* Emit an arbitrary marker header */
+{
+  if (datalen > (unsigned int) 65533)		/* safety check */
+    ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+  emit_marker(cinfo, (JPEG_MARKER) marker);
+
+  emit_2bytes(cinfo, (int) (datalen + 2));	/* total length */
+}
+
+METHODDEF(void)
+write_marker_byte (j_compress_ptr cinfo, int val)
+/* Emit one byte of marker parameters following write_marker_header */
+{
+  emit_byte(cinfo, val);
+}
+
+
+/*
+ * Write datastream header.
+ * This consists of an SOI and optional APPn markers.
+ * We recommend use of the JFIF marker, but not the Adobe marker,
+ * when using YCbCr or grayscale data.  The JFIF marker should NOT
+ * be used for any other JPEG colorspace.  The Adobe marker is helpful
+ * to distinguish RGB, CMYK, and YCCK colorspaces.
+ * Note that an application can write additional header markers after
+ * jpeg_start_compress returns.
+ */
+
+METHODDEF(void)
+write_file_header (j_compress_ptr cinfo)
+{
+  my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+
+  emit_marker(cinfo, M_SOI);	/* first the SOI */
+
+  /* SOI is defined to reset restart interval to 0 */
+  marker->last_restart_interval = 0;
+
+  if (cinfo->write_JFIF_header)	/* next an optional JFIF APP0 */
+    emit_jfif_app0(cinfo);
+  if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */
+    emit_adobe_app14(cinfo);
+}
+
+
+/*
+ * Write frame header.
+ * This consists of DQT and SOFn markers.
+ * Note that we do not emit the SOF until we have emitted the DQT(s).
+ * This avoids compatibility problems with incorrect implementations that
+ * try to error-check the quant table numbers as soon as they see the SOF.
+ */
+
+METHODDEF(void)
+write_frame_header (j_compress_ptr cinfo)
+{
+  int ci, prec;
+  boolean is_baseline;
+  jpeg_component_info *compptr;
+  
+  /* Emit DQT for each quantization table.
+   * Note that emit_dqt() suppresses any duplicate tables.
+   */
+  prec = 0;
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    prec += emit_dqt(cinfo, compptr->quant_tbl_no);
+  }
+  /* now prec is nonzero iff there are any 16-bit quant tables. */
+
+  /* Check for a non-baseline specification.
+   * Note we assume that Huffman table numbers won't be changed later.
+   */
+  if (cinfo->arith_code || cinfo->progressive_mode ||
+      cinfo->data_precision != 8) {
+    is_baseline = FALSE;
+  } else {
+    is_baseline = TRUE;
+    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+	 ci++, compptr++) {
+      if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1)
+	is_baseline = FALSE;
+    }
+    if (prec && is_baseline) {
+      is_baseline = FALSE;
+      /* If it's baseline except for quantizer size, warn the user */
+      TRACEMS(cinfo, 0, JTRC_16BIT_TABLES);
+    }
+  }
+
+  /* Emit the proper SOF marker */
+  if (cinfo->arith_code) {
+    emit_sof(cinfo, M_SOF9);	/* SOF code for arithmetic coding */
+  } else {
+    if (cinfo->progressive_mode)
+      emit_sof(cinfo, M_SOF2);	/* SOF code for progressive Huffman */
+    else if (is_baseline)
+      emit_sof(cinfo, M_SOF0);	/* SOF code for baseline implementation */
+    else
+      emit_sof(cinfo, M_SOF1);	/* SOF code for non-baseline Huffman file */
+  }
+}
+
+
+/*
+ * Write scan header.
+ * This consists of DHT or DAC markers, optional DRI, and SOS.
+ * Compressed data will be written following the SOS.
+ */
+
+METHODDEF(void)
+write_scan_header (j_compress_ptr cinfo)
+{
+  my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+  int i;
+  jpeg_component_info *compptr;
+
+  if (cinfo->arith_code) {
+    /* Emit arith conditioning info.  We may have some duplication
+     * if the file has multiple scans, but it's so small it's hardly
+     * worth worrying about.
+     */
+    emit_dac(cinfo);
+  } else {
+    /* Emit Huffman tables.
+     * Note that emit_dht() suppresses any duplicate tables.
+     */
+    for (i = 0; i < cinfo->comps_in_scan; i++) {
+      compptr = cinfo->cur_comp_info[i];
+      if (cinfo->progressive_mode) {
+	/* Progressive mode: only DC or only AC tables are used in one scan */
+	if (cinfo->Ss == 0) {
+	  if (cinfo->Ah == 0)	/* DC needs no table for refinement scan */
+	    emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
+	} else {
+	  emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
+	}
+      } else {
+	/* Sequential mode: need both DC and AC tables */
+	emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
+	emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
+      }
+    }
+  }
+
+  /* Emit DRI if required --- note that DRI value could change for each scan.
+   * We avoid wasting space with unnecessary DRIs, however.
+   */
+  if (cinfo->restart_interval != marker->last_restart_interval) {
+    emit_dri(cinfo);
+    marker->last_restart_interval = cinfo->restart_interval;
+  }
+
+  emit_sos(cinfo);
+}
+
+
+/*
+ * Write datastream trailer.
+ */
+
+METHODDEF(void)
+write_file_trailer (j_compress_ptr cinfo)
+{
+  emit_marker(cinfo, M_EOI);
+}
+
+
+/*
+ * Write an abbreviated table-specification datastream.
+ * This consists of SOI, DQT and DHT tables, and EOI.
+ * Any table that is defined and not marked sent_table = TRUE will be
+ * emitted.  Note that all tables will be marked sent_table = TRUE at exit.
+ */
+
+METHODDEF(void)
+write_tables_only (j_compress_ptr cinfo)
+{
+  int i;
+
+  emit_marker(cinfo, M_SOI);
+
+  for (i = 0; i < NUM_QUANT_TBLS; i++) {
+    if (cinfo->quant_tbl_ptrs[i] != NULL)
+      (void) emit_dqt(cinfo, i);
+  }
+
+  if (! cinfo->arith_code) {
+    for (i = 0; i < NUM_HUFF_TBLS; i++) {
+      if (cinfo->dc_huff_tbl_ptrs[i] != NULL)
+	emit_dht(cinfo, i, FALSE);
+      if (cinfo->ac_huff_tbl_ptrs[i] != NULL)
+	emit_dht(cinfo, i, TRUE);
+    }
+  }
+
+  emit_marker(cinfo, M_EOI);
+}
+
+
+/*
+ * Initialize the marker writer module.
+ */
+
+GLOBAL(void)
+jinit_marker_writer (j_compress_ptr cinfo)
+{
+  my_marker_ptr marker;
+
+  /* Create the subobject */
+  marker = (my_marker_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_marker_writer));
+  cinfo->marker = (struct jpeg_marker_writer *) marker;
+  /* Initialize method pointers */
+  marker->pub.write_file_header = write_file_header;
+  marker->pub.write_frame_header = write_frame_header;
+  marker->pub.write_scan_header = write_scan_header;
+  marker->pub.write_file_trailer = write_file_trailer;
+  marker->pub.write_tables_only = write_tables_only;
+  marker->pub.write_marker_header = write_marker_header;
+  marker->pub.write_marker_byte = write_marker_byte;
+  /* Initialize private state */
+  marker->last_restart_interval = 0;
+}

=== added file 'src/libjpeg-turbo/jcmaster.c'
--- src/libjpeg-turbo/jcmaster.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jcmaster.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,624 @@ 
+/*
+ * jcmaster.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2003-2010 by Guido Vollbeding.
+ * Copyright (C) 2010, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains master control logic for the JPEG compressor.
+ * These routines are concerned with parameter validation, initial setup,
+ * and inter-pass control (determining the number of passes and the work 
+ * to be done in each pass).
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jpegcomp.h"
+
+
+/* Private state */
+
+typedef enum {
+	main_pass,		/* input data, also do first output step */
+	huff_opt_pass,		/* Huffman code optimization pass */
+	output_pass		/* data output pass */
+} c_pass_type;
+
+typedef struct {
+  struct jpeg_comp_master pub;	/* public fields */
+
+  c_pass_type pass_type;	/* the type of the current pass */
+
+  int pass_number;		/* # of passes completed */
+  int total_passes;		/* total # of passes needed */
+
+  int scan_number;		/* current index in scan_info[] */
+} my_comp_master;
+
+typedef my_comp_master * my_master_ptr;
+
+
+/*
+ * Support routines that do various essential calculations.
+ */
+
+#if JPEG_LIB_VERSION >= 70
+/*
+ * Compute JPEG image dimensions and related values.
+ * NOTE: this is exported for possible use by application.
+ * Hence it mustn't do anything that can't be done twice.
+ */
+
+GLOBAL(void)
+jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo)
+/* Do computations that are needed before master selection phase */
+{
+  /* Hardwire it to "no scaling" */
+  cinfo->jpeg_width = cinfo->image_width;
+  cinfo->jpeg_height = cinfo->image_height;
+  cinfo->min_DCT_h_scaled_size = DCTSIZE;
+  cinfo->min_DCT_v_scaled_size = DCTSIZE;
+}
+#endif
+
+
+LOCAL(void)
+initial_setup (j_compress_ptr cinfo, boolean transcode_only)
+/* Do computations that are needed before master selection phase */
+{
+  int ci;
+  jpeg_component_info *compptr;
+  long samplesperrow;
+  JDIMENSION jd_samplesperrow;
+
+#if JPEG_LIB_VERSION >= 70
+#if JPEG_LIB_VERSION >= 80
+  if (!transcode_only)
+#endif
+    jpeg_calc_jpeg_dimensions(cinfo);
+#endif
+
+  /* Sanity check on image dimensions */
+  if (cinfo->_jpeg_height <= 0 || cinfo->_jpeg_width <= 0
+      || cinfo->num_components <= 0 || cinfo->input_components <= 0)
+    ERREXIT(cinfo, JERR_EMPTY_IMAGE);
+
+  /* Make sure image isn't bigger than I can handle */
+  if ((long) cinfo->_jpeg_height > (long) JPEG_MAX_DIMENSION ||
+      (long) cinfo->_jpeg_width > (long) JPEG_MAX_DIMENSION)
+    ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
+
+  /* Width of an input scanline must be representable as JDIMENSION. */
+  samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
+  jd_samplesperrow = (JDIMENSION) samplesperrow;
+  if ((long) jd_samplesperrow != samplesperrow)
+    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+
+  /* For now, precision must match compiled-in value... */
+  if (cinfo->data_precision != BITS_IN_JSAMPLE)
+    ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
+
+  /* Check that number of components won't exceed internal array sizes */
+  if (cinfo->num_components > MAX_COMPONENTS)
+    ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+	     MAX_COMPONENTS);
+
+  /* Compute maximum sampling factors; check factor validity */
+  cinfo->max_h_samp_factor = 1;
+  cinfo->max_v_samp_factor = 1;
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
+	compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
+      ERREXIT(cinfo, JERR_BAD_SAMPLING);
+    cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
+				   compptr->h_samp_factor);
+    cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
+				   compptr->v_samp_factor);
+  }
+
+  /* Compute dimensions of components */
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    /* Fill in the correct component_index value; don't rely on application */
+    compptr->component_index = ci;
+    /* For compression, we never do DCT scaling. */
+#if JPEG_LIB_VERSION >= 70
+    compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = DCTSIZE;
+#else
+    compptr->DCT_scaled_size = DCTSIZE;
+#endif
+    /* Size in DCT blocks */
+    compptr->width_in_blocks = (JDIMENSION)
+      jdiv_round_up((long) cinfo->_jpeg_width * (long) compptr->h_samp_factor,
+		    (long) (cinfo->max_h_samp_factor * DCTSIZE));
+    compptr->height_in_blocks = (JDIMENSION)
+      jdiv_round_up((long) cinfo->_jpeg_height * (long) compptr->v_samp_factor,
+		    (long) (cinfo->max_v_samp_factor * DCTSIZE));
+    /* Size in samples */
+    compptr->downsampled_width = (JDIMENSION)
+      jdiv_round_up((long) cinfo->_jpeg_width * (long) compptr->h_samp_factor,
+		    (long) cinfo->max_h_samp_factor);
+    compptr->downsampled_height = (JDIMENSION)
+      jdiv_round_up((long) cinfo->_jpeg_height * (long) compptr->v_samp_factor,
+		    (long) cinfo->max_v_samp_factor);
+    /* Mark component needed (this flag isn't actually used for compression) */
+    compptr->component_needed = TRUE;
+  }
+
+  /* Compute number of fully interleaved MCU rows (number of times that
+   * main controller will call coefficient controller).
+   */
+  cinfo->total_iMCU_rows = (JDIMENSION)
+    jdiv_round_up((long) cinfo->_jpeg_height,
+		  (long) (cinfo->max_v_samp_factor*DCTSIZE));
+}
+
+
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+
+LOCAL(void)
+validate_script (j_compress_ptr cinfo)
+/* Verify that the scan script in cinfo->scan_info[] is valid; also
+ * determine whether it uses progressive JPEG, and set cinfo->progressive_mode.
+ */
+{
+  const jpeg_scan_info * scanptr;
+  int scanno, ncomps, ci, coefi, thisi;
+  int Ss, Se, Ah, Al;
+  boolean component_sent[MAX_COMPONENTS];
+#ifdef C_PROGRESSIVE_SUPPORTED
+  int * last_bitpos_ptr;
+  int last_bitpos[MAX_COMPONENTS][DCTSIZE2];
+  /* -1 until that coefficient has been seen; then last Al for it */
+#endif
+
+  if (cinfo->num_scans <= 0)
+    ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0);
+
+  /* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
+   * for progressive JPEG, no scan can have this.
+   */
+  scanptr = cinfo->scan_info;
+  if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) {
+#ifdef C_PROGRESSIVE_SUPPORTED
+    cinfo->progressive_mode = TRUE;
+    last_bitpos_ptr = & last_bitpos[0][0];
+    for (ci = 0; ci < cinfo->num_components; ci++) 
+      for (coefi = 0; coefi < DCTSIZE2; coefi++)
+	*last_bitpos_ptr++ = -1;
+#else
+    ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+  } else {
+    cinfo->progressive_mode = FALSE;
+    for (ci = 0; ci < cinfo->num_components; ci++) 
+      component_sent[ci] = FALSE;
+  }
+
+  for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) {
+    /* Validate component indexes */
+    ncomps = scanptr->comps_in_scan;
+    if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN)
+      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN);
+    for (ci = 0; ci < ncomps; ci++) {
+      thisi = scanptr->component_index[ci];
+      if (thisi < 0 || thisi >= cinfo->num_components)
+	ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
+      /* Components must appear in SOF order within each scan */
+      if (ci > 0 && thisi <= scanptr->component_index[ci-1])
+	ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
+    }
+    /* Validate progression parameters */
+    Ss = scanptr->Ss;
+    Se = scanptr->Se;
+    Ah = scanptr->Ah;
+    Al = scanptr->Al;
+    if (cinfo->progressive_mode) {
+#ifdef C_PROGRESSIVE_SUPPORTED
+      /* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that
+       * seems wrong: the upper bound ought to depend on data precision.
+       * Perhaps they really meant 0..N+1 for N-bit precision.
+       * Here we allow 0..10 for 8-bit data; Al larger than 10 results in
+       * out-of-range reconstructed DC values during the first DC scan,
+       * which might cause problems for some decoders.
+       */
+#if BITS_IN_JSAMPLE == 8
+#define MAX_AH_AL 10
+#else
+#define MAX_AH_AL 13
+#endif
+      if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 ||
+	  Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL)
+	ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+      if (Ss == 0) {
+	if (Se != 0)		/* DC and AC together not OK */
+	  ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+      } else {
+	if (ncomps != 1)	/* AC scans must be for only one component */
+	  ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+      }
+      for (ci = 0; ci < ncomps; ci++) {
+	last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0];
+	if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */
+	  ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+	for (coefi = Ss; coefi <= Se; coefi++) {
+	  if (last_bitpos_ptr[coefi] < 0) {
+	    /* first scan of this coefficient */
+	    if (Ah != 0)
+	      ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+	  } else {
+	    /* not first scan */
+	    if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1)
+	      ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+	  }
+	  last_bitpos_ptr[coefi] = Al;
+	}
+      }
+#endif
+    } else {
+      /* For sequential JPEG, all progression parameters must be these: */
+      if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0)
+	ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+      /* Make sure components are not sent twice */
+      for (ci = 0; ci < ncomps; ci++) {
+	thisi = scanptr->component_index[ci];
+	if (component_sent[thisi])
+	  ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
+	component_sent[thisi] = TRUE;
+      }
+    }
+  }
+
+  /* Now verify that everything got sent. */
+  if (cinfo->progressive_mode) {
+#ifdef C_PROGRESSIVE_SUPPORTED
+    /* For progressive mode, we only check that at least some DC data
+     * got sent for each component; the spec does not require that all bits
+     * of all coefficients be transmitted.  Would it be wiser to enforce
+     * transmission of all coefficient bits??
+     */
+    for (ci = 0; ci < cinfo->num_components; ci++) {
+      if (last_bitpos[ci][0] < 0)
+	ERREXIT(cinfo, JERR_MISSING_DATA);
+    }
+#endif
+  } else {
+    for (ci = 0; ci < cinfo->num_components; ci++) {
+      if (! component_sent[ci])
+	ERREXIT(cinfo, JERR_MISSING_DATA);
+    }
+  }
+}
+
+#endif /* C_MULTISCAN_FILES_SUPPORTED */
+
+
+LOCAL(void)
+select_scan_parameters (j_compress_ptr cinfo)
+/* Set up the scan parameters for the current scan */
+{
+  int ci;
+
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+  if (cinfo->scan_info != NULL) {
+    /* Prepare for current scan --- the script is already validated */
+    my_master_ptr master = (my_master_ptr) cinfo->master;
+    const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number;
+
+    cinfo->comps_in_scan = scanptr->comps_in_scan;
+    for (ci = 0; ci < scanptr->comps_in_scan; ci++) {
+      cinfo->cur_comp_info[ci] =
+	&cinfo->comp_info[scanptr->component_index[ci]];
+    }
+    cinfo->Ss = scanptr->Ss;
+    cinfo->Se = scanptr->Se;
+    cinfo->Ah = scanptr->Ah;
+    cinfo->Al = scanptr->Al;
+  }
+  else
+#endif
+  {
+    /* Prepare for single sequential-JPEG scan containing all components */
+    if (cinfo->num_components > MAX_COMPS_IN_SCAN)
+      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+	       MAX_COMPS_IN_SCAN);
+    cinfo->comps_in_scan = cinfo->num_components;
+    for (ci = 0; ci < cinfo->num_components; ci++) {
+      cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
+    }
+    cinfo->Ss = 0;
+    cinfo->Se = DCTSIZE2-1;
+    cinfo->Ah = 0;
+    cinfo->Al = 0;
+  }
+}
+
+
+LOCAL(void)
+per_scan_setup (j_compress_ptr cinfo)
+/* Do computations that are needed before processing a JPEG scan */
+/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */
+{
+  int ci, mcublks, tmp;
+  jpeg_component_info *compptr;
+  
+  if (cinfo->comps_in_scan == 1) {
+    
+    /* Noninterleaved (single-component) scan */
+    compptr = cinfo->cur_comp_info[0];
+    
+    /* Overall image size in MCUs */
+    cinfo->MCUs_per_row = compptr->width_in_blocks;
+    cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
+    
+    /* For noninterleaved scan, always one block per MCU */
+    compptr->MCU_width = 1;
+    compptr->MCU_height = 1;
+    compptr->MCU_blocks = 1;
+    compptr->MCU_sample_width = DCTSIZE;
+    compptr->last_col_width = 1;
+    /* For noninterleaved scans, it is convenient to define last_row_height
+     * as the number of block rows present in the last iMCU row.
+     */
+    tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+    if (tmp == 0) tmp = compptr->v_samp_factor;
+    compptr->last_row_height = tmp;
+    
+    /* Prepare array describing MCU composition */
+    cinfo->blocks_in_MCU = 1;
+    cinfo->MCU_membership[0] = 0;
+    
+  } else {
+    
+    /* Interleaved (multi-component) scan */
+    if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
+      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
+	       MAX_COMPS_IN_SCAN);
+    
+    /* Overall image size in MCUs */
+    cinfo->MCUs_per_row = (JDIMENSION)
+      jdiv_round_up((long) cinfo->_jpeg_width,
+		    (long) (cinfo->max_h_samp_factor*DCTSIZE));
+    cinfo->MCU_rows_in_scan = (JDIMENSION)
+      jdiv_round_up((long) cinfo->_jpeg_height,
+		    (long) (cinfo->max_v_samp_factor*DCTSIZE));
+    
+    cinfo->blocks_in_MCU = 0;
+    
+    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+      compptr = cinfo->cur_comp_info[ci];
+      /* Sampling factors give # of blocks of component in each MCU */
+      compptr->MCU_width = compptr->h_samp_factor;
+      compptr->MCU_height = compptr->v_samp_factor;
+      compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
+      compptr->MCU_sample_width = compptr->MCU_width * DCTSIZE;
+      /* Figure number of non-dummy blocks in last MCU column & row */
+      tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
+      if (tmp == 0) tmp = compptr->MCU_width;
+      compptr->last_col_width = tmp;
+      tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
+      if (tmp == 0) tmp = compptr->MCU_height;
+      compptr->last_row_height = tmp;
+      /* Prepare array describing MCU composition */
+      mcublks = compptr->MCU_blocks;
+      if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU)
+	ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
+      while (mcublks-- > 0) {
+	cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
+      }
+    }
+    
+  }
+
+  /* Convert restart specified in rows to actual MCU count. */
+  /* Note that count must fit in 16 bits, so we provide limiting. */
+  if (cinfo->restart_in_rows > 0) {
+    long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row;
+    cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L);
+  }
+}
+
+
+/*
+ * Per-pass setup.
+ * This is called at the beginning of each pass.  We determine which modules
+ * will be active during this pass and give them appropriate start_pass calls.
+ * We also set is_last_pass to indicate whether any more passes will be
+ * required.
+ */
+
+METHODDEF(void)
+prepare_for_pass (j_compress_ptr cinfo)
+{
+  my_master_ptr master = (my_master_ptr) cinfo->master;
+
+  switch (master->pass_type) {
+  case main_pass:
+    /* Initial pass: will collect input data, and do either Huffman
+     * optimization or data output for the first scan.
+     */
+    select_scan_parameters(cinfo);
+    per_scan_setup(cinfo);
+    if (! cinfo->raw_data_in) {
+      (*cinfo->cconvert->start_pass) (cinfo);
+      (*cinfo->downsample->start_pass) (cinfo);
+      (*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU);
+    }
+    (*cinfo->fdct->start_pass) (cinfo);
+    (*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding);
+    (*cinfo->coef->start_pass) (cinfo,
+				(master->total_passes > 1 ?
+				 JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
+    (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
+    if (cinfo->optimize_coding) {
+      /* No immediate data output; postpone writing frame/scan headers */
+      master->pub.call_pass_startup = FALSE;
+    } else {
+      /* Will write frame/scan headers at first jpeg_write_scanlines call */
+      master->pub.call_pass_startup = TRUE;
+    }
+    break;
+#ifdef ENTROPY_OPT_SUPPORTED
+  case huff_opt_pass:
+    /* Do Huffman optimization for a scan after the first one. */
+    select_scan_parameters(cinfo);
+    per_scan_setup(cinfo);
+    if (cinfo->Ss != 0 || cinfo->Ah == 0 || cinfo->arith_code) {
+      (*cinfo->entropy->start_pass) (cinfo, TRUE);
+      (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
+      master->pub.call_pass_startup = FALSE;
+      break;
+    }
+    /* Special case: Huffman DC refinement scans need no Huffman table
+     * and therefore we can skip the optimization pass for them.
+     */
+    master->pass_type = output_pass;
+    master->pass_number++;
+    /*FALLTHROUGH*/
+#endif
+  case output_pass:
+    /* Do a data-output pass. */
+    /* We need not repeat per-scan setup if prior optimization pass did it. */
+    if (! cinfo->optimize_coding) {
+      select_scan_parameters(cinfo);
+      per_scan_setup(cinfo);
+    }
+    (*cinfo->entropy->start_pass) (cinfo, FALSE);
+    (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
+    /* We emit frame/scan headers now */
+    if (master->scan_number == 0)
+      (*cinfo->marker->write_frame_header) (cinfo);
+    (*cinfo->marker->write_scan_header) (cinfo);
+    master->pub.call_pass_startup = FALSE;
+    break;
+  default:
+    ERREXIT(cinfo, JERR_NOT_COMPILED);
+  }
+
+  master->pub.is_last_pass = (master->pass_number == master->total_passes-1);
+
+  /* Set up progress monitor's pass info if present */
+  if (cinfo->progress != NULL) {
+    cinfo->progress->completed_passes = master->pass_number;
+    cinfo->progress->total_passes = master->total_passes;
+  }
+}
+
+
+/*
+ * Special start-of-pass hook.
+ * This is called by jpeg_write_scanlines if call_pass_startup is TRUE.
+ * In single-pass processing, we need this hook because we don't want to
+ * write frame/scan headers during jpeg_start_compress; we want to let the
+ * application write COM markers etc. between jpeg_start_compress and the
+ * jpeg_write_scanlines loop.
+ * In multi-pass processing, this routine is not used.
+ */
+
+METHODDEF(void)
+pass_startup (j_compress_ptr cinfo)
+{
+  cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */
+
+  (*cinfo->marker->write_frame_header) (cinfo);
+  (*cinfo->marker->write_scan_header) (cinfo);
+}
+
+
+/*
+ * Finish up at end of pass.
+ */
+
+METHODDEF(void)
+finish_pass_master (j_compress_ptr cinfo)
+{
+  my_master_ptr master = (my_master_ptr) cinfo->master;
+
+  /* The entropy coder always needs an end-of-pass call,
+   * either to analyze statistics or to flush its output buffer.
+   */
+  (*cinfo->entropy->finish_pass) (cinfo);
+
+  /* Update state for next pass */
+  switch (master->pass_type) {
+  case main_pass:
+    /* next pass is either output of scan 0 (after optimization)
+     * or output of scan 1 (if no optimization).
+     */
+    master->pass_type = output_pass;
+    if (! cinfo->optimize_coding)
+      master->scan_number++;
+    break;
+  case huff_opt_pass:
+    /* next pass is always output of current scan */
+    master->pass_type = output_pass;
+    break;
+  case output_pass:
+    /* next pass is either optimization or output of next scan */
+    if (cinfo->optimize_coding)
+      master->pass_type = huff_opt_pass;
+    master->scan_number++;
+    break;
+  }
+
+  master->pass_number++;
+}
+
+
+/*
+ * Initialize master compression control.
+ */
+
+GLOBAL(void)
+jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
+{
+  my_master_ptr master;
+
+  master = (my_master_ptr)
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  SIZEOF(my_comp_master));
+  cinfo->master = (struct jpeg_comp_master *) master;
+  master->pub.prepare_for_pass = prepare_for_pass;
+  master->pub.pass_startup = pass_startup;
+  master->pub.finish_pass = finish_pass_master;
+  master->pub.is_last_pass = FALSE;
+
+  /* Validate parameters, determine derived values */
+  initial_setup(cinfo, transcode_only);
+
+  if (cinfo->scan_info != NULL) {
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+    validate_script(cinfo);
+#else
+    ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+  } else {
+    cinfo->progressive_mode = FALSE;
+    cinfo->num_scans = 1;
+  }
+
+  if (cinfo->progressive_mode)	/*  TEMPORARY HACK ??? */
+    cinfo->optimize_coding = TRUE; /* assume default tables no good for progressive mode */
+
+  /* Initialize my private state */
+  if (transcode_only) {
+    /* no main pass in transcoding */
+    if (cinfo->optimize_coding)
+      master->pass_type = huff_opt_pass;
+    else
+      master->pass_type = output_pass;
+  } else {
+    /* for normal compression, first pass is always this type: */
+    master->pass_type = main_pass;
+  }
+  master->scan_number = 0;
+  master->pass_number = 0;
+  if (cinfo->optimize_coding)
+    master->total_passes = cinfo->num_scans * 2;
+  else
+    master->total_passes = cinfo->num_scans;
+}

=== added file 'src/libjpeg-turbo/jcomapi.c'
--- src/libjpeg-turbo/jcomapi.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jcomapi.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,106 @@ 
+/*
+ * jcomapi.c
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface routines that are used for both
+ * compression and decompression.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Abort processing of a JPEG compression or decompression operation,
+ * but don't destroy the object itself.
+ *
+ * For this, we merely clean up all the nonpermanent memory pools.
+ * Note that temp files (virtual arrays) are not allowed to belong to
+ * the permanent pool, so we will be able to close all temp files here.
+ * Closing a data source or destination, if necessary, is the application's
+ * responsibility.
+ */
+
+GLOBAL(void)
+jpeg_abort (j_common_ptr cinfo)
+{
+  int pool;
+
+  /* Do nothing if called on a not-initialized or destroyed JPEG object. */
+  if (cinfo->mem == NULL)
+    return;
+
+  /* Releasing pools in reverse order might help avoid fragmentation
+   * with some (brain-damaged) malloc libraries.
+   */
+  for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
+    (*cinfo->mem->free_pool) (cinfo, pool);
+  }
+
+  /* Reset overall state for possible reuse of object */
+  if (cinfo->is_decompressor) {
+    cinfo->global_state = DSTATE_START;
+    /* Try to keep application from accessing now-deleted marker list.
+     * A bit kludgy to do it here, but this is the most central place.
+     */
+    ((j_decompress_ptr) cinfo)->marker_list = NULL;
+  } else {
+    cinfo->global_state = CSTATE_START;
+  }
+}
+
+
+/*
+ * Destruction of a JPEG object.
+ *
+ * Everything gets deallocated except the master jpeg_compress_struct itself
+ * and the error manager struct.  Both of these are supplied by the application
+ * and must be freed, if necessary, by the application.  (Often they are on
+ * the stack and so don't need to be freed anyway.)
+ * Closing a data source or destination, if necessary, is the application's
+ * responsibility.
+ */
+
+GLOBAL(void)
+jpeg_destroy (j_common_ptr cinfo)
+{
+  /* We need only tell the memory manager to release everything. */
+  /* NB: mem pointer is NULL if memory mgr failed to initialize. */
+  if (cinfo->mem != NULL)
+    (*cinfo->mem->self_destruct) (cinfo);
+  cinfo->mem = NULL;		/* be safe if jpeg_destroy is called twice */
+  cinfo->global_state = 0;	/* mark it destroyed */
+}
+
+
+/*
+ * Convenience routines for allocating quantization and Huffman tables.
+ * (Would jutils.c be a more reasonable place to put these?)
+ */
+
+GLOBAL(JQUANT_TBL *)
+jpeg_alloc_quant_table (j_common_ptr cinfo)
+{
+  JQUANT_TBL *tbl;
+
+  tbl = (JQUANT_TBL *)
+    (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
+  tbl->sent_table = FALSE;	/* make sure this is false in any new table */
+  return tbl;
+}
+
+
+GLOBAL(JHUFF_TBL *)
+jpeg_alloc_huff_table (j_common_ptr cinfo)
+{
+  JHUFF_TBL *tbl;
+
+  tbl = (JHUFF_TBL *)
+    (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
+  tbl->sent_table = FALSE;	/* make sure this is false in any new table */
+  return tbl;
+}

=== added file 'src/libjpeg-turbo/jconfig.h'
--- src/libjpeg-turbo/jconfig.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jconfig.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,58 @@ 
+/* jconfig.h.  Generated from jconfig.h.in by configure.  */
+/* Version ID for the JPEG library.
+ * Might be useful for tests like "#if JPEG_LIB_VERSION >= 60".
+ */
+#define JPEG_LIB_VERSION 62
+
+/* libjpeg-turbo version */
+#define LIBJPEG_TURBO_VERSION 1.2.0
+
+/* Support arithmetic encoding */
+#define C_ARITH_CODING_SUPPORTED 1
+
+/* Support arithmetic decoding */
+#define D_ARITH_CODING_SUPPORTED 1
+
+/* Compiler supports function prototypes. */
+#define HAVE_PROTOTYPES 1
+
+/* Define to 1 if you have the <stddef.h> header file. */
+#define HAVE_STDDEF_H 1
+
+/* Define to 1 if you have the <stdlib.h> header file. */
+#define HAVE_STDLIB_H 1
+
+/* Compiler supports 'unsigned char'. */
+#define HAVE_UNSIGNED_CHAR 1
+
+/* Compiler supports 'unsigned short'. */
+#define HAVE_UNSIGNED_SHORT 1
+
+/* Compiler does not support pointers to unspecified structures. */
+/* #undef INCOMPLETE_TYPES_BROKEN */
+
+/* Compiler has <strings.h> rather than standard <string.h>. */
+/* #undef NEED_BSD_STRINGS */
+
+/* Linker requires that global names be unique in first 15 characters. */
+/* #undef NEED_SHORT_EXTERNAL_NAMES */
+
+/* Need to include <sys/types.h> in order to obtain size_t. */
+#define NEED_SYS_TYPES_H 1
+
+/* Broken compiler shifts signed values as an unsigned shift. */
+/* #undef RIGHT_SHIFT_IS_UNSIGNED */
+
+/* Use accelerated SIMD routines. */
+#define WITH_SIMD 1
+
+/* Define to 1 if type `char' is unsigned and you are not using gcc.  */
+#ifndef __CHAR_UNSIGNED__
+/* # undef __CHAR_UNSIGNED__ */
+#endif
+
+/* Define to empty if `const' does not conform to ANSI C. */
+/* #undef const */
+
+/* Define to `unsigned int' if <sys/types.h> does not define. */
+/* #undef size_t */

=== added file 'src/libjpeg-turbo/jcparam.c'
--- src/libjpeg-turbo/jcparam.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jcparam.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,649 @@ 
+/*
+ * jcparam.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * Modified 2003-2008 by Guido Vollbeding.
+ * Copyright (C) 2009-2011, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains optional default-setting code for the JPEG compressor.
+ * Applications do not have to use this file, but those that don't use it
+ * must know a lot more about the innards of the JPEG code.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Quantization table setup routines
+ */
+
+GLOBAL(void)
+jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
+		      const unsigned int *basic_table,
+		      int scale_factor, boolean force_baseline)
+/* Define a quantization table equal to the basic_table times
+ * a scale factor (given as a percentage).
+ * If force_baseline is TRUE, the computed quantization table entries
+ * are limited to 1..255 for JPEG baseline compatibility.
+ */
+{
+  JQUANT_TBL ** qtblptr;
+  int i;
+  long temp;
+
+  /* Safety check to ensure start_compress not called yet. */
+  if (cinfo->global_state != CSTATE_START)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+  if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
+    ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
+
+  qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
+
+  if (*qtblptr == NULL)
+    *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
+
+  for (i = 0; i < DCTSIZE2; i++) {
+    temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
+    /* limit the values to the valid range */
+    if (temp <= 0L) temp = 1L;
+    if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
+    if (force_baseline && temp > 255L)
+      temp = 255L;		/* limit to baseline range if requested */
+    (*qtblptr)->quantval[i] = (UINT16) temp;
+  }
+
+  /* Initialize sent_table FALSE so table will be written to JPEG file. */
+  (*qtblptr)->sent_table = FALSE;
+}
+
+
+/* These are the sample quantization tables given in JPEG spec section K.1.
+ * The spec says that the values given produce "good" quality, and
+ * when divided by 2, "very good" quality.
+ */
+static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
+  16,  11,  10,  16,  24,  40,  51,  61,
+  12,  12,  14,  19,  26,  58,  60,  55,
+  14,  13,  16,  24,  40,  57,  69,  56,
+  14,  17,  22,  29,  51,  87,  80,  62,
+  18,  22,  37,  56,  68, 109, 103,  77,
+  24,  35,  55,  64,  81, 104, 113,  92,
+  49,  64,  78,  87, 103, 121, 120, 101,
+  72,  92,  95,  98, 112, 100, 103,  99
+};
+static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
+  17,  18,  24,  47,  99,  99,  99,  99,
+  18,  21,  26,  66,  99,  99,  99,  99,
+  24,  26,  56,  99,  99,  99,  99,  99,
+  47,  66,  99,  99,  99,  99,  99,  99,
+  99,  99,  99,  99,  99,  99,  99,  99,
+  99,  99,  99,  99,  99,  99,  99,  99,
+  99,  99,  99,  99,  99,  99,  99,  99,
+  99,  99,  99,  99,  99,  99,  99,  99
+};
+
+
+#if JPEG_LIB_VERSION >= 70
+GLOBAL(void)
+jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
+/* Set or change the 'quality' (quantization) setting, using default tables
+ * and straight percentage-scaling quality scales.
+ * This entry point allows different scalings for luminance and chrominance.
+ */
+{
+  /* Set up two quantization tables using the specified scaling */
+  jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
+		       cinfo->q_scale_factor[0], force_baseline);
+  jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
+		       cinfo->q_scale_factor[1], force_baseline);
+}
+#endif
+
+
+GLOBAL(void)
+jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
+			 boolean force_baseline)
+/* Set or change the 'quality' (quantization) setting, using default tables
+ * and a straight percentage-scaling quality scale.  In most cases it's better
+ * to use jpeg_set_quality (below); this entry point is provided for
+ * applications that insist on a linear percentage scaling.
+ */
+{
+  /* Set up two quantization tables using the specified scaling */
+  jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
+		       scale_factor, force_baseline);
+  jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
+		       scale_factor, force_baseline);
+}
+
+
+GLOBAL(int)
+jpeg_quality_scaling (int quality)
+/* Convert a user-specified quality rating to a percentage scaling factor
+ * for an underlying quantization table, using our recommended scaling curve.
+ * The input 'quality' factor should be 0 (terrible) to 100 (very good).
+ */
+{
+  /* Safety limit on quality factor.  Convert 0 to 1 to avoid zero divide. */
+  if (quality <= 0) quality = 1;
+  if (quality > 100) quality = 100;
+
+  /* The basic table is used as-is (scaling 100) for a quality of 50.
+   * Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
+   * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
+   * to make all the table entries 1 (hence, minimum quantization loss).
+   * Qualities 1..50 are converted to scaling percentage 5000/Q.
+   */
+  if (quality < 50)
+    quality = 5000 / quality;
+  else
+    quality = 200 - quality*2;
+
+  return quality;
+}
+
+
+GLOBAL(void)
+jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
+/* Set or change the 'quality' (quantization) setting, using default tables.
+ * This is the standard quality-adjusting entry point for typical user
+ * interfaces; only those who want detailed control over quantization tables
+ * would use the preceding three routines directly.
+ */
+{
+  /* Convert user 0-100 rating to percentage scaling */
+  quality = jpeg_quality_scaling(quality);
+
+  /* Set up standard quality tables */
+  jpeg_set_linear_quality(cinfo, quality, force_baseline);
+}
+
+
+/*
+ * Huffman table setup routines
+ */
+
+LOCAL(void)
+add_huff_table (j_compress_ptr cinfo,
+		JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
+/* Define a Huffman table */
+{
+  int nsymbols, len;
+
+  if (*htblptr == NULL)
+    *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+
+  /* Copy the number-of-symbols-of-each-code-length counts */
+  MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
+
+  /* Validate the counts.  We do this here mainly so we can copy the right
+   * number of symbols from the val[] array, without risking marching off
+   * the end of memory.  jchuff.c will do a more thorough test later.
+   */
+  nsymbols = 0;
+  for (len = 1; len <= 16; len++)
+    nsymbols += bits[len];
+  if (nsymbols < 1 || nsymbols > 256)
+    ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+
+  MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
+
+  /* Initialize sent_table FALSE so table will be written to JPEG file. */
+  (*htblptr)->sent_table = FALSE;
+}
+
+
+LOCAL(void)
+std_huff_tables (j_compress_ptr cinfo)
+/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
+/* IMPORTANT: these are only valid for 8-bit data precision! */
+{
+  static const UINT8 bits_dc_luminance[17] =
+    { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
+  static const UINT8 val_dc_luminance[] =
+    { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
+  
+  static const UINT8 bits_dc_chrominance[17] =
+    { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
+  static const UINT8 val_dc_chrominance[] =
+    { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
+  
+  static const UINT8 bits_ac_luminance[17] =
+    { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
+  static const UINT8 val_ac_luminance[] =
+    { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
+      0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
+      0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
+      0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
+      0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
+      0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
+      0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
+      0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
+      0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
+      0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
+      0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
+      0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
+      0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
+      0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
+      0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
+      0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
+      0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
+      0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
+      0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
+      0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
+      0xf9, 0xfa };
+  
+  static const UINT8 bits_ac_chrominance[17] =
+    { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
+  static const UINT8 val_ac_chrominance[] =
+    { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
+      0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
+      0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
+      0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
+      0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
+      0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
+      0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
+      0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
+      0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
+      0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
+      0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
+      0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+      0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
+      0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
+      0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
+      0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
+      0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
+      0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
+      0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
+      0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
+      0xf9, 0xfa };
+  
+  add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
+		 bits_dc_luminance, val_dc_luminance);
+  add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
+		 bits_ac_luminance, val_ac_luminance);
+  add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
+		 bits_dc_chrominance, val_dc_chrominance);
+  add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
+		 bits_ac_chrominance, val_ac_chrominance);
+}
+
+
+/*
+ * Default parameter setup for compression.
+ *
+ * Applications that don't choose to use this routine must do their
+ * own setup of all these parameters.  Alternately, you can call this
+ * to establish defaults and then alter parameters selectively.  This
+ * is the recommended approach since, if we add any new parameters,
+ * your code will still work (they'll be set to reasonable defaults).
+ */
+
+GLOBAL(void)
+jpeg_set_defaults (j_compress_ptr cinfo)
+{
+  int i;
+
+  /* Safety check to ensure start_compress not called yet. */
+  if (cinfo->global_state != CSTATE_START)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+  /* Allocate comp_info array large enough for maximum component count.
+   * Array is made permanent in case application wants to compress
+   * multiple images at same param settings.
+   */
+  if (cinfo->comp_info == NULL)
+    cinfo->comp_info = (jpeg_component_info *)
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+				  MAX_COMPONENTS * SIZEOF(jpeg_component_info));
+
+  /* Initialize everything not dependent on the color space */
+
+#if JPEG_LIB_VERSION >= 70
+  cinfo->scale_num = 1;		/* 1:1 scaling */
+  cinfo->scale_denom = 1;
+#endif
+  cinfo->data_precision = BITS_IN_JSAMPLE;
+  /* Set up two quantization tables using default quality of 75 */
+  jpeg_set_quality(cinfo, 75, TRUE);
+  /* Set up two Huffman tables */
+  std_huff_tables(cinfo);
+
+  /* Initialize default arithmetic coding conditioning */
+  for (i = 0; i < NUM_ARITH_TBLS; i++) {
+    cinfo->arith_dc_L[i] = 0;
+    cinfo->arith_dc_U[i] = 1;
+    cinfo->arith_ac_K[i] = 5;
+  }
+
+  /* Default is no multiple-scan output */
+  cinfo->scan_info = NULL;
+  cinfo->num_scans = 0;
+
+  /* Expect normal source image, not raw downsampled data */
+  cinfo->raw_data_in = FALSE;
+
+  /* Use Huffman coding, not arithmetic coding, by default */
+  cinfo->arith_code = FALSE;
+
+  /* By default, don't do extra passes to optimize entropy coding */
+  cinfo->optimize_coding = FALSE;
+  /* The standard Huffman tables are only valid for 8-bit data precision.
+   * If the precision is higher, force optimization on so that usable
+   * tables will be computed.  This test can be removed if default tables
+   * are supplied that are valid for the desired precision.
+   */
+  if (cinfo->data_precision > 8)
+    cinfo->optimize_coding = TRUE;
+
+  /* By default, use the simpler non-cosited sampling alignment */
+  cinfo->CCIR601_sampling = FALSE;
+
+#if JPEG_LIB_VERSION >= 70
+  /* By default, apply fancy downsampling */
+  cinfo->do_fancy_downsampling = TRUE;
+#endif
+
+  /* No input smoothing */
+  cinfo->smoothing_factor = 0;
+
+  /* DCT algorithm preference */
+  cinfo->dct_method = JDCT_DEFAULT;
+
+  /* No restart markers */
+  cinfo->restart_interval = 0;
+  cinfo->restart_in_rows = 0;
+
+  /* Fill in default JFIF marker parameters.  Note that whether the marker
+   * will actually be written is determined by jpeg_set_colorspace.
+   *
+   * By default, the library emits JFIF version code 1.01.
+   * An application that wants to emit JFIF 1.02 extension markers should set
+   * JFIF_minor_version to 2.  We could probably get away with just defaulting
+   * to 1.02, but there may still be some decoders in use that will complain
+   * about that; saying 1.01 should minimize compatibility problems.
+   */
+  cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
+  cinfo->JFIF_minor_version = 1;
+  cinfo->density_unit = 0;	/* Pixel size is unknown by default */
+  cinfo->X_density = 1;		/* Pixel aspect ratio is square by default */
+  cinfo->Y_density = 1;
+
+  /* Choose JPEG colorspace based on input space, set defaults accordingly */
+
+  jpeg_default_colorspace(cinfo);
+}
+
+
+/*
+ * Select an appropriate JPEG colorspace for in_color_space.
+ */
+
+GLOBAL(void)
+jpeg_default_colorspace (j_compress_ptr cinfo)
+{
+  switch (cinfo->in_color_space) {
+  case JCS_GRAYSCALE:
+    jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
+    break;
+  case JCS_RGB:
+  case JCS_EXT_RGB:
+  case JCS_EXT_RGBX:
+  case JCS_EXT_BGR:
+  case JCS_EXT_BGRX:
+  case JCS_EXT_XBGR:
+  case JCS_EXT_XRGB:
+  case JCS_EXT_RGBA:
+  case JCS_EXT_BGRA:
+  case JCS_EXT_ABGR:
+  case JCS_EXT_ARGB:
+    jpeg_set_colorspace(cinfo, JCS_YCbCr);
+    break;
+  case JCS_YCbCr:
+    jpeg_set_colorspace(cinfo, JCS_YCbCr);
+    break;
+  case JCS_CMYK:
+    jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
+    break;
+  case JCS_YCCK:
+    jpeg_set_colorspace(cinfo, JCS_YCCK);
+    break;
+  case JCS_UNKNOWN:
+    jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
+    break;
+  default:
+    ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+  }
+}
+
+
+/*
+ * Set the JPEG colorspace, and choose colorspace-dependent default values.
+ */
+
+GLOBAL(void)
+jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
+{
+  jpeg_component_info * compptr;
+  int ci;
+
+#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl)  \
+  (compptr = &cinfo->comp_info[index], \
+   compptr->component_id = (id), \
+   compptr->h_samp_factor = (hsamp), \
+   compptr->v_samp_factor = (vsamp), \
+   compptr->quant_tbl_no = (quant), \
+   compptr->dc_tbl_no = (dctbl), \
+   compptr->ac_tbl_no = (actbl) )
+
+  /* Safety check to ensure start_compress not called yet. */
+  if (cinfo->global_state != CSTATE_START)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+  /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
+   * tables 1 for chrominance components.
+   */
+
+  cinfo->jpeg_color_space = colorspace;
+
+  cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
+  cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
+
+  switch (colorspace) {
+  case JCS_GRAYSCALE:
+    cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
+    cinfo->num_components = 1;
+    /* JFIF specifies component ID 1 */
+    SET_COMP(0, 1, 1,1, 0, 0,0);
+    break;
+  case JCS_RGB:
+    cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
+    cinfo->num_components = 3;
+    SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
+    SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
+    SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
+    break;
+  case JCS_YCbCr:
+    cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
+    cinfo->num_components = 3;
+    /* JFIF specifies component IDs 1,2,3 */
+    /* We default to 2x2 subsamples of chrominance */
+    SET_COMP(0, 1, 2,2, 0, 0,0);
+    SET_COMP(1, 2, 1,1, 1, 1,1);
+    SET_COMP(2, 3, 1,1, 1, 1,1);
+    break;
+  case JCS_CMYK:
+    cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
+    cinfo->num_components = 4;
+    SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
+    SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
+    SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
+    SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
+    break;
+  case JCS_YCCK:
+    cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
+    cinfo->num_components = 4;
+    SET_COMP(0, 1, 2,2, 0, 0,0);
+    SET_COMP(1, 2, 1,1, 1, 1,1);
+    SET_COMP(2, 3, 1,1, 1, 1,1);
+    SET_COMP(3, 4, 2,2, 0, 0,0);
+    break;
+  case JCS_UNKNOWN:
+    cinfo->num_components = cinfo->input_components;
+    if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
+      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+	       MAX_COMPONENTS);
+    for (ci = 0; ci < cinfo->num_components; ci++) {
+      SET_COMP(ci, ci, 1,1, 0, 0,0);
+    }
+    break;
+  default:
+    ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+  }
+}
+
+
+#ifdef C_PROGRESSIVE_SUPPORTED
+
+LOCAL(jpeg_scan_info *)
+fill_a_scan (jpeg_scan_info * scanptr, int ci,
+	     int Ss, int Se, int Ah, int Al)
+/* Support routine: generate one scan for specified component */
+{
+  scanptr->comps_in_scan = 1;
+  scanptr->component_index[0] = ci;
+  scanptr->Ss = Ss;
+  scanptr->Se = Se;
+  scanptr->Ah = Ah;
+  scanptr->Al = Al;
+  scanptr++;
+  return scanptr;
+}
+
+LOCAL(jpeg_scan_info *)
+fill_scans (jpeg_scan_info * scanptr, int ncomps,
+	    int Ss, int Se, int Ah, int Al)
+/* Support routine: generate one scan for each component */
+{
+  int ci;
+
+  for (ci = 0; ci < ncomps; ci++) {
+    scanptr->comps_in_scan = 1;
+    scanptr->component_index[0] = ci;
+    scanptr->Ss = Ss;
+    scanptr->Se = Se;
+    scanptr->Ah = Ah;
+    scanptr->Al = Al;
+    scanptr++;
+  }
+  return scanptr;
+}
+
+LOCAL(jpeg_scan_info *)
+fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
+/* Support routine: generate interleaved DC scan if possible, else N scans */
+{
+  int ci;
+
+  if (ncomps <= MAX_COMPS_IN_SCAN) {
+    /* Single interleaved DC scan */
+    scanptr->comps_in_scan = ncomps;
+    for (ci = 0; ci < ncomps; ci++)
+      scanptr->component_index[ci] = ci;
+    scanptr->Ss = scanptr->Se = 0;
+    scanptr->Ah = Ah;
+    scanptr->Al = Al;
+    scanptr++;
+  } else {
+    /* Noninterleaved DC scan for each component */
+    scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
+  }
+  return scanptr;
+}
+
+
+/*
+ * Create a recommended progressive-JPEG script.
+ * cinfo->num_components and cinfo->jpeg_color_space must be correct.
+ */
+
+GLOBAL(void)
+jpeg_simple_progression (j_compress_ptr cinfo)
+{
+  int ncomps = cinfo->num_components;
+  int nscans;
+  jpeg_scan_info * scanptr;
+
+  /* Safety check to ensure start_compress not called yet. */
+  if (cinfo->global_state != CSTATE_START)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+  /* Figure space needed for script.  Calculation must match code below! */
+  if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
+    /* Custom script for YCbCr color images. */
+    nscans = 10;
+  } else {
+    /* All-purpose script for other color spaces. */
+    if (ncomps > MAX_COMPS_IN_SCAN)
+      nscans = 6 * ncomps;	/* 2 DC + 4 AC scans per component */
+    else
+      nscans = 2 + 4 * ncomps;	/* 2 DC scans; 4 AC scans per component */
+  }
+
+  /* Allocate space for script.
+   * We need to put it in the permanent pool in case the application performs
+   * multiple compressions without changing the settings.  To avoid a memory
+   * leak if jpeg_simple_progression is called repeatedly for the same JPEG
+   * object, we try to re-use previously allocated space, and we allocate
+   * enough space to handle YCbCr even if initially asked for grayscale.
+   */
+  if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
+    cinfo->script_space_size = MAX(nscans, 10);
+    cinfo->script_space = (jpeg_scan_info *)
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+			cinfo->script_space_size * SIZEOF(jpeg_scan_info));
+  }
+  scanptr = cinfo->script_space;
+  cinfo->scan_info = scanptr;
+  cinfo->num_scans = nscans;
+
+  if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
+    /* Custom script for YCbCr color images. */
+    /* Initial DC scan */
+    scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
+    /* Initial AC scan: get some luma data out in a hurry */
+    scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
+    /* Chroma data is too small to be worth expending many scans on */
+    scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
+    scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
+    /* Complete spectral selection for luma AC */
+    scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
+    /* Refine next bit of luma AC */
+    scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
+    /* Finish DC successive approximation */
+    scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
+    /* Finish AC successive approximation */
+    scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
+    scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
+    /* Luma bottom bit comes last since it's usually largest scan */
+    scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
+  } else {
+    /* All-purpose script for other color spaces. */
+    /* Successive approximation first pass */
+    scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
+    scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
+    scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
+    /* Successive approximation second pass */
+    scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
+    /* Successive approximation final pass */
+    scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
+    scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
+  }
+}
+
+#endif /* C_PROGRESSIVE_SUPPORTED */

=== added file 'src/libjpeg-turbo/jcphuff.c'
--- src/libjpeg-turbo/jcphuff.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jcphuff.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,831 @@ 
+/*
+ * jcphuff.c
+ *
+ * Copyright (C) 1995-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains Huffman entropy encoding routines for progressive JPEG.
+ *
+ * We do not support output suspension in this module, since the library
+ * currently does not allow multiple-scan files to be written with output
+ * suspension.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jchuff.h"		/* Declarations shared with jchuff.c */
+
+#ifdef C_PROGRESSIVE_SUPPORTED
+
+/* Expanded entropy encoder object for progressive Huffman encoding. */
+
+typedef struct {
+  struct jpeg_entropy_encoder pub; /* public fields */
+
+  /* Mode flag: TRUE for optimization, FALSE for actual data output */
+  boolean gather_statistics;
+
+  /* Bit-level coding status.
+   * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
+   */
+  JOCTET * next_output_byte;	/* => next byte to write in buffer */
+  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
+  INT32 put_buffer;		/* current bit-accumulation buffer */
+  int put_bits;			/* # of bits now in it */
+  j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */
+
+  /* Coding status for DC components */
+  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+
+  /* Coding status for AC components */
+  int ac_tbl_no;		/* the table number of the single component */
+  unsigned int EOBRUN;		/* run length of EOBs */
+  unsigned int BE;		/* # of buffered correction bits before MCU */
+  char * bit_buffer;		/* buffer for correction bits (1 per char) */
+  /* packing correction bits tightly would save some space but cost time... */
+
+  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
+  int next_restart_num;		/* next restart number to write (0-7) */
+
+  /* Pointers to derived tables (these workspaces have image lifespan).
+   * Since any one scan codes only DC or only AC, we only need one set
+   * of tables, not one for DC and one for AC.
+   */
+  c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
+
+  /* Statistics tables for optimization; again, one set is enough */
+  long * count_ptrs[NUM_HUFF_TBLS];
+} phuff_entropy_encoder;
+
+typedef phuff_entropy_encoder * phuff_entropy_ptr;
+
+/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
+ * buffer can hold.  Larger sizes may slightly improve compression, but
+ * 1000 is already well into the realm of overkill.
+ * The minimum safe size is 64 bits.
+ */
+
+#define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */
+
+/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
+ * We assume that int right shift is unsigned if INT32 right shift is,
+ * which should be safe.
+ */
+
+#ifdef RIGHT_SHIFT_IS_UNSIGNED
+#define ISHIFT_TEMPS	int ishift_temp;
+#define IRIGHT_SHIFT(x,shft)  \
+	((ishift_temp = (x)) < 0 ? \
+	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
+	 (ishift_temp >> (shft)))
+#else
+#define ISHIFT_TEMPS
+#define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
+#endif
+
+/* Forward declarations */
+METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
+					    JBLOCKROW *MCU_data));
+METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
+					    JBLOCKROW *MCU_data));
+METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
+					     JBLOCKROW *MCU_data));
+METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
+					     JBLOCKROW *MCU_data));
+METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
+METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
+
+
+/*
+ * Initialize for a Huffman-compressed scan using progressive JPEG.
+ */
+
+METHODDEF(void)
+start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
+{  
+  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+  boolean is_DC_band;
+  int ci, tbl;
+  jpeg_component_info * compptr;
+
+  entropy->cinfo = cinfo;
+  entropy->gather_statistics = gather_statistics;
+
+  is_DC_band = (cinfo->Ss == 0);
+
+  /* We assume jcmaster.c already validated the scan parameters. */
+
+  /* Select execution routines */
+  if (cinfo->Ah == 0) {
+    if (is_DC_band)
+      entropy->pub.encode_mcu = encode_mcu_DC_first;
+    else
+      entropy->pub.encode_mcu = encode_mcu_AC_first;
+  } else {
+    if (is_DC_band)
+      entropy->pub.encode_mcu = encode_mcu_DC_refine;
+    else {
+      entropy->pub.encode_mcu = encode_mcu_AC_refine;
+      /* AC refinement needs a correction bit buffer */
+      if (entropy->bit_buffer == NULL)
+	entropy->bit_buffer = (char *)
+	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				      MAX_CORR_BITS * SIZEOF(char));
+    }
+  }
+  if (gather_statistics)
+    entropy->pub.finish_pass = finish_pass_gather_phuff;
+  else
+    entropy->pub.finish_pass = finish_pass_phuff;
+
+  /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
+   * for AC coefficients.
+   */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    /* Initialize DC predictions to 0 */
+    entropy->last_dc_val[ci] = 0;
+    /* Get table index */
+    if (is_DC_band) {
+      if (cinfo->Ah != 0)	/* DC refinement needs no table */
+	continue;
+      tbl = compptr->dc_tbl_no;
+    } else {
+      entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
+    }
+    if (gather_statistics) {
+      /* Check for invalid table index */
+      /* (make_c_derived_tbl does this in the other path) */
+      if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
+        ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
+      /* Allocate and zero the statistics tables */
+      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
+      if (entropy->count_ptrs[tbl] == NULL)
+	entropy->count_ptrs[tbl] = (long *)
+	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				      257 * SIZEOF(long));
+      MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
+    } else {
+      /* Compute derived values for Huffman table */
+      /* We may do this more than once for a table, but it's not expensive */
+      jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
+			      & entropy->derived_tbls[tbl]);
+    }
+  }
+
+  /* Initialize AC stuff */
+  entropy->EOBRUN = 0;
+  entropy->BE = 0;
+
+  /* Initialize bit buffer to empty */
+  entropy->put_buffer = 0;
+  entropy->put_bits = 0;
+
+  /* Initialize restart stuff */
+  entropy->restarts_to_go = cinfo->restart_interval;
+  entropy->next_restart_num = 0;
+}
+
+
+/* Outputting bytes to the file.
+ * NB: these must be called only when actually outputting,
+ * that is, entropy->gather_statistics == FALSE.
+ */
+
+/* Emit a byte */
+#define emit_byte(entropy,val)  \
+	{ *(entropy)->next_output_byte++ = (JOCTET) (val);  \
+	  if (--(entropy)->free_in_buffer == 0)  \
+	    dump_buffer(entropy); }
+
+
+LOCAL(void)
+dump_buffer (phuff_entropy_ptr entropy)
+/* Empty the output buffer; we do not support suspension in this module. */
+{
+  struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
+
+  if (! (*dest->empty_output_buffer) (entropy->cinfo))
+    ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
+  /* After a successful buffer dump, must reset buffer pointers */
+  entropy->next_output_byte = dest->next_output_byte;
+  entropy->free_in_buffer = dest->free_in_buffer;
+}
+
+
+/* Outputting bits to the file */
+
+/* Only the right 24 bits of put_buffer are used; the valid bits are
+ * left-justified in this part.  At most 16 bits can be passed to emit_bits
+ * in one call, and we never retain more than 7 bits in put_buffer
+ * between calls, so 24 bits are sufficient.
+ */
+
+LOCAL(void)
+emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
+/* Emit some bits, unless we are in gather mode */
+{
+  /* This routine is heavily used, so it's worth coding tightly. */
+  register INT32 put_buffer = (INT32) code;
+  register int put_bits = entropy->put_bits;
+
+  /* if size is 0, caller used an invalid Huffman table entry */
+  if (size == 0)
+    ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
+
+  if (entropy->gather_statistics)
+    return;			/* do nothing if we're only getting stats */
+
+  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
+  
+  put_bits += size;		/* new number of bits in buffer */
+  
+  put_buffer <<= 24 - put_bits; /* align incoming bits */
+
+  put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
+
+  while (put_bits >= 8) {
+    int c = (int) ((put_buffer >> 16) & 0xFF);
+    
+    emit_byte(entropy, c);
+    if (c == 0xFF) {		/* need to stuff a zero byte? */
+      emit_byte(entropy, 0);
+    }
+    put_buffer <<= 8;
+    put_bits -= 8;
+  }
+
+  entropy->put_buffer = put_buffer; /* update variables */
+  entropy->put_bits = put_bits;
+}
+
+
+LOCAL(void)
+flush_bits (phuff_entropy_ptr entropy)
+{
+  emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
+  entropy->put_buffer = 0;     /* and reset bit-buffer to empty */
+  entropy->put_bits = 0;
+}
+
+
+/*
+ * Emit (or just count) a Huffman symbol.
+ */
+
+LOCAL(void)
+emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
+{
+  if (entropy->gather_statistics)
+    entropy->count_ptrs[tbl_no][symbol]++;
+  else {
+    c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
+    emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
+  }
+}
+
+
+/*
+ * Emit bits from a correction bit buffer.
+ */
+
+LOCAL(void)
+emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
+		    unsigned int nbits)
+{
+  if (entropy->gather_statistics)
+    return;			/* no real work */
+
+  while (nbits > 0) {
+    emit_bits(entropy, (unsigned int) (*bufstart), 1);
+    bufstart++;
+    nbits--;
+  }
+}
+
+
+/*
+ * Emit any pending EOBRUN symbol.
+ */
+
+LOCAL(void)
+emit_eobrun (phuff_entropy_ptr entropy)
+{
+  register int temp, nbits;
+
+  if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */
+    temp = entropy->EOBRUN;
+    nbits = 0;
+    while ((temp >>= 1))
+      nbits++;
+    /* safety check: shouldn't happen given limited correction-bit buffer */
+    if (nbits > 14)
+      ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
+
+    emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
+    if (nbits)
+      emit_bits(entropy, entropy->EOBRUN, nbits);
+
+    entropy->EOBRUN = 0;
+
+    /* Emit any buffered correction bits */
+    emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
+    entropy->BE = 0;
+  }
+}
+
+
+/*
+ * Emit a restart marker & resynchronize predictions.
+ */
+
+LOCAL(void)
+emit_restart (phuff_entropy_ptr entropy, int restart_num)
+{
+  int ci;
+
+  emit_eobrun(entropy);
+
+  if (! entropy->gather_statistics) {
+    flush_bits(entropy);
+    emit_byte(entropy, 0xFF);
+    emit_byte(entropy, JPEG_RST0 + restart_num);
+  }
+
+  if (entropy->cinfo->Ss == 0) {
+    /* Re-initialize DC predictions to 0 */
+    for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
+      entropy->last_dc_val[ci] = 0;
+  } else {
+    /* Re-initialize all AC-related fields to 0 */
+    entropy->EOBRUN = 0;
+    entropy->BE = 0;
+  }
+}
+
+
+/*
+ * MCU encoding for DC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+  register int temp, temp2;
+  register int nbits;
+  int blkn, ci;
+  int Al = cinfo->Al;
+  JBLOCKROW block;
+  jpeg_component_info * compptr;
+  ISHIFT_TEMPS
+
+  entropy->next_output_byte = cinfo->dest->next_output_byte;
+  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+
+  /* Emit restart marker if needed */
+  if (cinfo->restart_interval)
+    if (entropy->restarts_to_go == 0)
+      emit_restart(entropy, entropy->next_restart_num);
+
+  /* Encode the MCU data blocks */
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    block = MCU_data[blkn];
+    ci = cinfo->MCU_membership[blkn];
+    compptr = cinfo->cur_comp_info[ci];
+
+    /* Compute the DC value after the required point transform by Al.
+     * This is simply an arithmetic right shift.
+     */
+    temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
+
+    /* DC differences are figured on the point-transformed values. */
+    temp = temp2 - entropy->last_dc_val[ci];
+    entropy->last_dc_val[ci] = temp2;
+
+    /* Encode the DC coefficient difference per section G.1.2.1 */
+    temp2 = temp;
+    if (temp < 0) {
+      temp = -temp;		/* temp is abs value of input */
+      /* For a negative input, want temp2 = bitwise complement of abs(input) */
+      /* This code assumes we are on a two's complement machine */
+      temp2--;
+    }
+    
+    /* Find the number of bits needed for the magnitude of the coefficient */
+    nbits = 0;
+    while (temp) {
+      nbits++;
+      temp >>= 1;
+    }
+    /* Check for out-of-range coefficient values.
+     * Since we're encoding a difference, the range limit is twice as much.
+     */
+    if (nbits > MAX_COEF_BITS+1)
+      ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+    
+    /* Count/emit the Huffman-coded symbol for the number of bits */
+    emit_symbol(entropy, compptr->dc_tbl_no, nbits);
+    
+    /* Emit that number of bits of the value, if positive, */
+    /* or the complement of its magnitude, if negative. */
+    if (nbits)			/* emit_bits rejects calls with size 0 */
+      emit_bits(entropy, (unsigned int) temp2, nbits);
+  }
+
+  cinfo->dest->next_output_byte = entropy->next_output_byte;
+  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+
+  /* Update restart-interval state too */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      entropy->restarts_to_go = cinfo->restart_interval;
+      entropy->next_restart_num++;
+      entropy->next_restart_num &= 7;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * MCU encoding for AC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+  register int temp, temp2;
+  register int nbits;
+  register int r, k;
+  int Se = cinfo->Se;
+  int Al = cinfo->Al;
+  JBLOCKROW block;
+
+  entropy->next_output_byte = cinfo->dest->next_output_byte;
+  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+
+  /* Emit restart marker if needed */
+  if (cinfo->restart_interval)
+    if (entropy->restarts_to_go == 0)
+      emit_restart(entropy, entropy->next_restart_num);
+
+  /* Encode the MCU data block */
+  block = MCU_data[0];
+
+  /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
+  
+  r = 0;			/* r = run length of zeros */
+   
+  for (k = cinfo->Ss; k <= Se; k++) {
+    if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
+      r++;
+      continue;
+    }
+    /* We must apply the point transform by Al.  For AC coefficients this
+     * is an integer division with rounding towards 0.  To do this portably
+     * in C, we shift after obtaining the absolute value; so the code is
+     * interwoven with finding the abs value (temp) and output bits (temp2).
+     */
+    if (temp < 0) {
+      temp = -temp;		/* temp is abs value of input */
+      temp >>= Al;		/* apply the point transform */
+      /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
+      temp2 = ~temp;
+    } else {
+      temp >>= Al;		/* apply the point transform */
+      temp2 = temp;
+    }
+    /* Watch out for case that nonzero coef is zero after point transform */
+    if (temp == 0) {
+      r++;
+      continue;
+    }
+
+    /* Emit any pending EOBRUN */
+    if (entropy->EOBRUN > 0)
+      emit_eobrun(entropy);
+    /* if run length > 15, must emit special run-length-16 codes (0xF0) */
+    while (r > 15) {
+      emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
+      r -= 16;
+    }
+
+    /* Find the number of bits needed for the magnitude of the coefficient */
+    nbits = 1;			/* there must be at least one 1 bit */
+    while ((temp >>= 1))
+      nbits++;
+    /* Check for out-of-range coefficient values */
+    if (nbits > MAX_COEF_BITS)
+      ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+
+    /* Count/emit Huffman symbol for run length / number of bits */
+    emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
+
+    /* Emit that number of bits of the value, if positive, */
+    /* or the complement of its magnitude, if negative. */
+    emit_bits(entropy, (unsigned int) temp2, nbits);
+
+    r = 0;			/* reset zero run length */
+  }
+
+  if (r > 0) {			/* If there are trailing zeroes, */
+    entropy->EOBRUN++;		/* count an EOB */
+    if (entropy->EOBRUN == 0x7FFF)
+      emit_eobrun(entropy);	/* force it out to avoid overflow */
+  }
+
+  cinfo->dest->next_output_byte = entropy->next_output_byte;
+  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+
+  /* Update restart-interval state too */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      entropy->restarts_to_go = cinfo->restart_interval;
+      entropy->next_restart_num++;
+      entropy->next_restart_num &= 7;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * MCU encoding for DC successive approximation refinement scan.
+ * Note: we assume such scans can be multi-component, although the spec
+ * is not very clear on the point.
+ */
+
+METHODDEF(boolean)
+encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+  register int temp;
+  int blkn;
+  int Al = cinfo->Al;
+  JBLOCKROW block;
+
+  entropy->next_output_byte = cinfo->dest->next_output_byte;
+  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+
+  /* Emit restart marker if needed */
+  if (cinfo->restart_interval)
+    if (entropy->restarts_to_go == 0)
+      emit_restart(entropy, entropy->next_restart_num);
+
+  /* Encode the MCU data blocks */
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    block = MCU_data[blkn];
+
+    /* We simply emit the Al'th bit of the DC coefficient value. */
+    temp = (*block)[0];
+    emit_bits(entropy, (unsigned int) (temp >> Al), 1);
+  }
+
+  cinfo->dest->next_output_byte = entropy->next_output_byte;
+  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+
+  /* Update restart-interval state too */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      entropy->restarts_to_go = cinfo->restart_interval;
+      entropy->next_restart_num++;
+      entropy->next_restart_num &= 7;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * MCU encoding for AC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+  register int temp;
+  register int r, k;
+  int EOB;
+  char *BR_buffer;
+  unsigned int BR;
+  int Se = cinfo->Se;
+  int Al = cinfo->Al;
+  JBLOCKROW block;
+  int absvalues[DCTSIZE2];
+
+  entropy->next_output_byte = cinfo->dest->next_output_byte;
+  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+
+  /* Emit restart marker if needed */
+  if (cinfo->restart_interval)
+    if (entropy->restarts_to_go == 0)
+      emit_restart(entropy, entropy->next_restart_num);
+
+  /* Encode the MCU data block */
+  block = MCU_data[0];
+
+  /* It is convenient to make a pre-pass to determine the transformed
+   * coefficients' absolute values and the EOB position.
+   */
+  EOB = 0;
+  for (k = cinfo->Ss; k <= Se; k++) {
+    temp = (*block)[jpeg_natural_order[k]];
+    /* We must apply the point transform by Al.  For AC coefficients this
+     * is an integer division with rounding towards 0.  To do this portably
+     * in C, we shift after obtaining the absolute value.
+     */
+    if (temp < 0)
+      temp = -temp;		/* temp is abs value of input */
+    temp >>= Al;		/* apply the point transform */
+    absvalues[k] = temp;	/* save abs value for main pass */
+    if (temp == 1)
+      EOB = k;			/* EOB = index of last newly-nonzero coef */
+  }
+
+  /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
+  
+  r = 0;			/* r = run length of zeros */
+  BR = 0;			/* BR = count of buffered bits added now */
+  BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
+
+  for (k = cinfo->Ss; k <= Se; k++) {
+    if ((temp = absvalues[k]) == 0) {
+      r++;
+      continue;
+    }
+
+    /* Emit any required ZRLs, but not if they can be folded into EOB */
+    while (r > 15 && k <= EOB) {
+      /* emit any pending EOBRUN and the BE correction bits */
+      emit_eobrun(entropy);
+      /* Emit ZRL */
+      emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
+      r -= 16;
+      /* Emit buffered correction bits that must be associated with ZRL */
+      emit_buffered_bits(entropy, BR_buffer, BR);
+      BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
+      BR = 0;
+    }
+
+    /* If the coef was previously nonzero, it only needs a correction bit.
+     * NOTE: a straight translation of the spec's figure G.7 would suggest
+     * that we also need to test r > 15.  But if r > 15, we can only get here
+     * if k > EOB, which implies that this coefficient is not 1.
+     */
+    if (temp > 1) {
+      /* The correction bit is the next bit of the absolute value. */
+      BR_buffer[BR++] = (char) (temp & 1);
+      continue;
+    }
+
+    /* Emit any pending EOBRUN and the BE correction bits */
+    emit_eobrun(entropy);
+
+    /* Count/emit Huffman symbol for run length / number of bits */
+    emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
+
+    /* Emit output bit for newly-nonzero coef */
+    temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
+    emit_bits(entropy, (unsigned int) temp, 1);
+
+    /* Emit buffered correction bits that must be associated with this code */
+    emit_buffered_bits(entropy, BR_buffer, BR);
+    BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
+    BR = 0;
+    r = 0;			/* reset zero run length */
+  }
+
+  if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */
+    entropy->EOBRUN++;		/* count an EOB */
+    entropy->BE += BR;		/* concat my correction bits to older ones */
+    /* We force out the EOB if we risk either:
+     * 1. overflow of the EOB counter;
+     * 2. overflow of the correction bit buffer during the next MCU.
+     */
+    if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
+      emit_eobrun(entropy);
+  }
+
+  cinfo->dest->next_output_byte = entropy->next_output_byte;
+  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+
+  /* Update restart-interval state too */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0) {
+      entropy->restarts_to_go = cinfo->restart_interval;
+      entropy->next_restart_num++;
+      entropy->next_restart_num &= 7;
+    }
+    entropy->restarts_to_go--;
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * Finish up at the end of a Huffman-compressed progressive scan.
+ */
+
+METHODDEF(void)
+finish_pass_phuff (j_compress_ptr cinfo)
+{   
+  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+
+  entropy->next_output_byte = cinfo->dest->next_output_byte;
+  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+
+  /* Flush out any buffered data */
+  emit_eobrun(entropy);
+  flush_bits(entropy);
+
+  cinfo->dest->next_output_byte = entropy->next_output_byte;
+  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+}
+
+
+/*
+ * Finish up a statistics-gathering pass and create the new Huffman tables.
+ */
+
+METHODDEF(void)
+finish_pass_gather_phuff (j_compress_ptr cinfo)
+{
+  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+  boolean is_DC_band;
+  int ci, tbl;
+  jpeg_component_info * compptr;
+  JHUFF_TBL **htblptr;
+  boolean did[NUM_HUFF_TBLS];
+
+  /* Flush out buffered data (all we care about is counting the EOB symbol) */
+  emit_eobrun(entropy);
+
+  is_DC_band = (cinfo->Ss == 0);
+
+  /* It's important not to apply jpeg_gen_optimal_table more than once
+   * per table, because it clobbers the input frequency counts!
+   */
+  MEMZERO(did, SIZEOF(did));
+
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    if (is_DC_band) {
+      if (cinfo->Ah != 0)	/* DC refinement needs no table */
+	continue;
+      tbl = compptr->dc_tbl_no;
+    } else {
+      tbl = compptr->ac_tbl_no;
+    }
+    if (! did[tbl]) {
+      if (is_DC_band)
+        htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
+      else
+        htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
+      if (*htblptr == NULL)
+        *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
+      did[tbl] = TRUE;
+    }
+  }
+}
+
+
+/*
+ * Module initialization routine for progressive Huffman entropy encoding.
+ */
+
+GLOBAL(void)
+jinit_phuff_encoder (j_compress_ptr cinfo)
+{
+  phuff_entropy_ptr entropy;
+  int i;
+
+  entropy = (phuff_entropy_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(phuff_entropy_encoder));
+  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
+  entropy->pub.start_pass = start_pass_phuff;
+
+  /* Mark tables unallocated */
+  for (i = 0; i < NUM_HUFF_TBLS; i++) {
+    entropy->derived_tbls[i] = NULL;
+    entropy->count_ptrs[i] = NULL;
+  }
+  entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */
+}
+
+#endif /* C_PROGRESSIVE_SUPPORTED */

=== added file 'src/libjpeg-turbo/jcprepct.c'
--- src/libjpeg-turbo/jcprepct.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jcprepct.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,354 @@ 
+/*
+ * jcprepct.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the compression preprocessing controller.
+ * This controller manages the color conversion, downsampling,
+ * and edge expansion steps.
+ *
+ * Most of the complexity here is associated with buffering input rows
+ * as required by the downsampler.  See the comments at the head of
+ * jcsample.c for the downsampler's needs.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* At present, jcsample.c can request context rows only for smoothing.
+ * In the future, we might also need context rows for CCIR601 sampling
+ * or other more-complex downsampling procedures.  The code to support
+ * context rows should be compiled only if needed.
+ */
+#ifdef INPUT_SMOOTHING_SUPPORTED
+#define CONTEXT_ROWS_SUPPORTED
+#endif
+
+
+/*
+ * For the simple (no-context-row) case, we just need to buffer one
+ * row group's worth of pixels for the downsampling step.  At the bottom of
+ * the image, we pad to a full row group by replicating the last pixel row.
+ * The downsampler's last output row is then replicated if needed to pad
+ * out to a full iMCU row.
+ *
+ * When providing context rows, we must buffer three row groups' worth of
+ * pixels.  Three row groups are physically allocated, but the row pointer
+ * arrays are made five row groups high, with the extra pointers above and
+ * below "wrapping around" to point to the last and first real row groups.
+ * This allows the downsampler to access the proper context rows.
+ * At the top and bottom of the image, we create dummy context rows by
+ * copying the first or last real pixel row.  This copying could be avoided
+ * by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the
+ * trouble on the compression side.
+ */
+
+
+/* Private buffer controller object */
+
+typedef struct {
+  struct jpeg_c_prep_controller pub; /* public fields */
+
+  /* Downsampling input buffer.  This buffer holds color-converted data
+   * until we have enough to do a downsample step.
+   */
+  JSAMPARRAY color_buf[MAX_COMPONENTS];
+
+  JDIMENSION rows_to_go;	/* counts rows remaining in source image */
+  int next_buf_row;		/* index of next row to store in color_buf */
+
+#ifdef CONTEXT_ROWS_SUPPORTED	/* only needed for context case */
+  int this_row_group;		/* starting row index of group to process */
+  int next_buf_stop;		/* downsample when we reach this index */
+#endif
+} my_prep_controller;
+
+typedef my_prep_controller * my_prep_ptr;
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+  my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+
+  if (pass_mode != JBUF_PASS_THRU)
+    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+
+  /* Initialize total-height counter for detecting bottom of image */
+  prep->rows_to_go = cinfo->image_height;
+  /* Mark the conversion buffer empty */
+  prep->next_buf_row = 0;
+#ifdef CONTEXT_ROWS_SUPPORTED
+  /* Preset additional state variables for context mode.
+   * These aren't used in non-context mode, so we needn't test which mode.
+   */
+  prep->this_row_group = 0;
+  /* Set next_buf_stop to stop after two row groups have been read in. */
+  prep->next_buf_stop = 2 * cinfo->max_v_samp_factor;
+#endif
+}
+
+
+/*
+ * Expand an image vertically from height input_rows to height output_rows,
+ * by duplicating the bottom row.
+ */
+
+LOCAL(void)
+expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
+		    int input_rows, int output_rows)
+{
+  register int row;
+
+  for (row = input_rows; row < output_rows; row++) {
+    jcopy_sample_rows(image_data, input_rows-1, image_data, row,
+		      1, num_cols);
+  }
+}
+
+
+/*
+ * Process some data in the simple no-context case.
+ *
+ * Preprocessor output data is counted in "row groups".  A row group
+ * is defined to be v_samp_factor sample rows of each component.
+ * Downsampling will produce this much data from each max_v_samp_factor
+ * input rows.
+ */
+
+METHODDEF(void)
+pre_process_data (j_compress_ptr cinfo,
+		  JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+		  JDIMENSION in_rows_avail,
+		  JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
+		  JDIMENSION out_row_groups_avail)
+{
+  my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+  int numrows, ci;
+  JDIMENSION inrows;
+  jpeg_component_info * compptr;
+
+  while (*in_row_ctr < in_rows_avail &&
+	 *out_row_group_ctr < out_row_groups_avail) {
+    /* Do color conversion to fill the conversion buffer. */
+    inrows = in_rows_avail - *in_row_ctr;
+    numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
+    numrows = (int) MIN((JDIMENSION) numrows, inrows);
+    (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
+				       prep->color_buf,
+				       (JDIMENSION) prep->next_buf_row,
+				       numrows);
+    *in_row_ctr += numrows;
+    prep->next_buf_row += numrows;
+    prep->rows_to_go -= numrows;
+    /* If at bottom of image, pad to fill the conversion buffer. */
+    if (prep->rows_to_go == 0 &&
+	prep->next_buf_row < cinfo->max_v_samp_factor) {
+      for (ci = 0; ci < cinfo->num_components; ci++) {
+	expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
+			   prep->next_buf_row, cinfo->max_v_samp_factor);
+      }
+      prep->next_buf_row = cinfo->max_v_samp_factor;
+    }
+    /* If we've filled the conversion buffer, empty it. */
+    if (prep->next_buf_row == cinfo->max_v_samp_factor) {
+      (*cinfo->downsample->downsample) (cinfo,
+					prep->color_buf, (JDIMENSION) 0,
+					output_buf, *out_row_group_ctr);
+      prep->next_buf_row = 0;
+      (*out_row_group_ctr)++;
+    }
+    /* If at bottom of image, pad the output to a full iMCU height.
+     * Note we assume the caller is providing a one-iMCU-height output buffer!
+     */
+    if (prep->rows_to_go == 0 &&
+	*out_row_group_ctr < out_row_groups_avail) {
+      for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+	   ci++, compptr++) {
+	expand_bottom_edge(output_buf[ci],
+			   compptr->width_in_blocks * DCTSIZE,
+			   (int) (*out_row_group_ctr * compptr->v_samp_factor),
+			   (int) (out_row_groups_avail * compptr->v_samp_factor));
+      }
+      *out_row_group_ctr = out_row_groups_avail;
+      break;			/* can exit outer loop without test */
+    }
+  }
+}
+
+
+#ifdef CONTEXT_ROWS_SUPPORTED
+
+/*
+ * Process some data in the context case.
+ */
+
+METHODDEF(void)
+pre_process_context (j_compress_ptr cinfo,
+		     JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+		     JDIMENSION in_rows_avail,
+		     JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
+		     JDIMENSION out_row_groups_avail)
+{
+  my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+  int numrows, ci;
+  int buf_height = cinfo->max_v_samp_factor * 3;
+  JDIMENSION inrows;
+
+  while (*out_row_group_ctr < out_row_groups_avail) {
+    if (*in_row_ctr < in_rows_avail) {
+      /* Do color conversion to fill the conversion buffer. */
+      inrows = in_rows_avail - *in_row_ctr;
+      numrows = prep->next_buf_stop - prep->next_buf_row;
+      numrows = (int) MIN((JDIMENSION) numrows, inrows);
+      (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
+					 prep->color_buf,
+					 (JDIMENSION) prep->next_buf_row,
+					 numrows);
+      /* Pad at top of image, if first time through */
+      if (prep->rows_to_go == cinfo->image_height) {
+	for (ci = 0; ci < cinfo->num_components; ci++) {
+	  int row;
+	  for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
+	    jcopy_sample_rows(prep->color_buf[ci], 0,
+			      prep->color_buf[ci], -row,
+			      1, cinfo->image_width);
+	  }
+	}
+      }
+      *in_row_ctr += numrows;
+      prep->next_buf_row += numrows;
+      prep->rows_to_go -= numrows;
+    } else {
+      /* Return for more data, unless we are at the bottom of the image. */
+      if (prep->rows_to_go != 0)
+	break;
+      /* When at bottom of image, pad to fill the conversion buffer. */
+      if (prep->next_buf_row < prep->next_buf_stop) {
+	for (ci = 0; ci < cinfo->num_components; ci++) {
+	  expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
+			     prep->next_buf_row, prep->next_buf_stop);
+	}
+	prep->next_buf_row = prep->next_buf_stop;
+      }
+    }
+    /* If we've gotten enough data, downsample a row group. */
+    if (prep->next_buf_row == prep->next_buf_stop) {
+      (*cinfo->downsample->downsample) (cinfo,
+					prep->color_buf,
+					(JDIMENSION) prep->this_row_group,
+					output_buf, *out_row_group_ctr);
+      (*out_row_group_ctr)++;
+      /* Advance pointers with wraparound as necessary. */
+      prep->this_row_group += cinfo->max_v_samp_factor;
+      if (prep->this_row_group >= buf_height)
+	prep->this_row_group = 0;
+      if (prep->next_buf_row >= buf_height)
+	prep->next_buf_row = 0;
+      prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
+    }
+  }
+}
+
+
+/*
+ * Create the wrapped-around downsampling input buffer needed for context mode.
+ */
+
+LOCAL(void)
+create_context_buffer (j_compress_ptr cinfo)
+{
+  my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+  int rgroup_height = cinfo->max_v_samp_factor;
+  int ci, i;
+  jpeg_component_info * compptr;
+  JSAMPARRAY true_buffer, fake_buffer;
+
+  /* Grab enough space for fake row pointers for all the components;
+   * we need five row groups' worth of pointers for each component.
+   */
+  fake_buffer = (JSAMPARRAY)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				(cinfo->num_components * 5 * rgroup_height) *
+				SIZEOF(JSAMPROW));
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    /* Allocate the actual buffer space (3 row groups) for this component.
+     * We make the buffer wide enough to allow the downsampler to edge-expand
+     * horizontally within the buffer, if it so chooses.
+     */
+    true_buffer = (*cinfo->mem->alloc_sarray)
+      ((j_common_ptr) cinfo, JPOOL_IMAGE,
+       (JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
+		      cinfo->max_h_samp_factor) / compptr->h_samp_factor),
+       (JDIMENSION) (3 * rgroup_height));
+    /* Copy true buffer row pointers into the middle of the fake row array */
+    MEMCOPY(fake_buffer + rgroup_height, true_buffer,
+	    3 * rgroup_height * SIZEOF(JSAMPROW));
+    /* Fill in the above and below wraparound pointers */
+    for (i = 0; i < rgroup_height; i++) {
+      fake_buffer[i] = true_buffer[2 * rgroup_height + i];
+      fake_buffer[4 * rgroup_height + i] = true_buffer[i];
+    }
+    prep->color_buf[ci] = fake_buffer + rgroup_height;
+    fake_buffer += 5 * rgroup_height; /* point to space for next component */
+  }
+}
+
+#endif /* CONTEXT_ROWS_SUPPORTED */
+
+
+/*
+ * Initialize preprocessing controller.
+ */
+
+GLOBAL(void)
+jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
+{
+  my_prep_ptr prep;
+  int ci;
+  jpeg_component_info * compptr;
+
+  if (need_full_buffer)		/* safety check */
+    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+
+  prep = (my_prep_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_prep_controller));
+  cinfo->prep = (struct jpeg_c_prep_controller *) prep;
+  prep->pub.start_pass = start_pass_prep;
+
+  /* Allocate the color conversion buffer.
+   * We make the buffer wide enough to allow the downsampler to edge-expand
+   * horizontally within the buffer, if it so chooses.
+   */
+  if (cinfo->downsample->need_context_rows) {
+    /* Set up to provide context rows */
+#ifdef CONTEXT_ROWS_SUPPORTED
+    prep->pub.pre_process_data = pre_process_context;
+    create_context_buffer(cinfo);
+#else
+    ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+  } else {
+    /* No context, just make it tall enough for one row group */
+    prep->pub.pre_process_data = pre_process_data;
+    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+	 ci++, compptr++) {
+      prep->color_buf[ci] = (*cinfo->mem->alloc_sarray)
+	((j_common_ptr) cinfo, JPOOL_IMAGE,
+	 (JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
+			cinfo->max_h_samp_factor) / compptr->h_samp_factor),
+	 (JDIMENSION) cinfo->max_v_samp_factor);
+    }
+  }
+}

=== added file 'src/libjpeg-turbo/jcsample.c'
--- src/libjpeg-turbo/jcsample.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jcsample.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,527 @@ 
+/*
+ * jcsample.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains downsampling routines.
+ *
+ * Downsampling input data is counted in "row groups".  A row group
+ * is defined to be max_v_samp_factor pixel rows of each component,
+ * from which the downsampler produces v_samp_factor sample rows.
+ * A single row group is processed in each call to the downsampler module.
+ *
+ * The downsampler is responsible for edge-expansion of its output data
+ * to fill an integral number of DCT blocks horizontally.  The source buffer
+ * may be modified if it is helpful for this purpose (the source buffer is
+ * allocated wide enough to correspond to the desired output width).
+ * The caller (the prep controller) is responsible for vertical padding.
+ *
+ * The downsampler may request "context rows" by setting need_context_rows
+ * during startup.  In this case, the input arrays will contain at least
+ * one row group's worth of pixels above and below the passed-in data;
+ * the caller will create dummy rows at image top and bottom by replicating
+ * the first or last real pixel row.
+ *
+ * An excellent reference for image resampling is
+ *   Digital Image Warping, George Wolberg, 1990.
+ *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
+ *
+ * The downsampling algorithm used here is a simple average of the source
+ * pixels covered by the output pixel.  The hi-falutin sampling literature
+ * refers to this as a "box filter".  In general the characteristics of a box
+ * filter are not very good, but for the specific cases we normally use (1:1
+ * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
+ * nearly so bad.  If you intend to use other sampling ratios, you'd be well
+ * advised to improve this code.
+ *
+ * A simple input-smoothing capability is provided.  This is mainly intended
+ * for cleaning up color-dithered GIF input files (if you find it inadequate,
+ * we suggest using an external filtering program such as pnmconvol).  When
+ * enabled, each input pixel P is replaced by a weighted sum of itself and its
+ * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
+ * where SF = (smoothing_factor / 1024).
+ * Currently, smoothing is only supported for 2h2v sampling factors.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jsimd.h"
+
+
+/* Pointer to routine to downsample a single component */
+typedef JMETHOD(void, downsample1_ptr,
+		(j_compress_ptr cinfo, jpeg_component_info * compptr,
+		 JSAMPARRAY input_data, JSAMPARRAY output_data));
+
+/* Private subobject */
+
+typedef struct {
+  struct jpeg_downsampler pub;	/* public fields */
+
+  /* Downsampling method pointers, one per component */
+  downsample1_ptr methods[MAX_COMPONENTS];
+} my_downsampler;
+
+typedef my_downsampler * my_downsample_ptr;
+
+
+/*
+ * Initialize for a downsampling pass.
+ */
+
+METHODDEF(void)
+start_pass_downsample (j_compress_ptr cinfo)
+{
+  /* no work for now */
+}
+
+
+/*
+ * Expand a component horizontally from width input_cols to width output_cols,
+ * by duplicating the rightmost samples.
+ */
+
+LOCAL(void)
+expand_right_edge (JSAMPARRAY image_data, int num_rows,
+		   JDIMENSION input_cols, JDIMENSION output_cols)
+{
+  register JSAMPROW ptr;
+  register JSAMPLE pixval;
+  register int count;
+  int row;
+  int numcols = (int) (output_cols - input_cols);
+
+  if (numcols > 0) {
+    for (row = 0; row < num_rows; row++) {
+      ptr = image_data[row] + input_cols;
+      pixval = ptr[-1];		/* don't need GETJSAMPLE() here */
+      for (count = numcols; count > 0; count--)
+	*ptr++ = pixval;
+    }
+  }
+}
+
+
+/*
+ * Do downsampling for a whole row group (all components).
+ *
+ * In this version we simply downsample each component independently.
+ */
+
+METHODDEF(void)
+sep_downsample (j_compress_ptr cinfo,
+		JSAMPIMAGE input_buf, JDIMENSION in_row_index,
+		JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
+{
+  my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
+  int ci;
+  jpeg_component_info * compptr;
+  JSAMPARRAY in_ptr, out_ptr;
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    in_ptr = input_buf[ci] + in_row_index;
+    out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
+    (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
+  }
+}
+
+
+/*
+ * Downsample pixel values of a single component.
+ * One row group is processed per call.
+ * This version handles arbitrary integral sampling ratios, without smoothing.
+ * Note that this version is not actually used for customary sampling ratios.
+ */
+
+METHODDEF(void)
+int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+		JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+  int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
+  JDIMENSION outcol, outcol_h;	/* outcol_h == outcol*h_expand */
+  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
+  JSAMPROW inptr, outptr;
+  INT32 outvalue;
+
+  h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
+  v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
+  numpix = h_expand * v_expand;
+  numpix2 = numpix/2;
+
+  /* Expand input data enough to let all the output samples be generated
+   * by the standard loop.  Special-casing padded output would be more
+   * efficient.
+   */
+  expand_right_edge(input_data, cinfo->max_v_samp_factor,
+		    cinfo->image_width, output_cols * h_expand);
+
+  inrow = 0;
+  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
+    outptr = output_data[outrow];
+    for (outcol = 0, outcol_h = 0; outcol < output_cols;
+	 outcol++, outcol_h += h_expand) {
+      outvalue = 0;
+      for (v = 0; v < v_expand; v++) {
+	inptr = input_data[inrow+v] + outcol_h;
+	for (h = 0; h < h_expand; h++) {
+	  outvalue += (INT32) GETJSAMPLE(*inptr++);
+	}
+      }
+      *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
+    }
+    inrow += v_expand;
+  }
+}
+
+
+/*
+ * Downsample pixel values of a single component.
+ * This version handles the special case of a full-size component,
+ * without smoothing.
+ */
+
+METHODDEF(void)
+fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+		     JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+  /* Copy the data */
+  jcopy_sample_rows(input_data, 0, output_data, 0,
+		    cinfo->max_v_samp_factor, cinfo->image_width);
+  /* Edge-expand */
+  expand_right_edge(output_data, cinfo->max_v_samp_factor,
+		    cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
+}
+
+
+/*
+ * Downsample pixel values of a single component.
+ * This version handles the common case of 2:1 horizontal and 1:1 vertical,
+ * without smoothing.
+ *
+ * A note about the "bias" calculations: when rounding fractional values to
+ * integer, we do not want to always round 0.5 up to the next integer.
+ * If we did that, we'd introduce a noticeable bias towards larger values.
+ * Instead, this code is arranged so that 0.5 will be rounded up or down at
+ * alternate pixel locations (a simple ordered dither pattern).
+ */
+
+METHODDEF(void)
+h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+		 JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+  int outrow;
+  JDIMENSION outcol;
+  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
+  register JSAMPROW inptr, outptr;
+  register int bias;
+
+  /* Expand input data enough to let all the output samples be generated
+   * by the standard loop.  Special-casing padded output would be more
+   * efficient.
+   */
+  expand_right_edge(input_data, cinfo->max_v_samp_factor,
+		    cinfo->image_width, output_cols * 2);
+
+  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
+    outptr = output_data[outrow];
+    inptr = input_data[outrow];
+    bias = 0;			/* bias = 0,1,0,1,... for successive samples */
+    for (outcol = 0; outcol < output_cols; outcol++) {
+      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
+			      + bias) >> 1);
+      bias ^= 1;		/* 0=>1, 1=>0 */
+      inptr += 2;
+    }
+  }
+}
+
+
+/*
+ * Downsample pixel values of a single component.
+ * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
+ * without smoothing.
+ */
+
+METHODDEF(void)
+h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+		 JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+  int inrow, outrow;
+  JDIMENSION outcol;
+  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
+  register JSAMPROW inptr0, inptr1, outptr;
+  register int bias;
+
+  /* Expand input data enough to let all the output samples be generated
+   * by the standard loop.  Special-casing padded output would be more
+   * efficient.
+   */
+  expand_right_edge(input_data, cinfo->max_v_samp_factor,
+		    cinfo->image_width, output_cols * 2);
+
+  inrow = 0;
+  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
+    outptr = output_data[outrow];
+    inptr0 = input_data[inrow];
+    inptr1 = input_data[inrow+1];
+    bias = 1;			/* bias = 1,2,1,2,... for successive samples */
+    for (outcol = 0; outcol < output_cols; outcol++) {
+      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+			      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
+			      + bias) >> 2);
+      bias ^= 3;		/* 1=>2, 2=>1 */
+      inptr0 += 2; inptr1 += 2;
+    }
+    inrow += 2;
+  }
+}
+
+
+#ifdef INPUT_SMOOTHING_SUPPORTED
+
+/*
+ * Downsample pixel values of a single component.
+ * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
+ * with smoothing.  One row of context is required.
+ */
+
+METHODDEF(void)
+h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+			JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+  int inrow, outrow;
+  JDIMENSION colctr;
+  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
+  register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
+  INT32 membersum, neighsum, memberscale, neighscale;
+
+  /* Expand input data enough to let all the output samples be generated
+   * by the standard loop.  Special-casing padded output would be more
+   * efficient.
+   */
+  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
+		    cinfo->image_width, output_cols * 2);
+
+  /* We don't bother to form the individual "smoothed" input pixel values;
+   * we can directly compute the output which is the average of the four
+   * smoothed values.  Each of the four member pixels contributes a fraction
+   * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
+   * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
+   * output.  The four corner-adjacent neighbor pixels contribute a fraction
+   * SF to just one smoothed pixel, or SF/4 to the final output; while the
+   * eight edge-adjacent neighbors contribute SF to each of two smoothed
+   * pixels, or SF/2 overall.  In order to use integer arithmetic, these
+   * factors are scaled by 2^16 = 65536.
+   * Also recall that SF = smoothing_factor / 1024.
+   */
+
+  memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
+  neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
+
+  inrow = 0;
+  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
+    outptr = output_data[outrow];
+    inptr0 = input_data[inrow];
+    inptr1 = input_data[inrow+1];
+    above_ptr = input_data[inrow-1];
+    below_ptr = input_data[inrow+2];
+
+    /* Special case for first column: pretend column -1 is same as column 0 */
+    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
+    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
+	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
+	       GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
+	       GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
+    neighsum += neighsum;
+    neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
+		GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
+    membersum = membersum * memberscale + neighsum * neighscale;
+    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+    inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
+
+    for (colctr = output_cols - 2; colctr > 0; colctr--) {
+      /* sum of pixels directly mapped to this output element */
+      membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+		  GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
+      /* sum of edge-neighbor pixels */
+      neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
+		 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
+		 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
+		 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
+      /* The edge-neighbors count twice as much as corner-neighbors */
+      neighsum += neighsum;
+      /* Add in the corner-neighbors */
+      neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
+		  GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
+      /* form final output scaled up by 2^16 */
+      membersum = membersum * memberscale + neighsum * neighscale;
+      /* round, descale and output it */
+      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+      inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
+    }
+
+    /* Special case for last column */
+    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
+    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
+	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
+	       GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
+	       GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
+    neighsum += neighsum;
+    neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
+		GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
+    membersum = membersum * memberscale + neighsum * neighscale;
+    *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
+
+    inrow += 2;
+  }
+}
+
+
+/*
+ * Downsample pixel values of a single component.
+ * This version handles the special case of a full-size component,
+ * with smoothing.  One row of context is required.
+ */
+
+METHODDEF(void)
+fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
+			    JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+  int outrow;
+  JDIMENSION colctr;
+  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
+  register JSAMPROW inptr, above_ptr, below_ptr, outptr;
+  INT32 membersum, neighsum, memberscale, neighscale;
+  int colsum, lastcolsum, nextcolsum;
+
+  /* Expand input data enough to let all the output samples be generated
+   * by the standard loop.  Special-casing padded output would be more
+   * efficient.
+   */
+  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
+		    cinfo->image_width, output_cols);
+
+  /* Each of the eight neighbor pixels contributes a fraction SF to the
+   * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
+   * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
+   * Also recall that SF = smoothing_factor / 1024.
+   */
+
+  memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
+  neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
+
+  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
+    outptr = output_data[outrow];
+    inptr = input_data[outrow];
+    above_ptr = input_data[outrow-1];
+    below_ptr = input_data[outrow+1];
+
+    /* Special case for first column */
+    colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
+	     GETJSAMPLE(*inptr);
+    membersum = GETJSAMPLE(*inptr++);
+    nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
+		 GETJSAMPLE(*inptr);
+    neighsum = colsum + (colsum - membersum) + nextcolsum;
+    membersum = membersum * memberscale + neighsum * neighscale;
+    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+    lastcolsum = colsum; colsum = nextcolsum;
+
+    for (colctr = output_cols - 2; colctr > 0; colctr--) {
+      membersum = GETJSAMPLE(*inptr++);
+      above_ptr++; below_ptr++;
+      nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
+		   GETJSAMPLE(*inptr);
+      neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
+      membersum = membersum * memberscale + neighsum * neighscale;
+      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+      lastcolsum = colsum; colsum = nextcolsum;
+    }
+
+    /* Special case for last column */
+    membersum = GETJSAMPLE(*inptr);
+    neighsum = lastcolsum + (colsum - membersum) + colsum;
+    membersum = membersum * memberscale + neighsum * neighscale;
+    *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
+
+  }
+}
+
+#endif /* INPUT_SMOOTHING_SUPPORTED */
+
+
+/*
+ * Module initialization routine for downsampling.
+ * Note that we must select a routine for each component.
+ */
+
+GLOBAL(void)
+jinit_downsampler (j_compress_ptr cinfo)
+{
+  my_downsample_ptr downsample;
+  int ci;
+  jpeg_component_info * compptr;
+  boolean smoothok = TRUE;
+
+  downsample = (my_downsample_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_downsampler));
+  cinfo->downsample = (struct jpeg_downsampler *) downsample;
+  downsample->pub.start_pass = start_pass_downsample;
+  downsample->pub.downsample = sep_downsample;
+  downsample->pub.need_context_rows = FALSE;
+
+  if (cinfo->CCIR601_sampling)
+    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
+
+  /* Verify we can handle the sampling factors, and set up method pointers */
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
+	compptr->v_samp_factor == cinfo->max_v_samp_factor) {
+#ifdef INPUT_SMOOTHING_SUPPORTED
+      if (cinfo->smoothing_factor) {
+	downsample->methods[ci] = fullsize_smooth_downsample;
+	downsample->pub.need_context_rows = TRUE;
+      } else
+#endif
+	downsample->methods[ci] = fullsize_downsample;
+    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
+	       compptr->v_samp_factor == cinfo->max_v_samp_factor) {
+      smoothok = FALSE;
+      if (jsimd_can_h2v1_downsample())
+        downsample->methods[ci] = jsimd_h2v1_downsample;
+      else
+        downsample->methods[ci] = h2v1_downsample;
+    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
+	       compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
+#ifdef INPUT_SMOOTHING_SUPPORTED
+      if (cinfo->smoothing_factor) {
+	downsample->methods[ci] = h2v2_smooth_downsample;
+	downsample->pub.need_context_rows = TRUE;
+      } else
+#endif
+	if (jsimd_can_h2v2_downsample())
+	  downsample->methods[ci] = jsimd_h2v2_downsample;
+	else
+	  downsample->methods[ci] = h2v2_downsample;
+    } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
+	       (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
+      smoothok = FALSE;
+      downsample->methods[ci] = int_downsample;
+    } else
+      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
+  }
+
+#ifdef INPUT_SMOOTHING_SUPPORTED
+  if (cinfo->smoothing_factor && !smoothok)
+    TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
+#endif
+}

=== added file 'src/libjpeg-turbo/jctrans.c'
--- src/libjpeg-turbo/jctrans.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jctrans.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,399 @@ 
+/*
+ * jctrans.c
+ *
+ * Copyright (C) 1995-1998, Thomas G. Lane.
+ * Modified 2000-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains library routines for transcoding compression,
+ * that is, writing raw DCT coefficient arrays to an output JPEG file.
+ * The routines in jcapimin.c will also be needed by a transcoder.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Forward declarations */
+LOCAL(void) transencode_master_selection
+	JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
+LOCAL(void) transencode_coef_controller
+	JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
+
+
+/*
+ * Compression initialization for writing raw-coefficient data.
+ * Before calling this, all parameters and a data destination must be set up.
+ * Call jpeg_finish_compress() to actually write the data.
+ *
+ * The number of passed virtual arrays must match cinfo->num_components.
+ * Note that the virtual arrays need not be filled or even realized at
+ * the time write_coefficients is called; indeed, if the virtual arrays
+ * were requested from this compression object's memory manager, they
+ * typically will be realized during this routine and filled afterwards.
+ */
+
+GLOBAL(void)
+jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
+{
+  if (cinfo->global_state != CSTATE_START)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+  /* Mark all tables to be written */
+  jpeg_suppress_tables(cinfo, FALSE);
+  /* (Re)initialize error mgr and destination modules */
+  (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+  (*cinfo->dest->init_destination) (cinfo);
+  /* Perform master selection of active modules */
+  transencode_master_selection(cinfo, coef_arrays);
+  /* Wait for jpeg_finish_compress() call */
+  cinfo->next_scanline = 0;	/* so jpeg_write_marker works */
+  cinfo->global_state = CSTATE_WRCOEFS;
+}
+
+
+/*
+ * Initialize the compression object with default parameters,
+ * then copy from the source object all parameters needed for lossless
+ * transcoding.  Parameters that can be varied without loss (such as
+ * scan script and Huffman optimization) are left in their default states.
+ */
+
+GLOBAL(void)
+jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
+			       j_compress_ptr dstinfo)
+{
+  JQUANT_TBL ** qtblptr;
+  jpeg_component_info *incomp, *outcomp;
+  JQUANT_TBL *c_quant, *slot_quant;
+  int tblno, ci, coefi;
+
+  /* Safety check to ensure start_compress not called yet. */
+  if (dstinfo->global_state != CSTATE_START)
+    ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
+  /* Copy fundamental image dimensions */
+  dstinfo->image_width = srcinfo->image_width;
+  dstinfo->image_height = srcinfo->image_height;
+  dstinfo->input_components = srcinfo->num_components;
+  dstinfo->in_color_space = srcinfo->jpeg_color_space;
+#if JPEG_LIB_VERSION >= 70
+  dstinfo->jpeg_width = srcinfo->output_width;
+  dstinfo->jpeg_height = srcinfo->output_height;
+  dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size;
+  dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size;
+#endif
+  /* Initialize all parameters to default values */
+  jpeg_set_defaults(dstinfo);
+  /* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
+   * Fix it to get the right header markers for the image colorspace.
+   */
+  jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
+  dstinfo->data_precision = srcinfo->data_precision;
+  dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
+  /* Copy the source's quantization tables. */
+  for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
+    if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
+      qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
+      if (*qtblptr == NULL)
+	*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
+      MEMCOPY((*qtblptr)->quantval,
+	      srcinfo->quant_tbl_ptrs[tblno]->quantval,
+	      SIZEOF((*qtblptr)->quantval));
+      (*qtblptr)->sent_table = FALSE;
+    }
+  }
+  /* Copy the source's per-component info.
+   * Note we assume jpeg_set_defaults has allocated the dest comp_info array.
+   */
+  dstinfo->num_components = srcinfo->num_components;
+  if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
+    ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
+	     MAX_COMPONENTS);
+  for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
+       ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
+    outcomp->component_id = incomp->component_id;
+    outcomp->h_samp_factor = incomp->h_samp_factor;
+    outcomp->v_samp_factor = incomp->v_samp_factor;
+    outcomp->quant_tbl_no = incomp->quant_tbl_no;
+    /* Make sure saved quantization table for component matches the qtable
+     * slot.  If not, the input file re-used this qtable slot.
+     * IJG encoder currently cannot duplicate this.
+     */
+    tblno = outcomp->quant_tbl_no;
+    if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
+	srcinfo->quant_tbl_ptrs[tblno] == NULL)
+      ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
+    slot_quant = srcinfo->quant_tbl_ptrs[tblno];
+    c_quant = incomp->quant_table;
+    if (c_quant != NULL) {
+      for (coefi = 0; coefi < DCTSIZE2; coefi++) {
+	if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
+	  ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
+      }
+    }
+    /* Note: we do not copy the source's Huffman table assignments;
+     * instead we rely on jpeg_set_colorspace to have made a suitable choice.
+     */
+  }
+  /* Also copy JFIF version and resolution information, if available.
+   * Strictly speaking this isn't "critical" info, but it's nearly
+   * always appropriate to copy it if available.  In particular,
+   * if the application chooses to copy JFIF 1.02 extension markers from
+   * the source file, we need to copy the version to make sure we don't
+   * emit a file that has 1.02 extensions but a claimed version of 1.01.
+   * We will *not*, however, copy version info from mislabeled "2.01" files.
+   */
+  if (srcinfo->saw_JFIF_marker) {
+    if (srcinfo->JFIF_major_version == 1) {
+      dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
+      dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
+    }
+    dstinfo->density_unit = srcinfo->density_unit;
+    dstinfo->X_density = srcinfo->X_density;
+    dstinfo->Y_density = srcinfo->Y_density;
+  }
+}
+
+
+/*
+ * Master selection of compression modules for transcoding.
+ * This substitutes for jcinit.c's initialization of the full compressor.
+ */
+
+LOCAL(void)
+transencode_master_selection (j_compress_ptr cinfo,
+			      jvirt_barray_ptr * coef_arrays)
+{
+  /* Although we don't actually use input_components for transcoding,
+   * jcmaster.c's initial_setup will complain if input_components is 0.
+   */
+  cinfo->input_components = 1;
+  /* Initialize master control (includes parameter checking/processing) */
+  jinit_c_master_control(cinfo, TRUE /* transcode only */);
+
+  /* Entropy encoding: either Huffman or arithmetic coding. */
+  if (cinfo->arith_code) {
+#ifdef C_ARITH_CODING_SUPPORTED
+    jinit_arith_encoder(cinfo);
+#else
+    ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
+#endif
+  } else {
+    if (cinfo->progressive_mode) {
+#ifdef C_PROGRESSIVE_SUPPORTED
+      jinit_phuff_encoder(cinfo);
+#else
+      ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+    } else
+      jinit_huff_encoder(cinfo);
+  }
+
+  /* We need a special coefficient buffer controller. */
+  transencode_coef_controller(cinfo, coef_arrays);
+
+  jinit_marker_writer(cinfo);
+
+  /* We can now tell the memory manager to allocate virtual arrays. */
+  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+
+  /* Write the datastream header (SOI, JFIF) immediately.
+   * Frame and scan headers are postponed till later.
+   * This lets application insert special markers after the SOI.
+   */
+  (*cinfo->marker->write_file_header) (cinfo);
+}
+
+
+/*
+ * The rest of this file is a special implementation of the coefficient
+ * buffer controller.  This is similar to jccoefct.c, but it handles only
+ * output from presupplied virtual arrays.  Furthermore, we generate any
+ * dummy padding blocks on-the-fly rather than expecting them to be present
+ * in the arrays.
+ */
+
+/* Private buffer controller object */
+
+typedef struct {
+  struct jpeg_c_coef_controller pub; /* public fields */
+
+  JDIMENSION iMCU_row_num;	/* iMCU row # within image */
+  JDIMENSION mcu_ctr;		/* counts MCUs processed in current row */
+  int MCU_vert_offset;		/* counts MCU rows within iMCU row */
+  int MCU_rows_per_iMCU_row;	/* number of such rows needed */
+
+  /* Virtual block array for each component. */
+  jvirt_barray_ptr * whole_image;
+
+  /* Workspace for constructing dummy blocks at right/bottom edges. */
+  JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU];
+} my_coef_controller;
+
+typedef my_coef_controller * my_coef_ptr;
+
+
+LOCAL(void)
+start_iMCU_row (j_compress_ptr cinfo)
+/* Reset within-iMCU-row counters for a new row */
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+  /* In an interleaved scan, an MCU row is the same as an iMCU row.
+   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
+   * But at the bottom of the image, process only what's left.
+   */
+  if (cinfo->comps_in_scan > 1) {
+    coef->MCU_rows_per_iMCU_row = 1;
+  } else {
+    if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
+      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
+    else
+      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
+  }
+
+  coef->mcu_ctr = 0;
+  coef->MCU_vert_offset = 0;
+}
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+  if (pass_mode != JBUF_CRANK_DEST)
+    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+
+  coef->iMCU_row_num = 0;
+  start_iMCU_row(cinfo);
+}
+
+
+/*
+ * Process some data.
+ * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+ * per call, ie, v_samp_factor block rows for each component in the scan.
+ * The data is obtained from the virtual arrays and fed to the entropy coder.
+ * Returns TRUE if the iMCU row is completed, FALSE if suspended.
+ *
+ * NB: input_buf is ignored; it is likely to be a NULL pointer.
+ */
+
+METHODDEF(boolean)
+compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+  JDIMENSION MCU_col_num;	/* index of current MCU within row */
+  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+  int blkn, ci, xindex, yindex, yoffset, blockcnt;
+  JDIMENSION start_col;
+  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+  JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
+  JBLOCKROW buffer_ptr;
+  jpeg_component_info *compptr;
+
+  /* Align the virtual buffers for the components used in this scan. */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    buffer[ci] = (*cinfo->mem->access_virt_barray)
+      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
+       coef->iMCU_row_num * compptr->v_samp_factor,
+       (JDIMENSION) compptr->v_samp_factor, FALSE);
+  }
+
+  /* Loop to process one whole iMCU row */
+  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+       yoffset++) {
+    for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
+	 MCU_col_num++) {
+      /* Construct list of pointers to DCT blocks belonging to this MCU */
+      blkn = 0;			/* index of current DCT block within MCU */
+      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+	compptr = cinfo->cur_comp_info[ci];
+	start_col = MCU_col_num * compptr->MCU_width;
+	blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
+						: compptr->last_col_width;
+	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+	  if (coef->iMCU_row_num < last_iMCU_row ||
+	      yindex+yoffset < compptr->last_row_height) {
+	    /* Fill in pointers to real blocks in this row */
+	    buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
+	    for (xindex = 0; xindex < blockcnt; xindex++)
+	      MCU_buffer[blkn++] = buffer_ptr++;
+	  } else {
+	    /* At bottom of image, need a whole row of dummy blocks */
+	    xindex = 0;
+	  }
+	  /* Fill in any dummy blocks needed in this row.
+	   * Dummy blocks are filled in the same way as in jccoefct.c:
+	   * all zeroes in the AC entries, DC entries equal to previous
+	   * block's DC value.  The init routine has already zeroed the
+	   * AC entries, so we need only set the DC entries correctly.
+	   */
+	  for (; xindex < compptr->MCU_width; xindex++) {
+	    MCU_buffer[blkn] = coef->dummy_buffer[blkn];
+	    MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0];
+	    blkn++;
+	  }
+	}
+      }
+      /* Try to write the MCU. */
+      if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
+	/* Suspension forced; update state counters and exit */
+	coef->MCU_vert_offset = yoffset;
+	coef->mcu_ctr = MCU_col_num;
+	return FALSE;
+      }
+    }
+    /* Completed an MCU row, but perhaps not an iMCU row */
+    coef->mcu_ctr = 0;
+  }
+  /* Completed the iMCU row, advance counters for next one */
+  coef->iMCU_row_num++;
+  start_iMCU_row(cinfo);
+  return TRUE;
+}
+
+
+/*
+ * Initialize coefficient buffer controller.
+ *
+ * Each passed coefficient array must be the right size for that
+ * coefficient: width_in_blocks wide and height_in_blocks high,
+ * with unitheight at least v_samp_factor.
+ */
+
+LOCAL(void)
+transencode_coef_controller (j_compress_ptr cinfo,
+			     jvirt_barray_ptr * coef_arrays)
+{
+  my_coef_ptr coef;
+  JBLOCKROW buffer;
+  int i;
+
+  coef = (my_coef_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_coef_controller));
+  cinfo->coef = (struct jpeg_c_coef_controller *) coef;
+  coef->pub.start_pass = start_pass_coef;
+  coef->pub.compress_data = compress_output;
+
+  /* Save pointer to virtual arrays */
+  coef->whole_image = coef_arrays;
+
+  /* Allocate and pre-zero space for dummy DCT blocks. */
+  buffer = (JBLOCKROW)
+    (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+  jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+  for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
+    coef->dummy_buffer[i] = buffer + i;
+  }
+}

=== added file 'src/libjpeg-turbo/jdapimin.c'
--- src/libjpeg-turbo/jdapimin.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdapimin.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,395 @@ 
+/*
+ * jdapimin.c
+ *
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface code for the decompression half
+ * of the JPEG library.  These are the "minimum" API routines that may be
+ * needed in either the normal full-decompression case or the
+ * transcoding-only case.
+ *
+ * Most of the routines intended to be called directly by an application
+ * are in this file or in jdapistd.c.  But also see jcomapi.c for routines
+ * shared by compression and decompression, and jdtrans.c for the transcoding
+ * case.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Initialization of a JPEG decompression object.
+ * The error manager must already be set up (in case memory manager fails).
+ */
+
+GLOBAL(void)
+jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)
+{
+  int i;
+
+  /* Guard against version mismatches between library and caller. */
+  cinfo->mem = NULL;		/* so jpeg_destroy knows mem mgr not called */
+  if (version != JPEG_LIB_VERSION)
+    ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
+  if (structsize != SIZEOF(struct jpeg_decompress_struct))
+    ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, 
+	     (int) SIZEOF(struct jpeg_decompress_struct), (int) structsize);
+
+  /* For debugging purposes, we zero the whole master structure.
+   * But the application has already set the err pointer, and may have set
+   * client_data, so we have to save and restore those fields.
+   * Note: if application hasn't set client_data, tools like Purify may
+   * complain here.
+   */
+  {
+    struct jpeg_error_mgr * err = cinfo->err;
+    void * client_data = cinfo->client_data; /* ignore Purify complaint here */
+    MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
+    cinfo->err = err;
+    cinfo->client_data = client_data;
+  }
+  cinfo->is_decompressor = TRUE;
+
+  /* Initialize a memory manager instance for this object */
+  jinit_memory_mgr((j_common_ptr) cinfo);
+
+  /* Zero out pointers to permanent structures. */
+  cinfo->progress = NULL;
+  cinfo->src = NULL;
+
+  for (i = 0; i < NUM_QUANT_TBLS; i++)
+    cinfo->quant_tbl_ptrs[i] = NULL;
+
+  for (i = 0; i < NUM_HUFF_TBLS; i++) {
+    cinfo->dc_huff_tbl_ptrs[i] = NULL;
+    cinfo->ac_huff_tbl_ptrs[i] = NULL;
+  }
+
+  /* Initialize marker processor so application can override methods
+   * for COM, APPn markers before calling jpeg_read_header.
+   */
+  cinfo->marker_list = NULL;
+  jinit_marker_reader(cinfo);
+
+  /* And initialize the overall input controller. */
+  jinit_input_controller(cinfo);
+
+  /* OK, I'm ready */
+  cinfo->global_state = DSTATE_START;
+}
+
+
+/*
+ * Destruction of a JPEG decompression object
+ */
+
+GLOBAL(void)
+jpeg_destroy_decompress (j_decompress_ptr cinfo)
+{
+  jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
+}
+
+
+/*
+ * Abort processing of a JPEG decompression operation,
+ * but don't destroy the object itself.
+ */
+
+GLOBAL(void)
+jpeg_abort_decompress (j_decompress_ptr cinfo)
+{
+  jpeg_abort((j_common_ptr) cinfo); /* use common routine */
+}
+
+
+/*
+ * Set default decompression parameters.
+ */
+
+LOCAL(void)
+default_decompress_parms (j_decompress_ptr cinfo)
+{
+  /* Guess the input colorspace, and set output colorspace accordingly. */
+  /* (Wish JPEG committee had provided a real way to specify this...) */
+  /* Note application may override our guesses. */
+  switch (cinfo->num_components) {
+  case 1:
+    cinfo->jpeg_color_space = JCS_GRAYSCALE;
+    cinfo->out_color_space = JCS_GRAYSCALE;
+    break;
+    
+  case 3:
+    if (cinfo->saw_JFIF_marker) {
+      cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
+    } else if (cinfo->saw_Adobe_marker) {
+      switch (cinfo->Adobe_transform) {
+      case 0:
+	cinfo->jpeg_color_space = JCS_RGB;
+	break;
+      case 1:
+	cinfo->jpeg_color_space = JCS_YCbCr;
+	break;
+      default:
+	WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
+	cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
+	break;
+      }
+    } else {
+      /* Saw no special markers, try to guess from the component IDs */
+      int cid0 = cinfo->comp_info[0].component_id;
+      int cid1 = cinfo->comp_info[1].component_id;
+      int cid2 = cinfo->comp_info[2].component_id;
+
+      if (cid0 == 1 && cid1 == 2 && cid2 == 3)
+	cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
+      else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
+	cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
+      else {
+	TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
+	cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
+      }
+    }
+    /* Always guess RGB is proper output colorspace. */
+    cinfo->out_color_space = JCS_RGB;
+    break;
+    
+  case 4:
+    if (cinfo->saw_Adobe_marker) {
+      switch (cinfo->Adobe_transform) {
+      case 0:
+	cinfo->jpeg_color_space = JCS_CMYK;
+	break;
+      case 2:
+	cinfo->jpeg_color_space = JCS_YCCK;
+	break;
+      default:
+	WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
+	cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
+	break;
+      }
+    } else {
+      /* No special markers, assume straight CMYK. */
+      cinfo->jpeg_color_space = JCS_CMYK;
+    }
+    cinfo->out_color_space = JCS_CMYK;
+    break;
+    
+  default:
+    cinfo->jpeg_color_space = JCS_UNKNOWN;
+    cinfo->out_color_space = JCS_UNKNOWN;
+    break;
+  }
+
+  /* Set defaults for other decompression parameters. */
+  cinfo->scale_num = 1;		/* 1:1 scaling */
+  cinfo->scale_denom = 1;
+  cinfo->output_gamma = 1.0;
+  cinfo->buffered_image = FALSE;
+  cinfo->raw_data_out = FALSE;
+  cinfo->dct_method = JDCT_DEFAULT;
+  cinfo->do_fancy_upsampling = TRUE;
+  cinfo->do_block_smoothing = TRUE;
+  cinfo->quantize_colors = FALSE;
+  /* We set these in case application only sets quantize_colors. */
+  cinfo->dither_mode = JDITHER_FS;
+#ifdef QUANT_2PASS_SUPPORTED
+  cinfo->two_pass_quantize = TRUE;
+#else
+  cinfo->two_pass_quantize = FALSE;
+#endif
+  cinfo->desired_number_of_colors = 256;
+  cinfo->colormap = NULL;
+  /* Initialize for no mode change in buffered-image mode. */
+  cinfo->enable_1pass_quant = FALSE;
+  cinfo->enable_external_quant = FALSE;
+  cinfo->enable_2pass_quant = FALSE;
+}
+
+
+/*
+ * Decompression startup: read start of JPEG datastream to see what's there.
+ * Need only initialize JPEG object and supply a data source before calling.
+ *
+ * This routine will read as far as the first SOS marker (ie, actual start of
+ * compressed data), and will save all tables and parameters in the JPEG
+ * object.  It will also initialize the decompression parameters to default
+ * values, and finally return JPEG_HEADER_OK.  On return, the application may
+ * adjust the decompression parameters and then call jpeg_start_decompress.
+ * (Or, if the application only wanted to determine the image parameters,
+ * the data need not be decompressed.  In that case, call jpeg_abort or
+ * jpeg_destroy to release any temporary space.)
+ * If an abbreviated (tables only) datastream is presented, the routine will
+ * return JPEG_HEADER_TABLES_ONLY upon reaching EOI.  The application may then
+ * re-use the JPEG object to read the abbreviated image datastream(s).
+ * It is unnecessary (but OK) to call jpeg_abort in this case.
+ * The JPEG_SUSPENDED return code only occurs if the data source module
+ * requests suspension of the decompressor.  In this case the application
+ * should load more source data and then re-call jpeg_read_header to resume
+ * processing.
+ * If a non-suspending data source is used and require_image is TRUE, then the
+ * return code need not be inspected since only JPEG_HEADER_OK is possible.
+ *
+ * This routine is now just a front end to jpeg_consume_input, with some
+ * extra error checking.
+ */
+
+GLOBAL(int)
+jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
+{
+  int retcode;
+
+  if (cinfo->global_state != DSTATE_START &&
+      cinfo->global_state != DSTATE_INHEADER)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+  retcode = jpeg_consume_input(cinfo);
+
+  switch (retcode) {
+  case JPEG_REACHED_SOS:
+    retcode = JPEG_HEADER_OK;
+    break;
+  case JPEG_REACHED_EOI:
+    if (require_image)		/* Complain if application wanted an image */
+      ERREXIT(cinfo, JERR_NO_IMAGE);
+    /* Reset to start state; it would be safer to require the application to
+     * call jpeg_abort, but we can't change it now for compatibility reasons.
+     * A side effect is to free any temporary memory (there shouldn't be any).
+     */
+    jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */
+    retcode = JPEG_HEADER_TABLES_ONLY;
+    break;
+  case JPEG_SUSPENDED:
+    /* no work */
+    break;
+  }
+
+  return retcode;
+}
+
+
+/*
+ * Consume data in advance of what the decompressor requires.
+ * This can be called at any time once the decompressor object has
+ * been created and a data source has been set up.
+ *
+ * This routine is essentially a state machine that handles a couple
+ * of critical state-transition actions, namely initial setup and
+ * transition from header scanning to ready-for-start_decompress.
+ * All the actual input is done via the input controller's consume_input
+ * method.
+ */
+
+GLOBAL(int)
+jpeg_consume_input (j_decompress_ptr cinfo)
+{
+  int retcode = JPEG_SUSPENDED;
+
+  /* NB: every possible DSTATE value should be listed in this switch */
+  switch (cinfo->global_state) {
+  case DSTATE_START:
+    /* Start-of-datastream actions: reset appropriate modules */
+    (*cinfo->inputctl->reset_input_controller) (cinfo);
+    /* Initialize application's data source module */
+    (*cinfo->src->init_source) (cinfo);
+    cinfo->global_state = DSTATE_INHEADER;
+    /*FALLTHROUGH*/
+  case DSTATE_INHEADER:
+    retcode = (*cinfo->inputctl->consume_input) (cinfo);
+    if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
+      /* Set up default parameters based on header data */
+      default_decompress_parms(cinfo);
+      /* Set global state: ready for start_decompress */
+      cinfo->global_state = DSTATE_READY;
+    }
+    break;
+  case DSTATE_READY:
+    /* Can't advance past first SOS until start_decompress is called */
+    retcode = JPEG_REACHED_SOS;
+    break;
+  case DSTATE_PRELOAD:
+  case DSTATE_PRESCAN:
+  case DSTATE_SCANNING:
+  case DSTATE_RAW_OK:
+  case DSTATE_BUFIMAGE:
+  case DSTATE_BUFPOST:
+  case DSTATE_STOPPING:
+    retcode = (*cinfo->inputctl->consume_input) (cinfo);
+    break;
+  default:
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+  }
+  return retcode;
+}
+
+
+/*
+ * Have we finished reading the input file?
+ */
+
+GLOBAL(boolean)
+jpeg_input_complete (j_decompress_ptr cinfo)
+{
+  /* Check for valid jpeg object */
+  if (cinfo->global_state < DSTATE_START ||
+      cinfo->global_state > DSTATE_STOPPING)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+  return cinfo->inputctl->eoi_reached;
+}
+
+
+/*
+ * Is there more than one scan?
+ */
+
+GLOBAL(boolean)
+jpeg_has_multiple_scans (j_decompress_ptr cinfo)
+{
+  /* Only valid after jpeg_read_header completes */
+  if (cinfo->global_state < DSTATE_READY ||
+      cinfo->global_state > DSTATE_STOPPING)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+  return cinfo->inputctl->has_multiple_scans;
+}
+
+
+/*
+ * Finish JPEG decompression.
+ *
+ * This will normally just verify the file trailer and release temp storage.
+ *
+ * Returns FALSE if suspended.  The return value need be inspected only if
+ * a suspending data source is used.
+ */
+
+GLOBAL(boolean)
+jpeg_finish_decompress (j_decompress_ptr cinfo)
+{
+  if ((cinfo->global_state == DSTATE_SCANNING ||
+       cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) {
+    /* Terminate final pass of non-buffered mode */
+    if (cinfo->output_scanline < cinfo->output_height)
+      ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
+    (*cinfo->master->finish_output_pass) (cinfo);
+    cinfo->global_state = DSTATE_STOPPING;
+  } else if (cinfo->global_state == DSTATE_BUFIMAGE) {
+    /* Finishing after a buffered-image operation */
+    cinfo->global_state = DSTATE_STOPPING;
+  } else if (cinfo->global_state != DSTATE_STOPPING) {
+    /* STOPPING = repeat call after a suspension, anything else is error */
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+  }
+  /* Read until EOI */
+  while (! cinfo->inputctl->eoi_reached) {
+    if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
+      return FALSE;		/* Suspend, come back later */
+  }
+  /* Do final cleanup */
+  (*cinfo->src->term_source) (cinfo);
+  /* We can use jpeg_abort to release memory and reset global_state */
+  jpeg_abort((j_common_ptr) cinfo);
+  return TRUE;
+}

=== added file 'src/libjpeg-turbo/jdapistd.c'
--- src/libjpeg-turbo/jdapistd.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdapistd.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,277 @@ 
+/*
+ * jdapistd.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Copyright (C) 2010, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface code for the decompression half
+ * of the JPEG library.  These are the "standard" API routines that are
+ * used in the normal full-decompression case.  They are not used by a
+ * transcoding-only application.  Note that if an application links in
+ * jpeg_start_decompress, it will end up linking in the entire decompressor.
+ * We thus must separate this file from jdapimin.c to avoid linking the
+ * whole decompression library into a transcoder.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jpegcomp.h"
+
+
+/* Forward declarations */
+LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo));
+
+
+/*
+ * Decompression initialization.
+ * jpeg_read_header must be completed before calling this.
+ *
+ * If a multipass operating mode was selected, this will do all but the
+ * last pass, and thus may take a great deal of time.
+ *
+ * Returns FALSE if suspended.  The return value need be inspected only if
+ * a suspending data source is used.
+ */
+
+GLOBAL(boolean)
+jpeg_start_decompress (j_decompress_ptr cinfo)
+{
+  if (cinfo->global_state == DSTATE_READY) {
+    /* First call: initialize master control, select active modules */
+    jinit_master_decompress(cinfo);
+    if (cinfo->buffered_image) {
+      /* No more work here; expecting jpeg_start_output next */
+      cinfo->global_state = DSTATE_BUFIMAGE;
+      return TRUE;
+    }
+    cinfo->global_state = DSTATE_PRELOAD;
+  }
+  if (cinfo->global_state == DSTATE_PRELOAD) {
+    /* If file has multiple scans, absorb them all into the coef buffer */
+    if (cinfo->inputctl->has_multiple_scans) {
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+      for (;;) {
+	int retcode;
+	/* Call progress monitor hook if present */
+	if (cinfo->progress != NULL)
+	  (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+	/* Absorb some more input */
+	retcode = (*cinfo->inputctl->consume_input) (cinfo);
+	if (retcode == JPEG_SUSPENDED)
+	  return FALSE;
+	if (retcode == JPEG_REACHED_EOI)
+	  break;
+	/* Advance progress counter if appropriate */
+	if (cinfo->progress != NULL &&
+	    (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
+	  if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
+	    /* jdmaster underestimated number of scans; ratchet up one scan */
+	    cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
+	  }
+	}
+      }
+#else
+      ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+    }
+    cinfo->output_scan_number = cinfo->input_scan_number;
+  } else if (cinfo->global_state != DSTATE_PRESCAN)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+  /* Perform any dummy output passes, and set up for the final pass */
+  return output_pass_setup(cinfo);
+}
+
+
+/*
+ * Set up for an output pass, and perform any dummy pass(es) needed.
+ * Common subroutine for jpeg_start_decompress and jpeg_start_output.
+ * Entry: global_state = DSTATE_PRESCAN only if previously suspended.
+ * Exit: If done, returns TRUE and sets global_state for proper output mode.
+ *       If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
+ */
+
+LOCAL(boolean)
+output_pass_setup (j_decompress_ptr cinfo)
+{
+  if (cinfo->global_state != DSTATE_PRESCAN) {
+    /* First call: do pass setup */
+    (*cinfo->master->prepare_for_output_pass) (cinfo);
+    cinfo->output_scanline = 0;
+    cinfo->global_state = DSTATE_PRESCAN;
+  }
+  /* Loop over any required dummy passes */
+  while (cinfo->master->is_dummy_pass) {
+#ifdef QUANT_2PASS_SUPPORTED
+    /* Crank through the dummy pass */
+    while (cinfo->output_scanline < cinfo->output_height) {
+      JDIMENSION last_scanline;
+      /* Call progress monitor hook if present */
+      if (cinfo->progress != NULL) {
+	cinfo->progress->pass_counter = (long) cinfo->output_scanline;
+	cinfo->progress->pass_limit = (long) cinfo->output_height;
+	(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+      }
+      /* Process some data */
+      last_scanline = cinfo->output_scanline;
+      (*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
+				    &cinfo->output_scanline, (JDIMENSION) 0);
+      if (cinfo->output_scanline == last_scanline)
+	return FALSE;		/* No progress made, must suspend */
+    }
+    /* Finish up dummy pass, and set up for another one */
+    (*cinfo->master->finish_output_pass) (cinfo);
+    (*cinfo->master->prepare_for_output_pass) (cinfo);
+    cinfo->output_scanline = 0;
+#else
+    ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif /* QUANT_2PASS_SUPPORTED */
+  }
+  /* Ready for application to drive output pass through
+   * jpeg_read_scanlines or jpeg_read_raw_data.
+   */
+  cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
+  return TRUE;
+}
+
+
+/*
+ * Read some scanlines of data from the JPEG decompressor.
+ *
+ * The return value will be the number of lines actually read.
+ * This may be less than the number requested in several cases,
+ * including bottom of image, data source suspension, and operating
+ * modes that emit multiple scanlines at a time.
+ *
+ * Note: we warn about excess calls to jpeg_read_scanlines() since
+ * this likely signals an application programmer error.  However,
+ * an oversize buffer (max_lines > scanlines remaining) is not an error.
+ */
+
+GLOBAL(JDIMENSION)
+jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
+		     JDIMENSION max_lines)
+{
+  JDIMENSION row_ctr;
+
+  if (cinfo->global_state != DSTATE_SCANNING)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+  if (cinfo->output_scanline >= cinfo->output_height) {
+    WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+    return 0;
+  }
+
+  /* Call progress monitor hook if present */
+  if (cinfo->progress != NULL) {
+    cinfo->progress->pass_counter = (long) cinfo->output_scanline;
+    cinfo->progress->pass_limit = (long) cinfo->output_height;
+    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+  }
+
+  /* Process some data */
+  row_ctr = 0;
+  (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
+  cinfo->output_scanline += row_ctr;
+  return row_ctr;
+}
+
+
+/*
+ * Alternate entry point to read raw data.
+ * Processes exactly one iMCU row per call, unless suspended.
+ */
+
+GLOBAL(JDIMENSION)
+jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
+		    JDIMENSION max_lines)
+{
+  JDIMENSION lines_per_iMCU_row;
+
+  if (cinfo->global_state != DSTATE_RAW_OK)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+  if (cinfo->output_scanline >= cinfo->output_height) {
+    WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+    return 0;
+  }
+
+  /* Call progress monitor hook if present */
+  if (cinfo->progress != NULL) {
+    cinfo->progress->pass_counter = (long) cinfo->output_scanline;
+    cinfo->progress->pass_limit = (long) cinfo->output_height;
+    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+  }
+
+  /* Verify that at least one iMCU row can be returned. */
+  lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->_min_DCT_scaled_size;
+  if (max_lines < lines_per_iMCU_row)
+    ERREXIT(cinfo, JERR_BUFFER_SIZE);
+
+  /* Decompress directly into user's buffer. */
+  if (! (*cinfo->coef->decompress_data) (cinfo, data))
+    return 0;			/* suspension forced, can do nothing more */
+
+  /* OK, we processed one iMCU row. */
+  cinfo->output_scanline += lines_per_iMCU_row;
+  return lines_per_iMCU_row;
+}
+
+
+/* Additional entry points for buffered-image mode. */
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+
+/*
+ * Initialize for an output pass in buffered-image mode.
+ */
+
+GLOBAL(boolean)
+jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
+{
+  if (cinfo->global_state != DSTATE_BUFIMAGE &&
+      cinfo->global_state != DSTATE_PRESCAN)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+  /* Limit scan number to valid range */
+  if (scan_number <= 0)
+    scan_number = 1;
+  if (cinfo->inputctl->eoi_reached &&
+      scan_number > cinfo->input_scan_number)
+    scan_number = cinfo->input_scan_number;
+  cinfo->output_scan_number = scan_number;
+  /* Perform any dummy output passes, and set up for the real pass */
+  return output_pass_setup(cinfo);
+}
+
+
+/*
+ * Finish up after an output pass in buffered-image mode.
+ *
+ * Returns FALSE if suspended.  The return value need be inspected only if
+ * a suspending data source is used.
+ */
+
+GLOBAL(boolean)
+jpeg_finish_output (j_decompress_ptr cinfo)
+{
+  if ((cinfo->global_state == DSTATE_SCANNING ||
+       cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
+    /* Terminate this pass. */
+    /* We do not require the whole pass to have been completed. */
+    (*cinfo->master->finish_output_pass) (cinfo);
+    cinfo->global_state = DSTATE_BUFPOST;
+  } else if (cinfo->global_state != DSTATE_BUFPOST) {
+    /* BUFPOST = repeat call after a suspension, anything else is error */
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+  }
+  /* Read markers looking for SOS or EOI */
+  while (cinfo->input_scan_number <= cinfo->output_scan_number &&
+	 ! cinfo->inputctl->eoi_reached) {
+    if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
+      return FALSE;		/* Suspend, come back later */
+  }
+  cinfo->global_state = DSTATE_BUFIMAGE;
+  return TRUE;
+}
+
+#endif /* D_MULTISCAN_FILES_SUPPORTED */

=== added file 'src/libjpeg-turbo/jdarith.c'
--- src/libjpeg-turbo/jdarith.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdarith.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,761 @@ 
+/*
+ * jdarith.c
+ *
+ * Developed 1997-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains portable arithmetic entropy decoding routines for JPEG
+ * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
+ *
+ * Both sequential and progressive modes are supported in this single module.
+ *
+ * Suspension is not currently supported in this module.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Expanded entropy decoder object for arithmetic decoding. */
+
+typedef struct {
+  struct jpeg_entropy_decoder pub; /* public fields */
+
+  INT32 c;       /* C register, base of coding interval + input bit buffer */
+  INT32 a;               /* A register, normalized size of coding interval */
+  int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
+                                                         /* init: ct = -16 */
+                                                         /* run: ct = 0..7 */
+                                                         /* error: ct = -1 */
+  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
+
+  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
+
+  /* Pointers to statistics areas (these workspaces have image lifespan) */
+  unsigned char * dc_stats[NUM_ARITH_TBLS];
+  unsigned char * ac_stats[NUM_ARITH_TBLS];
+
+  /* Statistics bin for coding with fixed probability 0.5 */
+  unsigned char fixed_bin[4];
+} arith_entropy_decoder;
+
+typedef arith_entropy_decoder * arith_entropy_ptr;
+
+/* The following two definitions specify the allocation chunk size
+ * for the statistics area.
+ * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
+ * 49 statistics bins for DC, and 245 statistics bins for AC coding.
+ *
+ * We use a compact representation with 1 byte per statistics bin,
+ * thus the numbers directly represent byte sizes.
+ * This 1 byte per statistics bin contains the meaning of the MPS
+ * (more probable symbol) in the highest bit (mask 0x80), and the
+ * index into the probability estimation state machine table
+ * in the lower bits (mask 0x7F).
+ */
+
+#define DC_STAT_BINS 64
+#define AC_STAT_BINS 256
+
+
+LOCAL(int)
+get_byte (j_decompress_ptr cinfo)
+/* Read next input byte; we do not support suspension in this module. */
+{
+  struct jpeg_source_mgr * src = cinfo->src;
+
+  if (src->bytes_in_buffer == 0)
+    if (! (*src->fill_input_buffer) (cinfo))
+      ERREXIT(cinfo, JERR_CANT_SUSPEND);
+  src->bytes_in_buffer--;
+  return GETJOCTET(*src->next_input_byte++);
+}
+
+
+/*
+ * The core arithmetic decoding routine (common in JPEG and JBIG).
+ * This needs to go as fast as possible.
+ * Machine-dependent optimization facilities
+ * are not utilized in this portable implementation.
+ * However, this code should be fairly efficient and
+ * may be a good base for further optimizations anyway.
+ *
+ * Return value is 0 or 1 (binary decision).
+ *
+ * Note: I've changed the handling of the code base & bit
+ * buffer register C compared to other implementations
+ * based on the standards layout & procedures.
+ * While it also contains both the actual base of the
+ * coding interval (16 bits) and the next-bits buffer,
+ * the cut-point between these two parts is floating
+ * (instead of fixed) with the bit shift counter CT.
+ * Thus, we also need only one (variable instead of
+ * fixed size) shift for the LPS/MPS decision, and
+ * we can get away with any renormalization update
+ * of C (except for new data insertion, of course).
+ *
+ * I've also introduced a new scheme for accessing
+ * the probability estimation state machine table,
+ * derived from Markus Kuhn's JBIG implementation.
+ */
+
+LOCAL(int)
+arith_decode (j_decompress_ptr cinfo, unsigned char *st)
+{
+  register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
+  register unsigned char nl, nm;
+  register INT32 qe, temp;
+  register int sv, data;
+
+  /* Renormalization & data input per section D.2.6 */
+  while (e->a < 0x8000L) {
+    if (--e->ct < 0) {
+      /* Need to fetch next data byte */
+      if (cinfo->unread_marker)
+	data = 0;		/* stuff zero data */
+      else {
+	data = get_byte(cinfo);	/* read next input byte */
+	if (data == 0xFF) {	/* zero stuff or marker code */
+	  do data = get_byte(cinfo);
+	  while (data == 0xFF);	/* swallow extra 0xFF bytes */
+	  if (data == 0)
+	    data = 0xFF;	/* discard stuffed zero byte */
+	  else {
+	    /* Note: Different from the Huffman decoder, hitting
+	     * a marker while processing the compressed data
+	     * segment is legal in arithmetic coding.
+	     * The convention is to supply zero data
+	     * then until decoding is complete.
+	     */
+	    cinfo->unread_marker = data;
+	    data = 0;
+	  }
+	}
+      }
+      e->c = (e->c << 8) | data; /* insert data into C register */
+      if ((e->ct += 8) < 0)	 /* update bit shift counter */
+	/* Need more initial bytes */
+	if (++e->ct == 0)
+	  /* Got 2 initial bytes -> re-init A and exit loop */
+	  e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
+    }
+    e->a <<= 1;
+  }
+
+  /* Fetch values from our compact representation of Table D.2:
+   * Qe values and probability estimation state machine
+   */
+  sv = *st;
+  qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
+  nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
+  nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
+
+  /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
+  temp = e->a - qe;
+  e->a = temp;
+  temp <<= e->ct;
+  if (e->c >= temp) {
+    e->c -= temp;
+    /* Conditional LPS (less probable symbol) exchange */
+    if (e->a < qe) {
+      e->a = qe;
+      *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
+    } else {
+      e->a = qe;
+      *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
+      sv ^= 0x80;		/* Exchange LPS/MPS */
+    }
+  } else if (e->a < 0x8000L) {
+    /* Conditional MPS (more probable symbol) exchange */
+    if (e->a < qe) {
+      *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
+      sv ^= 0x80;		/* Exchange LPS/MPS */
+    } else {
+      *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
+    }
+  }
+
+  return sv >> 7;
+}
+
+
+/*
+ * Check for a restart marker & resynchronize decoder.
+ */
+
+LOCAL(void)
+process_restart (j_decompress_ptr cinfo)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  int ci;
+  jpeg_component_info * compptr;
+
+  /* Advance past the RSTn marker */
+  if (! (*cinfo->marker->read_restart_marker) (cinfo))
+    ERREXIT(cinfo, JERR_CANT_SUSPEND);
+
+  /* Re-initialize statistics areas */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
+      MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
+      /* Reset DC predictions to 0 */
+      entropy->last_dc_val[ci] = 0;
+      entropy->dc_context[ci] = 0;
+    }
+    if (! cinfo->progressive_mode || cinfo->Ss) {
+      MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
+    }
+  }
+
+  /* Reset arithmetic decoding variables */
+  entropy->c = 0;
+  entropy->a = 0;
+  entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
+
+  /* Reset restart counter */
+  entropy->restarts_to_go = cinfo->restart_interval;
+}
+
+
+/*
+ * Arithmetic MCU decoding.
+ * Each of these routines decodes and returns one MCU's worth of
+ * arithmetic-compressed coefficients.
+ * The coefficients are reordered from zigzag order into natural array order,
+ * but are not dequantized.
+ *
+ * The i'th block of the MCU is stored into the block pointed to by
+ * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
+ */
+
+/*
+ * MCU decoding for DC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  JBLOCKROW block;
+  unsigned char *st;
+  int blkn, ci, tbl, sign;
+  int v, m;
+
+  /* Process restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      process_restart(cinfo);
+    entropy->restarts_to_go--;
+  }
+
+  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
+
+  /* Outer loop handles each block in the MCU */
+
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    block = MCU_data[blkn];
+    ci = cinfo->MCU_membership[blkn];
+    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
+
+    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
+
+    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+    /* Figure F.19: Decode_DC_DIFF */
+    if (arith_decode(cinfo, st) == 0)
+      entropy->dc_context[ci] = 0;
+    else {
+      /* Figure F.21: Decoding nonzero value v */
+      /* Figure F.22: Decoding the sign of v */
+      sign = arith_decode(cinfo, st + 1);
+      st += 2; st += sign;
+      /* Figure F.23: Decoding the magnitude category of v */
+      if ((m = arith_decode(cinfo, st)) != 0) {
+	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
+	while (arith_decode(cinfo, st)) {
+	  if ((m <<= 1) == 0x8000) {
+	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+	    entropy->ct = -1;			/* magnitude overflow */
+	    return TRUE;
+	  }
+	  st += 1;
+	}
+      }
+      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+	entropy->dc_context[ci] = 0;		   /* zero diff category */
+      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
+      else
+	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
+      v = m;
+      /* Figure F.24: Decoding the magnitude bit pattern of v */
+      st += 14;
+      while (m >>= 1)
+	if (arith_decode(cinfo, st)) v |= m;
+      v += 1; if (sign) v = -v;
+      entropy->last_dc_val[ci] += v;
+    }
+
+    /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
+    (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  JBLOCKROW block;
+  unsigned char *st;
+  int tbl, sign, k;
+  int v, m;
+
+  /* Process restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      process_restart(cinfo);
+    entropy->restarts_to_go--;
+  }
+
+  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
+
+  /* There is always only one block per MCU */
+  block = MCU_data[0];
+  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+  /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
+
+  /* Figure F.20: Decode_AC_coefficients */
+  for (k = cinfo->Ss; k <= cinfo->Se; k++) {
+    st = entropy->ac_stats[tbl] + 3 * (k - 1);
+    if (arith_decode(cinfo, st)) break;		/* EOB flag */
+    while (arith_decode(cinfo, st + 1) == 0) {
+      st += 3; k++;
+      if (k > cinfo->Se) {
+	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+	entropy->ct = -1;			/* spectral overflow */
+	return TRUE;
+      }
+    }
+    /* Figure F.21: Decoding nonzero value v */
+    /* Figure F.22: Decoding the sign of v */
+    sign = arith_decode(cinfo, entropy->fixed_bin);
+    st += 2;
+    /* Figure F.23: Decoding the magnitude category of v */
+    if ((m = arith_decode(cinfo, st)) != 0) {
+      if (arith_decode(cinfo, st)) {
+	m <<= 1;
+	st = entropy->ac_stats[tbl] +
+	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+	while (arith_decode(cinfo, st)) {
+	  if ((m <<= 1) == 0x8000) {
+	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+	    entropy->ct = -1;			/* magnitude overflow */
+	    return TRUE;
+	  }
+	  st += 1;
+	}
+      }
+    }
+    v = m;
+    /* Figure F.24: Decoding the magnitude bit pattern of v */
+    st += 14;
+    while (m >>= 1)
+      if (arith_decode(cinfo, st)) v |= m;
+    v += 1; if (sign) v = -v;
+    /* Scale and output coefficient in natural (dezigzagged) order */
+    (*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al);
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * MCU decoding for DC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  unsigned char *st;
+  int p1, blkn;
+
+  /* Process restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      process_restart(cinfo);
+    entropy->restarts_to_go--;
+  }
+
+  st = entropy->fixed_bin;	/* use fixed probability estimation */
+  p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
+
+  /* Outer loop handles each block in the MCU */
+
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    /* Encoded data is simply the next bit of the two's-complement DC value */
+    if (arith_decode(cinfo, st))
+      MCU_data[blkn][0][0] |= p1;
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  JBLOCKROW block;
+  JCOEFPTR thiscoef;
+  unsigned char *st;
+  int tbl, k, kex;
+  int p1, m1;
+
+  /* Process restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      process_restart(cinfo);
+    entropy->restarts_to_go--;
+  }
+
+  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
+
+  /* There is always only one block per MCU */
+  block = MCU_data[0];
+  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
+
+  p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
+  m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
+
+  /* Establish EOBx (previous stage end-of-block) index */
+  for (kex = cinfo->Se; kex > 0; kex--)
+    if ((*block)[jpeg_natural_order[kex]]) break;
+
+  for (k = cinfo->Ss; k <= cinfo->Se; k++) {
+    st = entropy->ac_stats[tbl] + 3 * (k - 1);
+    if (k > kex)
+      if (arith_decode(cinfo, st)) break;	/* EOB flag */
+    for (;;) {
+      thiscoef = *block + jpeg_natural_order[k];
+      if (*thiscoef) {				/* previously nonzero coef */
+	if (arith_decode(cinfo, st + 2)) {
+	  if (*thiscoef < 0)
+	    *thiscoef += m1;
+	  else
+	    *thiscoef += p1;
+	}
+	break;
+      }
+      if (arith_decode(cinfo, st + 1)) {	/* newly nonzero coef */
+	if (arith_decode(cinfo, entropy->fixed_bin))
+	  *thiscoef = m1;
+	else
+	  *thiscoef = p1;
+	break;
+      }
+      st += 3; k++;
+      if (k > cinfo->Se) {
+	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+	entropy->ct = -1;			/* spectral overflow */
+	return TRUE;
+      }
+    }
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * Decode one MCU's worth of arithmetic-compressed coefficients.
+ */
+
+METHODDEF(boolean)
+decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  jpeg_component_info * compptr;
+  JBLOCKROW block;
+  unsigned char *st;
+  int blkn, ci, tbl, sign, k;
+  int v, m;
+
+  /* Process restart marker if needed */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      process_restart(cinfo);
+    entropy->restarts_to_go--;
+  }
+
+  if (entropy->ct == -1) return TRUE;	/* if error do nothing */
+
+  /* Outer loop handles each block in the MCU */
+
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    block = MCU_data[blkn];
+    ci = cinfo->MCU_membership[blkn];
+    compptr = cinfo->cur_comp_info[ci];
+
+    /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
+
+    tbl = compptr->dc_tbl_no;
+
+    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
+    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
+
+    /* Figure F.19: Decode_DC_DIFF */
+    if (arith_decode(cinfo, st) == 0)
+      entropy->dc_context[ci] = 0;
+    else {
+      /* Figure F.21: Decoding nonzero value v */
+      /* Figure F.22: Decoding the sign of v */
+      sign = arith_decode(cinfo, st + 1);
+      st += 2; st += sign;
+      /* Figure F.23: Decoding the magnitude category of v */
+      if ((m = arith_decode(cinfo, st)) != 0) {
+	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
+	while (arith_decode(cinfo, st)) {
+	  if ((m <<= 1) == 0x8000) {
+	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+	    entropy->ct = -1;			/* magnitude overflow */
+	    return TRUE;
+	  }
+	  st += 1;
+	}
+      }
+      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
+      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
+	entropy->dc_context[ci] = 0;		   /* zero diff category */
+      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
+	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
+      else
+	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
+      v = m;
+      /* Figure F.24: Decoding the magnitude bit pattern of v */
+      st += 14;
+      while (m >>= 1)
+	if (arith_decode(cinfo, st)) v |= m;
+      v += 1; if (sign) v = -v;
+      entropy->last_dc_val[ci] += v;
+    }
+
+    (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
+
+    /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
+
+    tbl = compptr->ac_tbl_no;
+
+    /* Figure F.20: Decode_AC_coefficients */
+    for (k = 1; k <= DCTSIZE2 - 1; k++) {
+      st = entropy->ac_stats[tbl] + 3 * (k - 1);
+      if (arith_decode(cinfo, st)) break;	/* EOB flag */
+      while (arith_decode(cinfo, st + 1) == 0) {
+	st += 3; k++;
+	if (k > DCTSIZE2 - 1) {
+	  WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+	  entropy->ct = -1;			/* spectral overflow */
+	  return TRUE;
+	}
+      }
+      /* Figure F.21: Decoding nonzero value v */
+      /* Figure F.22: Decoding the sign of v */
+      sign = arith_decode(cinfo, entropy->fixed_bin);
+      st += 2;
+      /* Figure F.23: Decoding the magnitude category of v */
+      if ((m = arith_decode(cinfo, st)) != 0) {
+	if (arith_decode(cinfo, st)) {
+	  m <<= 1;
+	  st = entropy->ac_stats[tbl] +
+	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
+	  while (arith_decode(cinfo, st)) {
+	    if ((m <<= 1) == 0x8000) {
+	      WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
+	      entropy->ct = -1;			/* magnitude overflow */
+	      return TRUE;
+	    }
+	    st += 1;
+	  }
+	}
+      }
+      v = m;
+      /* Figure F.24: Decoding the magnitude bit pattern of v */
+      st += 14;
+      while (m >>= 1)
+	if (arith_decode(cinfo, st)) v |= m;
+      v += 1; if (sign) v = -v;
+      (*block)[jpeg_natural_order[k]] = (JCOEF) v;
+    }
+  }
+
+  return TRUE;
+}
+
+
+/*
+ * Initialize for an arithmetic-compressed scan.
+ */
+
+METHODDEF(void)
+start_pass (j_decompress_ptr cinfo)
+{
+  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
+  int ci, tbl;
+  jpeg_component_info * compptr;
+
+  if (cinfo->progressive_mode) {
+    /* Validate progressive scan parameters */
+    if (cinfo->Ss == 0) {
+      if (cinfo->Se != 0)
+	goto bad;
+    } else {
+      /* need not check Ss/Se < 0 since they came from unsigned bytes */
+      if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1)
+	goto bad;
+      /* AC scans may have only one component */
+      if (cinfo->comps_in_scan != 1)
+	goto bad;
+    }
+    if (cinfo->Ah != 0) {
+      /* Successive approximation refinement scan: must have Al = Ah-1. */
+      if (cinfo->Ah-1 != cinfo->Al)
+	goto bad;
+    }
+    if (cinfo->Al > 13) {	/* need not check for < 0 */
+      bad:
+      ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
+	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
+    }
+    /* Update progression status, and verify that scan order is legal.
+     * Note that inter-scan inconsistencies are treated as warnings
+     * not fatal errors ... not clear if this is right way to behave.
+     */
+    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+      int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
+      int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
+      if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
+	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
+      for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
+	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
+	if (cinfo->Ah != expected)
+	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
+	coef_bit_ptr[coefi] = cinfo->Al;
+      }
+    }
+    /* Select MCU decoding routine */
+    if (cinfo->Ah == 0) {
+      if (cinfo->Ss == 0)
+	entropy->pub.decode_mcu = decode_mcu_DC_first;
+      else
+	entropy->pub.decode_mcu = decode_mcu_AC_first;
+    } else {
+      if (cinfo->Ss == 0)
+	entropy->pub.decode_mcu = decode_mcu_DC_refine;
+      else
+	entropy->pub.decode_mcu = decode_mcu_AC_refine;
+    }
+  } else {
+    /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
+     * This ought to be an error condition, but we make it a warning.
+     */
+    if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
+	(cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1))
+      WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
+    /* Select MCU decoding routine */
+    entropy->pub.decode_mcu = decode_mcu;
+  }
+
+  /* Allocate & initialize requested statistics areas */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
+      tbl = compptr->dc_tbl_no;
+      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+      if (entropy->dc_stats[tbl] == NULL)
+	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
+      MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
+      /* Initialize DC predictions to 0 */
+      entropy->last_dc_val[ci] = 0;
+      entropy->dc_context[ci] = 0;
+    }
+    if (! cinfo->progressive_mode || cinfo->Ss) {
+      tbl = compptr->ac_tbl_no;
+      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
+	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
+      if (entropy->ac_stats[tbl] == NULL)
+	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
+	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
+      MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
+    }
+  }
+
+  /* Initialize arithmetic decoding variables */
+  entropy->c = 0;
+  entropy->a = 0;
+  entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
+
+  /* Initialize restart counter */
+  entropy->restarts_to_go = cinfo->restart_interval;
+}
+
+
+/*
+ * Module initialization routine for arithmetic entropy decoding.
+ */
+
+GLOBAL(void)
+jinit_arith_decoder (j_decompress_ptr cinfo)
+{
+  arith_entropy_ptr entropy;
+  int i;
+
+  entropy = (arith_entropy_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(arith_entropy_decoder));
+  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
+  entropy->pub.start_pass = start_pass;
+
+  /* Mark tables unallocated */
+  for (i = 0; i < NUM_ARITH_TBLS; i++) {
+    entropy->dc_stats[i] = NULL;
+    entropy->ac_stats[i] = NULL;
+  }
+
+  /* Initialize index for fixed probability estimation */
+  entropy->fixed_bin[0] = 113;
+
+  if (cinfo->progressive_mode) {
+    /* Create progression status table */
+    int *coef_bit_ptr, ci;
+    cinfo->coef_bits = (int (*)[DCTSIZE2])
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  cinfo->num_components*DCTSIZE2*SIZEOF(int));
+    coef_bit_ptr = & cinfo->coef_bits[0][0];
+    for (ci = 0; ci < cinfo->num_components; ci++) 
+      for (i = 0; i < DCTSIZE2; i++)
+	*coef_bit_ptr++ = -1;
+  }
+}

=== added file 'src/libjpeg-turbo/jdatadst-tj.c'
--- src/libjpeg-turbo/jdatadst-tj.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdatadst-tj.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,188 @@ 
+/*
+ * jdatadst.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Modified 2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains compression data destination routines for the case of
+ * emitting JPEG data to memory or to a file (or any stdio stream).
+ * While these routines are sufficient for most applications,
+ * some will want to use a different destination manager.
+ * IMPORTANT: we assume that fwrite() will correctly transcribe an array of
+ * JOCTETs into 8-bit-wide elements on external storage.  If char is wider
+ * than 8 bits on your machine, you may need to do some tweaking.
+ */
+
+/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jerror.h"
+
+#ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare malloc(),free() */
+extern void * malloc JPP((size_t size));
+extern void free JPP((void *ptr));
+#endif
+
+
+#define OUTPUT_BUF_SIZE  4096	/* choose an efficiently fwrite'able size */
+
+
+/* Expanded data destination object for memory output */
+
+typedef struct {
+  struct jpeg_destination_mgr pub; /* public fields */
+
+  unsigned char ** outbuffer;	/* target buffer */
+  unsigned long * outsize;
+  unsigned char * newbuffer;	/* newly allocated buffer */
+  JOCTET * buffer;		/* start of buffer */
+  size_t bufsize;
+  boolean alloc;
+} my_mem_destination_mgr;
+
+typedef my_mem_destination_mgr * my_mem_dest_ptr;
+
+
+/*
+ * Initialize destination --- called by jpeg_start_compress
+ * before any data is actually written.
+ */
+
+METHODDEF(void)
+init_mem_destination (j_compress_ptr cinfo)
+{
+  /* no work necessary here */
+}
+
+
+/*
+ * Empty the output buffer --- called whenever buffer fills up.
+ *
+ * In typical applications, this should write the entire output buffer
+ * (ignoring the current state of next_output_byte & free_in_buffer),
+ * reset the pointer & count to the start of the buffer, and return TRUE
+ * indicating that the buffer has been dumped.
+ *
+ * In applications that need to be able to suspend compression due to output
+ * overrun, a FALSE return indicates that the buffer cannot be emptied now.
+ * In this situation, the compressor will return to its caller (possibly with
+ * an indication that it has not accepted all the supplied scanlines).  The
+ * application should resume compression after it has made more room in the
+ * output buffer.  Note that there are substantial restrictions on the use of
+ * suspension --- see the documentation.
+ *
+ * When suspending, the compressor will back up to a convenient restart point
+ * (typically the start of the current MCU). next_output_byte & free_in_buffer
+ * indicate where the restart point will be if the current call returns FALSE.
+ * Data beyond this point will be regenerated after resumption, so do not
+ * write it out when emptying the buffer externally.
+ */
+
+METHODDEF(boolean)
+empty_mem_output_buffer (j_compress_ptr cinfo)
+{
+  size_t nextsize;
+  JOCTET * nextbuffer;
+  my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest;
+
+  if (!dest->alloc) ERREXIT(cinfo, JERR_BUFFER_SIZE);
+
+  /* Try to allocate new buffer with double size */
+  nextsize = dest->bufsize * 2;
+  nextbuffer = malloc(nextsize);
+
+  if (nextbuffer == NULL)
+    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10);
+
+  MEMCOPY(nextbuffer, dest->buffer, dest->bufsize);
+
+  if (dest->newbuffer != NULL)
+    free(dest->newbuffer);
+
+  dest->newbuffer = nextbuffer;
+
+  dest->pub.next_output_byte = nextbuffer + dest->bufsize;
+  dest->pub.free_in_buffer = dest->bufsize;
+
+  dest->buffer = nextbuffer;
+  dest->bufsize = nextsize;
+
+  return TRUE;
+}
+
+
+/*
+ * Terminate destination --- called by jpeg_finish_compress
+ * after all data has been written.  Usually needs to flush buffer.
+ *
+ * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
+ * application must deal with any cleanup that should happen even
+ * for error exit.
+ */
+
+METHODDEF(void)
+term_mem_destination (j_compress_ptr cinfo)
+{
+  my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest;
+
+  if(dest->alloc) *dest->outbuffer = dest->buffer;
+  *dest->outsize = (unsigned long)(dest->bufsize - dest->pub.free_in_buffer);
+}
+
+
+/*
+ * Prepare for output to a memory buffer.
+ * The caller may supply an own initial buffer with appropriate size.
+ * Otherwise, or when the actual data output exceeds the given size,
+ * the library adapts the buffer size as necessary.
+ * The standard library functions malloc/free are used for allocating
+ * larger memory, so the buffer is available to the application after
+ * finishing compression, and then the application is responsible for
+ * freeing the requested memory.
+ */
+
+GLOBAL(void)
+jpeg_mem_dest_tj (j_compress_ptr cinfo,
+	       unsigned char ** outbuffer, unsigned long * outsize,
+	       boolean alloc)
+{
+  my_mem_dest_ptr dest;
+
+  if (outbuffer == NULL || outsize == NULL)	/* sanity check */
+    ERREXIT(cinfo, JERR_BUFFER_SIZE);
+
+  /* The destination object is made permanent so that multiple JPEG images
+   * can be written to the same buffer without re-executing jpeg_mem_dest.
+   */
+  if (cinfo->dest == NULL) {	/* first time for this JPEG object? */
+    cinfo->dest = (struct jpeg_destination_mgr *)
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+				  SIZEOF(my_mem_destination_mgr));
+    dest = (my_mem_dest_ptr) cinfo->dest;
+    dest->newbuffer = NULL;
+  }
+
+  dest = (my_mem_dest_ptr) cinfo->dest;
+  dest->pub.init_destination = init_mem_destination;
+  dest->pub.empty_output_buffer = empty_mem_output_buffer;
+  dest->pub.term_destination = term_mem_destination;
+  dest->outbuffer = outbuffer;
+  dest->outsize = outsize;
+  dest->alloc = alloc;
+
+  if (*outbuffer == NULL || *outsize == 0) {
+    if (alloc) {
+      /* Allocate initial buffer */
+      dest->newbuffer = *outbuffer = malloc(OUTPUT_BUF_SIZE);
+      if (dest->newbuffer == NULL)
+        ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10);
+      *outsize = OUTPUT_BUF_SIZE;
+    }
+    else ERREXIT(cinfo, JERR_BUFFER_SIZE);
+  }
+
+  dest->pub.next_output_byte = dest->buffer = *outbuffer;
+  dest->pub.free_in_buffer = dest->bufsize = *outsize;
+}

=== added file 'src/libjpeg-turbo/jdatasrc-tj.c'
--- src/libjpeg-turbo/jdatasrc-tj.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdatasrc-tj.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,182 @@ 
+/*
+ * jdatasrc.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Modified 2009-2010 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains decompression data source routines for the case of
+ * reading JPEG data from memory or from a file (or any stdio stream).
+ * While these routines are sufficient for most applications,
+ * some will want to use a different source manager.
+ * IMPORTANT: we assume that fread() will correctly transcribe an array of
+ * JOCTETs from 8-bit-wide elements on external storage.  If char is wider
+ * than 8 bits on your machine, you may need to do some tweaking.
+ */
+
+/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jerror.h"
+
+
+/*
+ * Initialize source --- called by jpeg_read_header
+ * before any data is actually read.
+ */
+
+METHODDEF(void)
+init_mem_source (j_decompress_ptr cinfo)
+{
+  /* no work necessary here */
+}
+
+
+/*
+ * Fill the input buffer --- called whenever buffer is emptied.
+ *
+ * In typical applications, this should read fresh data into the buffer
+ * (ignoring the current state of next_input_byte & bytes_in_buffer),
+ * reset the pointer & count to the start of the buffer, and return TRUE
+ * indicating that the buffer has been reloaded.  It is not necessary to
+ * fill the buffer entirely, only to obtain at least one more byte.
+ *
+ * There is no such thing as an EOF return.  If the end of the file has been
+ * reached, the routine has a choice of ERREXIT() or inserting fake data into
+ * the buffer.  In most cases, generating a warning message and inserting a
+ * fake EOI marker is the best course of action --- this will allow the
+ * decompressor to output however much of the image is there.  However,
+ * the resulting error message is misleading if the real problem is an empty
+ * input file, so we handle that case specially.
+ *
+ * In applications that need to be able to suspend compression due to input
+ * not being available yet, a FALSE return indicates that no more data can be
+ * obtained right now, but more may be forthcoming later.  In this situation,
+ * the decompressor will return to its caller (with an indication of the
+ * number of scanlines it has read, if any).  The application should resume
+ * decompression after it has loaded more data into the input buffer.  Note
+ * that there are substantial restrictions on the use of suspension --- see
+ * the documentation.
+ *
+ * When suspending, the decompressor will back up to a convenient restart point
+ * (typically the start of the current MCU). next_input_byte & bytes_in_buffer
+ * indicate where the restart point will be if the current call returns FALSE.
+ * Data beyond this point must be rescanned after resumption, so move it to
+ * the front of the buffer rather than discarding it.
+ */
+
+METHODDEF(boolean)
+fill_mem_input_buffer (j_decompress_ptr cinfo)
+{
+  static JOCTET mybuffer[4];
+
+  /* The whole JPEG data is expected to reside in the supplied memory
+   * buffer, so any request for more data beyond the given buffer size
+   * is treated as an error.
+   */
+  WARNMS(cinfo, JWRN_JPEG_EOF);
+  /* Insert a fake EOI marker */
+  mybuffer[0] = (JOCTET) 0xFF;
+  mybuffer[1] = (JOCTET) JPEG_EOI;
+
+  cinfo->src->next_input_byte = mybuffer;
+  cinfo->src->bytes_in_buffer = 2;
+
+  return TRUE;
+}
+
+
+/*
+ * Skip data --- used to skip over a potentially large amount of
+ * uninteresting data (such as an APPn marker).
+ *
+ * Writers of suspendable-input applications must note that skip_input_data
+ * is not granted the right to give a suspension return.  If the skip extends
+ * beyond the data currently in the buffer, the buffer can be marked empty so
+ * that the next read will cause a fill_input_buffer call that can suspend.
+ * Arranging for additional bytes to be discarded before reloading the input
+ * buffer is the application writer's problem.
+ */
+
+METHODDEF(void)
+skip_input_data (j_decompress_ptr cinfo, long num_bytes)
+{
+  struct jpeg_source_mgr * src = cinfo->src;
+
+  /* Just a dumb implementation for now.  Could use fseek() except
+   * it doesn't work on pipes.  Not clear that being smart is worth
+   * any trouble anyway --- large skips are infrequent.
+   */
+  if (num_bytes > 0) {
+    while (num_bytes > (long) src->bytes_in_buffer) {
+      num_bytes -= (long) src->bytes_in_buffer;
+      (void) (*src->fill_input_buffer) (cinfo);
+      /* note we assume that fill_input_buffer will never return FALSE,
+       * so suspension need not be handled.
+       */
+    }
+    src->next_input_byte += (size_t) num_bytes;
+    src->bytes_in_buffer -= (size_t) num_bytes;
+  }
+}
+
+
+/*
+ * An additional method that can be provided by data source modules is the
+ * resync_to_restart method for error recovery in the presence of RST markers.
+ * For the moment, this source module just uses the default resync method
+ * provided by the JPEG library.  That method assumes that no backtracking
+ * is possible.
+ */
+
+
+/*
+ * Terminate source --- called by jpeg_finish_decompress
+ * after all data has been read.  Often a no-op.
+ *
+ * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
+ * application must deal with any cleanup that should happen even
+ * for error exit.
+ */
+
+METHODDEF(void)
+term_source (j_decompress_ptr cinfo)
+{
+  /* no work necessary here */
+}
+
+
+/*
+ * Prepare for input from a supplied memory buffer.
+ * The buffer must contain the whole JPEG data.
+ */
+
+GLOBAL(void)
+jpeg_mem_src_tj (j_decompress_ptr cinfo,
+	      unsigned char * inbuffer, unsigned long insize)
+{
+  struct jpeg_source_mgr * src;
+
+  if (inbuffer == NULL || insize == 0)	/* Treat empty input as fatal error */
+    ERREXIT(cinfo, JERR_INPUT_EMPTY);
+
+  /* The source object is made permanent so that a series of JPEG images
+   * can be read from the same buffer by calling jpeg_mem_src only before
+   * the first one.
+   */
+  if (cinfo->src == NULL) {	/* first time for this JPEG object? */
+    cinfo->src = (struct jpeg_source_mgr *)
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+				  SIZEOF(struct jpeg_source_mgr));
+  }
+
+  src = cinfo->src;
+  src->init_source = init_mem_source;
+  src->fill_input_buffer = fill_mem_input_buffer;
+  src->skip_input_data = skip_input_data;
+  src->resync_to_restart = jpeg_resync_to_restart; /* use default method */
+  src->term_source = term_source;
+  src->bytes_in_buffer = (size_t) insize;
+  src->next_input_byte = (JOCTET *) inbuffer;
+}

=== added file 'src/libjpeg-turbo/jdcoefct.c'
--- src/libjpeg-turbo/jdcoefct.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdcoefct.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,749 @@ 
+/*
+ * jdcoefct.c
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * Copyright (C) 2010, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the coefficient buffer controller for decompression.
+ * This controller is the top level of the JPEG decompressor proper.
+ * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
+ *
+ * In buffered-image mode, this controller is the interface between
+ * input-oriented processing and output-oriented processing.
+ * Also, the input side (only) is used when reading a file for transcoding.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jpegcomp.h"
+
+/* Block smoothing is only applicable for progressive JPEG, so: */
+#ifndef D_PROGRESSIVE_SUPPORTED
+#undef BLOCK_SMOOTHING_SUPPORTED
+#endif
+
+/* Private buffer controller object */
+
+typedef struct {
+  struct jpeg_d_coef_controller pub; /* public fields */
+
+  /* These variables keep track of the current location of the input side. */
+  /* cinfo->input_iMCU_row is also used for this. */
+  JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */
+  int MCU_vert_offset;		/* counts MCU rows within iMCU row */
+  int MCU_rows_per_iMCU_row;	/* number of such rows needed */
+
+  /* The output side's location is represented by cinfo->output_iMCU_row. */
+
+  /* In single-pass modes, it's sufficient to buffer just one MCU.
+   * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
+   * and let the entropy decoder write into that workspace each time.
+   * (On 80x86, the workspace is FAR even though it's not really very big;
+   * this is to keep the module interfaces unchanged when a large coefficient
+   * buffer is necessary.)
+   * In multi-pass modes, this array points to the current MCU's blocks
+   * within the virtual arrays; it is used only by the input side.
+   */
+  JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
+
+  /* Temporary workspace for one MCU */
+  JCOEF * workspace;
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+  /* In multi-pass modes, we need a virtual block array for each component. */
+  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
+#endif
+
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+  /* When doing block smoothing, we latch coefficient Al values here */
+  int * coef_bits_latch;
+#define SAVED_COEFS  6		/* we save coef_bits[0..5] */
+#endif
+} my_coef_controller;
+
+typedef my_coef_controller * my_coef_ptr;
+
+/* Forward declarations */
+METHODDEF(int) decompress_onepass
+	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+METHODDEF(int) decompress_data
+	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
+#endif
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
+METHODDEF(int) decompress_smooth_data
+	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
+#endif
+
+
+LOCAL(void)
+start_iMCU_row (j_decompress_ptr cinfo)
+/* Reset within-iMCU-row counters for a new row (input side) */
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+  /* In an interleaved scan, an MCU row is the same as an iMCU row.
+   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
+   * But at the bottom of the image, process only what's left.
+   */
+  if (cinfo->comps_in_scan > 1) {
+    coef->MCU_rows_per_iMCU_row = 1;
+  } else {
+    if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
+      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
+    else
+      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
+  }
+
+  coef->MCU_ctr = 0;
+  coef->MCU_vert_offset = 0;
+}
+
+
+/*
+ * Initialize for an input processing pass.
+ */
+
+METHODDEF(void)
+start_input_pass (j_decompress_ptr cinfo)
+{
+  cinfo->input_iMCU_row = 0;
+  start_iMCU_row(cinfo);
+}
+
+
+/*
+ * Initialize for an output processing pass.
+ */
+
+METHODDEF(void)
+start_output_pass (j_decompress_ptr cinfo)
+{
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+  /* If multipass, check to see whether to use block smoothing on this pass */
+  if (coef->pub.coef_arrays != NULL) {
+    if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
+      coef->pub.decompress_data = decompress_smooth_data;
+    else
+      coef->pub.decompress_data = decompress_data;
+  }
+#endif
+  cinfo->output_iMCU_row = 0;
+}
+
+
+/*
+ * Decompress and return some data in the single-pass case.
+ * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
+ * Input and output must run in lockstep since we have only a one-MCU buffer.
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ *
+ * NB: output_buf contains a plane for each component in image,
+ * which we index according to the component's SOF position.
+ */
+
+METHODDEF(int)
+decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+  JDIMENSION MCU_col_num;	/* index of current MCU within row */
+  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+  int blkn, ci, xindex, yindex, yoffset, useful_width;
+  JSAMPARRAY output_ptr;
+  JDIMENSION start_col, output_col;
+  jpeg_component_info *compptr;
+  inverse_DCT_method_ptr inverse_DCT;
+
+  /* Loop to process as much as one whole iMCU row */
+  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+       yoffset++) {
+    for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
+	 MCU_col_num++) {
+      /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
+      jzero_far((void FAR *) coef->MCU_buffer[0],
+		(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
+      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
+	/* Suspension forced; update state counters and exit */
+	coef->MCU_vert_offset = yoffset;
+	coef->MCU_ctr = MCU_col_num;
+	return JPEG_SUSPENDED;
+      }
+      /* Determine where data should go in output_buf and do the IDCT thing.
+       * We skip dummy blocks at the right and bottom edges (but blkn gets
+       * incremented past them!).  Note the inner loop relies on having
+       * allocated the MCU_buffer[] blocks sequentially.
+       */
+      blkn = 0;			/* index of current DCT block within MCU */
+      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+	compptr = cinfo->cur_comp_info[ci];
+	/* Don't bother to IDCT an uninteresting component. */
+	if (! compptr->component_needed) {
+	  blkn += compptr->MCU_blocks;
+	  continue;
+	}
+	inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
+	useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
+						    : compptr->last_col_width;
+	output_ptr = output_buf[compptr->component_index] +
+	  yoffset * compptr->_DCT_scaled_size;
+	start_col = MCU_col_num * compptr->MCU_sample_width;
+	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+	  if (cinfo->input_iMCU_row < last_iMCU_row ||
+	      yoffset+yindex < compptr->last_row_height) {
+	    output_col = start_col;
+	    for (xindex = 0; xindex < useful_width; xindex++) {
+	      (*inverse_DCT) (cinfo, compptr,
+			      (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
+			      output_ptr, output_col);
+	      output_col += compptr->_DCT_scaled_size;
+	    }
+	  }
+	  blkn += compptr->MCU_width;
+	  output_ptr += compptr->_DCT_scaled_size;
+	}
+      }
+    }
+    /* Completed an MCU row, but perhaps not an iMCU row */
+    coef->MCU_ctr = 0;
+  }
+  /* Completed the iMCU row, advance counters for next one */
+  cinfo->output_iMCU_row++;
+  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
+    start_iMCU_row(cinfo);
+    return JPEG_ROW_COMPLETED;
+  }
+  /* Completed the scan */
+  (*cinfo->inputctl->finish_input_pass) (cinfo);
+  return JPEG_SCAN_COMPLETED;
+}
+
+
+/*
+ * Dummy consume-input routine for single-pass operation.
+ */
+
+METHODDEF(int)
+dummy_consume_data (j_decompress_ptr cinfo)
+{
+  return JPEG_SUSPENDED;	/* Always indicate nothing was done */
+}
+
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+
+/*
+ * Consume input data and store it in the full-image coefficient buffer.
+ * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
+ * ie, v_samp_factor block rows for each component in the scan.
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ */
+
+METHODDEF(int)
+consume_data (j_decompress_ptr cinfo)
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+  JDIMENSION MCU_col_num;	/* index of current MCU within row */
+  int blkn, ci, xindex, yindex, yoffset;
+  JDIMENSION start_col;
+  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+  JBLOCKROW buffer_ptr;
+  jpeg_component_info *compptr;
+
+  /* Align the virtual buffers for the components used in this scan. */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    buffer[ci] = (*cinfo->mem->access_virt_barray)
+      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
+       cinfo->input_iMCU_row * compptr->v_samp_factor,
+       (JDIMENSION) compptr->v_samp_factor, TRUE);
+    /* Note: entropy decoder expects buffer to be zeroed,
+     * but this is handled automatically by the memory manager
+     * because we requested a pre-zeroed array.
+     */
+  }
+
+  /* Loop to process one whole iMCU row */
+  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+       yoffset++) {
+    for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
+	 MCU_col_num++) {
+      /* Construct list of pointers to DCT blocks belonging to this MCU */
+      blkn = 0;			/* index of current DCT block within MCU */
+      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+	compptr = cinfo->cur_comp_info[ci];
+	start_col = MCU_col_num * compptr->MCU_width;
+	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
+	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
+	    coef->MCU_buffer[blkn++] = buffer_ptr++;
+	  }
+	}
+      }
+      /* Try to fetch the MCU. */
+      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
+	/* Suspension forced; update state counters and exit */
+	coef->MCU_vert_offset = yoffset;
+	coef->MCU_ctr = MCU_col_num;
+	return JPEG_SUSPENDED;
+      }
+    }
+    /* Completed an MCU row, but perhaps not an iMCU row */
+    coef->MCU_ctr = 0;
+  }
+  /* Completed the iMCU row, advance counters for next one */
+  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
+    start_iMCU_row(cinfo);
+    return JPEG_ROW_COMPLETED;
+  }
+  /* Completed the scan */
+  (*cinfo->inputctl->finish_input_pass) (cinfo);
+  return JPEG_SCAN_COMPLETED;
+}
+
+
+/*
+ * Decompress and return some data in the multi-pass case.
+ * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ *
+ * NB: output_buf contains a plane for each component in image.
+ */
+
+METHODDEF(int)
+decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+  JDIMENSION block_num;
+  int ci, block_row, block_rows;
+  JBLOCKARRAY buffer;
+  JBLOCKROW buffer_ptr;
+  JSAMPARRAY output_ptr;
+  JDIMENSION output_col;
+  jpeg_component_info *compptr;
+  inverse_DCT_method_ptr inverse_DCT;
+
+  /* Force some input to be done if we are getting ahead of the input. */
+  while (cinfo->input_scan_number < cinfo->output_scan_number ||
+	 (cinfo->input_scan_number == cinfo->output_scan_number &&
+	  cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
+    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
+      return JPEG_SUSPENDED;
+  }
+
+  /* OK, output from the virtual arrays. */
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    /* Don't bother to IDCT an uninteresting component. */
+    if (! compptr->component_needed)
+      continue;
+    /* Align the virtual buffer for this component. */
+    buffer = (*cinfo->mem->access_virt_barray)
+      ((j_common_ptr) cinfo, coef->whole_image[ci],
+       cinfo->output_iMCU_row * compptr->v_samp_factor,
+       (JDIMENSION) compptr->v_samp_factor, FALSE);
+    /* Count non-dummy DCT block rows in this iMCU row. */
+    if (cinfo->output_iMCU_row < last_iMCU_row)
+      block_rows = compptr->v_samp_factor;
+    else {
+      /* NB: can't use last_row_height here; it is input-side-dependent! */
+      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+      if (block_rows == 0) block_rows = compptr->v_samp_factor;
+    }
+    inverse_DCT = cinfo->idct->inverse_DCT[ci];
+    output_ptr = output_buf[ci];
+    /* Loop over all DCT blocks to be processed. */
+    for (block_row = 0; block_row < block_rows; block_row++) {
+      buffer_ptr = buffer[block_row];
+      output_col = 0;
+      for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
+	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
+			output_ptr, output_col);
+	buffer_ptr++;
+	output_col += compptr->_DCT_scaled_size;
+      }
+      output_ptr += compptr->_DCT_scaled_size;
+    }
+  }
+
+  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
+    return JPEG_ROW_COMPLETED;
+  return JPEG_SCAN_COMPLETED;
+}
+
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+
+
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+
+/*
+ * This code applies interblock smoothing as described by section K.8
+ * of the JPEG standard: the first 5 AC coefficients are estimated from
+ * the DC values of a DCT block and its 8 neighboring blocks.
+ * We apply smoothing only for progressive JPEG decoding, and only if
+ * the coefficients it can estimate are not yet known to full precision.
+ */
+
+/* Natural-order array positions of the first 5 zigzag-order coefficients */
+#define Q01_POS  1
+#define Q10_POS  8
+#define Q20_POS  16
+#define Q11_POS  9
+#define Q02_POS  2
+
+/*
+ * Determine whether block smoothing is applicable and safe.
+ * We also latch the current states of the coef_bits[] entries for the
+ * AC coefficients; otherwise, if the input side of the decompressor
+ * advances into a new scan, we might think the coefficients are known
+ * more accurately than they really are.
+ */
+
+LOCAL(boolean)
+smoothing_ok (j_decompress_ptr cinfo)
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+  boolean smoothing_useful = FALSE;
+  int ci, coefi;
+  jpeg_component_info *compptr;
+  JQUANT_TBL * qtable;
+  int * coef_bits;
+  int * coef_bits_latch;
+
+  if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
+    return FALSE;
+
+  /* Allocate latch area if not already done */
+  if (coef->coef_bits_latch == NULL)
+    coef->coef_bits_latch = (int *)
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  cinfo->num_components *
+				  (SAVED_COEFS * SIZEOF(int)));
+  coef_bits_latch = coef->coef_bits_latch;
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    /* All components' quantization values must already be latched. */
+    if ((qtable = compptr->quant_table) == NULL)
+      return FALSE;
+    /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
+    if (qtable->quantval[0] == 0 ||
+	qtable->quantval[Q01_POS] == 0 ||
+	qtable->quantval[Q10_POS] == 0 ||
+	qtable->quantval[Q20_POS] == 0 ||
+	qtable->quantval[Q11_POS] == 0 ||
+	qtable->quantval[Q02_POS] == 0)
+      return FALSE;
+    /* DC values must be at least partly known for all components. */
+    coef_bits = cinfo->coef_bits[ci];
+    if (coef_bits[0] < 0)
+      return FALSE;
+    /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
+    for (coefi = 1; coefi <= 5; coefi++) {
+      coef_bits_latch[coefi] = coef_bits[coefi];
+      if (coef_bits[coefi] != 0)
+	smoothing_useful = TRUE;
+    }
+    coef_bits_latch += SAVED_COEFS;
+  }
+
+  return smoothing_useful;
+}
+
+
+/*
+ * Variant of decompress_data for use when doing block smoothing.
+ */
+
+METHODDEF(int)
+decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+  JDIMENSION block_num, last_block_column;
+  int ci, block_row, block_rows, access_rows;
+  JBLOCKARRAY buffer;
+  JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
+  JSAMPARRAY output_ptr;
+  JDIMENSION output_col;
+  jpeg_component_info *compptr;
+  inverse_DCT_method_ptr inverse_DCT;
+  boolean first_row, last_row;
+  JCOEF * workspace;
+  int *coef_bits;
+  JQUANT_TBL *quanttbl;
+  INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
+  int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
+  int Al, pred;
+
+  /* Keep a local variable to avoid looking it up more than once */
+  workspace = coef->workspace;
+
+  /* Force some input to be done if we are getting ahead of the input. */
+  while (cinfo->input_scan_number <= cinfo->output_scan_number &&
+	 ! cinfo->inputctl->eoi_reached) {
+    if (cinfo->input_scan_number == cinfo->output_scan_number) {
+      /* If input is working on current scan, we ordinarily want it to
+       * have completed the current row.  But if input scan is DC,
+       * we want it to keep one row ahead so that next block row's DC
+       * values are up to date.
+       */
+      JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
+      if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
+	break;
+    }
+    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
+      return JPEG_SUSPENDED;
+  }
+
+  /* OK, output from the virtual arrays. */
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    /* Don't bother to IDCT an uninteresting component. */
+    if (! compptr->component_needed)
+      continue;
+    /* Count non-dummy DCT block rows in this iMCU row. */
+    if (cinfo->output_iMCU_row < last_iMCU_row) {
+      block_rows = compptr->v_samp_factor;
+      access_rows = block_rows * 2; /* this and next iMCU row */
+      last_row = FALSE;
+    } else {
+      /* NB: can't use last_row_height here; it is input-side-dependent! */
+      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+      if (block_rows == 0) block_rows = compptr->v_samp_factor;
+      access_rows = block_rows; /* this iMCU row only */
+      last_row = TRUE;
+    }
+    /* Align the virtual buffer for this component. */
+    if (cinfo->output_iMCU_row > 0) {
+      access_rows += compptr->v_samp_factor; /* prior iMCU row too */
+      buffer = (*cinfo->mem->access_virt_barray)
+	((j_common_ptr) cinfo, coef->whole_image[ci],
+	 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
+	 (JDIMENSION) access_rows, FALSE);
+      buffer += compptr->v_samp_factor;	/* point to current iMCU row */
+      first_row = FALSE;
+    } else {
+      buffer = (*cinfo->mem->access_virt_barray)
+	((j_common_ptr) cinfo, coef->whole_image[ci],
+	 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
+      first_row = TRUE;
+    }
+    /* Fetch component-dependent info */
+    coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
+    quanttbl = compptr->quant_table;
+    Q00 = quanttbl->quantval[0];
+    Q01 = quanttbl->quantval[Q01_POS];
+    Q10 = quanttbl->quantval[Q10_POS];
+    Q20 = quanttbl->quantval[Q20_POS];
+    Q11 = quanttbl->quantval[Q11_POS];
+    Q02 = quanttbl->quantval[Q02_POS];
+    inverse_DCT = cinfo->idct->inverse_DCT[ci];
+    output_ptr = output_buf[ci];
+    /* Loop over all DCT blocks to be processed. */
+    for (block_row = 0; block_row < block_rows; block_row++) {
+      buffer_ptr = buffer[block_row];
+      if (first_row && block_row == 0)
+	prev_block_row = buffer_ptr;
+      else
+	prev_block_row = buffer[block_row-1];
+      if (last_row && block_row == block_rows-1)
+	next_block_row = buffer_ptr;
+      else
+	next_block_row = buffer[block_row+1];
+      /* We fetch the surrounding DC values using a sliding-register approach.
+       * Initialize all nine here so as to do the right thing on narrow pics.
+       */
+      DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
+      DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
+      DC7 = DC8 = DC9 = (int) next_block_row[0][0];
+      output_col = 0;
+      last_block_column = compptr->width_in_blocks - 1;
+      for (block_num = 0; block_num <= last_block_column; block_num++) {
+	/* Fetch current DCT block into workspace so we can modify it. */
+	jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
+	/* Update DC values */
+	if (block_num < last_block_column) {
+	  DC3 = (int) prev_block_row[1][0];
+	  DC6 = (int) buffer_ptr[1][0];
+	  DC9 = (int) next_block_row[1][0];
+	}
+	/* Compute coefficient estimates per K.8.
+	 * An estimate is applied only if coefficient is still zero,
+	 * and is not known to be fully accurate.
+	 */
+	/* AC01 */
+	if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
+	  num = 36 * Q00 * (DC4 - DC6);
+	  if (num >= 0) {
+	    pred = (int) (((Q01<<7) + num) / (Q01<<8));
+	    if (Al > 0 && pred >= (1<<Al))
+	      pred = (1<<Al)-1;
+	  } else {
+	    pred = (int) (((Q01<<7) - num) / (Q01<<8));
+	    if (Al > 0 && pred >= (1<<Al))
+	      pred = (1<<Al)-1;
+	    pred = -pred;
+	  }
+	  workspace[1] = (JCOEF) pred;
+	}
+	/* AC10 */
+	if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
+	  num = 36 * Q00 * (DC2 - DC8);
+	  if (num >= 0) {
+	    pred = (int) (((Q10<<7) + num) / (Q10<<8));
+	    if (Al > 0 && pred >= (1<<Al))
+	      pred = (1<<Al)-1;
+	  } else {
+	    pred = (int) (((Q10<<7) - num) / (Q10<<8));
+	    if (Al > 0 && pred >= (1<<Al))
+	      pred = (1<<Al)-1;
+	    pred = -pred;
+	  }
+	  workspace[8] = (JCOEF) pred;
+	}
+	/* AC20 */
+	if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
+	  num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
+	  if (num >= 0) {
+	    pred = (int) (((Q20<<7) + num) / (Q20<<8));
+	    if (Al > 0 && pred >= (1<<Al))
+	      pred = (1<<Al)-1;
+	  } else {
+	    pred = (int) (((Q20<<7) - num) / (Q20<<8));
+	    if (Al > 0 && pred >= (1<<Al))
+	      pred = (1<<Al)-1;
+	    pred = -pred;
+	  }
+	  workspace[16] = (JCOEF) pred;
+	}
+	/* AC11 */
+	if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
+	  num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
+	  if (num >= 0) {
+	    pred = (int) (((Q11<<7) + num) / (Q11<<8));
+	    if (Al > 0 && pred >= (1<<Al))
+	      pred = (1<<Al)-1;
+	  } else {
+	    pred = (int) (((Q11<<7) - num) / (Q11<<8));
+	    if (Al > 0 && pred >= (1<<Al))
+	      pred = (1<<Al)-1;
+	    pred = -pred;
+	  }
+	  workspace[9] = (JCOEF) pred;
+	}
+	/* AC02 */
+	if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
+	  num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
+	  if (num >= 0) {
+	    pred = (int) (((Q02<<7) + num) / (Q02<<8));
+	    if (Al > 0 && pred >= (1<<Al))
+	      pred = (1<<Al)-1;
+	  } else {
+	    pred = (int) (((Q02<<7) - num) / (Q02<<8));
+	    if (Al > 0 && pred >= (1<<Al))
+	      pred = (1<<Al)-1;
+	    pred = -pred;
+	  }
+	  workspace[2] = (JCOEF) pred;
+	}
+	/* OK, do the IDCT */
+	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
+			output_ptr, output_col);
+	/* Advance for next column */
+	DC1 = DC2; DC2 = DC3;
+	DC4 = DC5; DC5 = DC6;
+	DC7 = DC8; DC8 = DC9;
+	buffer_ptr++, prev_block_row++, next_block_row++;
+	output_col += compptr->_DCT_scaled_size;
+      }
+      output_ptr += compptr->_DCT_scaled_size;
+    }
+  }
+
+  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
+    return JPEG_ROW_COMPLETED;
+  return JPEG_SCAN_COMPLETED;
+}
+
+#endif /* BLOCK_SMOOTHING_SUPPORTED */
+
+
+/*
+ * Initialize coefficient buffer controller.
+ */
+
+GLOBAL(void)
+jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
+{
+  my_coef_ptr coef;
+
+  coef = (my_coef_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_coef_controller));
+  cinfo->coef = (struct jpeg_d_coef_controller *) coef;
+  coef->pub.start_input_pass = start_input_pass;
+  coef->pub.start_output_pass = start_output_pass;
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+  coef->coef_bits_latch = NULL;
+#endif
+
+  /* Create the coefficient buffer. */
+  if (need_full_buffer) {
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+    /* Allocate a full-image virtual array for each component, */
+    /* padded to a multiple of samp_factor DCT blocks in each direction. */
+    /* Note we ask for a pre-zeroed array. */
+    int ci, access_rows;
+    jpeg_component_info *compptr;
+
+    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+	 ci++, compptr++) {
+      access_rows = compptr->v_samp_factor;
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+      /* If block smoothing could be used, need a bigger window */
+      if (cinfo->progressive_mode)
+	access_rows *= 3;
+#endif
+      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
+	((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
+	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
+				(long) compptr->h_samp_factor),
+	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
+				(long) compptr->v_samp_factor),
+	 (JDIMENSION) access_rows);
+    }
+    coef->pub.consume_data = consume_data;
+    coef->pub.decompress_data = decompress_data;
+    coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
+#else
+    ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+  } else {
+    /* We only need a single-MCU buffer. */
+    JBLOCKROW buffer;
+    int i;
+
+    buffer = (JBLOCKROW)
+      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+    for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
+      coef->MCU_buffer[i] = buffer + i;
+    }
+    coef->pub.consume_data = dummy_consume_data;
+    coef->pub.decompress_data = decompress_onepass;
+    coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
+  }
+
+  /* Allocate the workspace buffer */
+  coef->workspace = (JCOEF *)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+                                SIZEOF(JCOEF) * DCTSIZE2);
+}

=== added file 'src/libjpeg-turbo/jdcolext.c.inc'
--- src/libjpeg-turbo/jdcolext.c.inc	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdcolext.c.inc	2012-06-27 08:13:27 +0000
@@ -0,0 +1,104 @@ 
+/*
+ * jdcolext.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Copyright (C) 2009, 2011, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains output colorspace conversion routines.
+ */
+
+
+/* This file is included by jdcolor.c */
+
+
+/*
+ * Convert some rows of samples to the output colorspace.
+ *
+ * Note that we change from noninterleaved, one-plane-per-component format
+ * to interleaved-pixel format.  The output buffer is therefore three times
+ * as wide as the input buffer.
+ * A starting row offset is provided only for the input buffer.  The caller
+ * can easily adjust the passed output_buf value to accommodate any row
+ * offset required on that side.
+ */
+
+INLINE
+LOCAL(void)
+ycc_rgb_convert_internal (j_decompress_ptr cinfo,
+                          JSAMPIMAGE input_buf, JDIMENSION input_row,
+                          JSAMPARRAY output_buf, int num_rows)
+{
+  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+  register int y, cb, cr;
+  register JSAMPROW outptr;
+  register JSAMPROW inptr0, inptr1, inptr2;
+  register JDIMENSION col;
+  JDIMENSION num_cols = cinfo->output_width;
+  /* copy these pointers into registers if possible */
+  register JSAMPLE * range_limit = cinfo->sample_range_limit;
+  register int * Crrtab = cconvert->Cr_r_tab;
+  register int * Cbbtab = cconvert->Cb_b_tab;
+  register INT32 * Crgtab = cconvert->Cr_g_tab;
+  register INT32 * Cbgtab = cconvert->Cb_g_tab;
+  SHIFT_TEMPS
+
+  while (--num_rows >= 0) {
+    inptr0 = input_buf[0][input_row];
+    inptr1 = input_buf[1][input_row];
+    inptr2 = input_buf[2][input_row];
+    input_row++;
+    outptr = *output_buf++;
+    for (col = 0; col < num_cols; col++) {
+      y  = GETJSAMPLE(inptr0[col]);
+      cb = GETJSAMPLE(inptr1[col]);
+      cr = GETJSAMPLE(inptr2[col]);
+      /* Range-limiting is essential due to noise introduced by DCT losses. */
+      outptr[RGB_RED] =   range_limit[y + Crrtab[cr]];
+      outptr[RGB_GREEN] = range_limit[y +
+			      ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
+						 SCALEBITS))];
+      outptr[RGB_BLUE] =  range_limit[y + Cbbtab[cb]];
+      /* Set unused byte to 0xFF so it can be interpreted as an opaque */
+      /* alpha channel value */
+#ifdef RGB_ALPHA
+      outptr[RGB_ALPHA] = 0xFF;
+#endif
+      outptr += RGB_PIXELSIZE;
+    }
+  }
+}
+
+
+/*
+ * Convert grayscale to RGB: just duplicate the graylevel three times.
+ * This is provided to support applications that don't want to cope
+ * with grayscale as a separate case.
+ */
+
+INLINE
+LOCAL(void)
+gray_rgb_convert_internal (j_decompress_ptr cinfo,
+                           JSAMPIMAGE input_buf, JDIMENSION input_row,
+                           JSAMPARRAY output_buf, int num_rows)
+{
+  register JSAMPROW inptr, outptr;
+  register JDIMENSION col;
+  JDIMENSION num_cols = cinfo->output_width;
+
+  while (--num_rows >= 0) {
+    inptr = input_buf[0][input_row++];
+    outptr = *output_buf++;
+    for (col = 0; col < num_cols; col++) {
+      /* We can dispense with GETJSAMPLE() here */
+      outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col];
+      /* Set unused byte to 0xFF so it can be interpreted as an opaque */
+      /* alpha channel value */
+#ifdef RGB_ALPHA
+      outptr[RGB_ALPHA] = 0xFF;
+#endif
+      outptr += RGB_PIXELSIZE;
+    }
+  }
+}

=== added file 'src/libjpeg-turbo/jdcolor.c'
--- src/libjpeg-turbo/jdcolor.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdcolor.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,529 @@ 
+/*
+ * jdcolor.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
+ * Copyright (C) 2009, 2011, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains output colorspace conversion routines.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jsimd.h"
+#include "config.h"
+
+
+/* Private subobject */
+
+typedef struct {
+  struct jpeg_color_deconverter pub; /* public fields */
+
+  /* Private state for YCC->RGB conversion */
+  int * Cr_r_tab;		/* => table for Cr to R conversion */
+  int * Cb_b_tab;		/* => table for Cb to B conversion */
+  INT32 * Cr_g_tab;		/* => table for Cr to G conversion */
+  INT32 * Cb_g_tab;		/* => table for Cb to G conversion */
+} my_color_deconverter;
+
+typedef my_color_deconverter * my_cconvert_ptr;
+
+
+/**************** YCbCr -> RGB conversion: most common case **************/
+
+/*
+ * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
+ * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
+ * The conversion equations to be implemented are therefore
+ *	R = Y                + 1.40200 * Cr
+ *	G = Y - 0.34414 * Cb - 0.71414 * Cr
+ *	B = Y + 1.77200 * Cb
+ * where Cb and Cr represent the incoming values less CENTERJSAMPLE.
+ * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
+ *
+ * To avoid floating-point arithmetic, we represent the fractional constants
+ * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
+ * the products by 2^16, with appropriate rounding, to get the correct answer.
+ * Notice that Y, being an integral input, does not contribute any fraction
+ * so it need not participate in the rounding.
+ *
+ * For even more speed, we avoid doing any multiplications in the inner loop
+ * by precalculating the constants times Cb and Cr for all possible values.
+ * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
+ * for 12-bit samples it is still acceptable.  It's not very reasonable for
+ * 16-bit samples, but if you want lossless storage you shouldn't be changing
+ * colorspace anyway.
+ * The Cr=>R and Cb=>B values can be rounded to integers in advance; the
+ * values for the G calculation are left scaled up, since we must add them
+ * together before rounding.
+ */
+
+#define SCALEBITS	16	/* speediest right-shift on some machines */
+#define ONE_HALF	((INT32) 1 << (SCALEBITS-1))
+#define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
+
+
+/* Include inline routines for colorspace extensions */
+
+#include "jdcolext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+
+#define RGB_RED EXT_RGB_RED
+#define RGB_GREEN EXT_RGB_GREEN
+#define RGB_BLUE EXT_RGB_BLUE
+#define RGB_PIXELSIZE EXT_RGB_PIXELSIZE
+#define ycc_rgb_convert_internal ycc_extrgb_convert_internal
+#define gray_rgb_convert_internal gray_extrgb_convert_internal
+#include "jdcolext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+#undef ycc_rgb_convert_internal
+#undef gray_rgb_convert_internal
+
+#define RGB_RED EXT_RGBX_RED
+#define RGB_GREEN EXT_RGBX_GREEN
+#define RGB_BLUE EXT_RGBX_BLUE
+#define RGB_ALPHA 3
+#define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE
+#define ycc_rgb_convert_internal ycc_extrgbx_convert_internal
+#define gray_rgb_convert_internal gray_extrgbx_convert_internal
+#include "jdcolext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_ALPHA
+#undef RGB_PIXELSIZE
+#undef ycc_rgb_convert_internal
+#undef gray_rgb_convert_internal
+
+#define RGB_RED EXT_BGR_RED
+#define RGB_GREEN EXT_BGR_GREEN
+#define RGB_BLUE EXT_BGR_BLUE
+#define RGB_PIXELSIZE EXT_BGR_PIXELSIZE
+#define ycc_rgb_convert_internal ycc_extbgr_convert_internal
+#define gray_rgb_convert_internal gray_extbgr_convert_internal
+#include "jdcolext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+#undef ycc_rgb_convert_internal
+#undef gray_rgb_convert_internal
+
+#define RGB_RED EXT_BGRX_RED
+#define RGB_GREEN EXT_BGRX_GREEN
+#define RGB_BLUE EXT_BGRX_BLUE
+#define RGB_ALPHA 3
+#define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE
+#define ycc_rgb_convert_internal ycc_extbgrx_convert_internal
+#define gray_rgb_convert_internal gray_extbgrx_convert_internal
+#include "jdcolext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_ALPHA
+#undef RGB_PIXELSIZE
+#undef ycc_rgb_convert_internal
+#undef gray_rgb_convert_internal
+
+#define RGB_RED EXT_XBGR_RED
+#define RGB_GREEN EXT_XBGR_GREEN
+#define RGB_BLUE EXT_XBGR_BLUE
+#define RGB_ALPHA 0
+#define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE
+#define ycc_rgb_convert_internal ycc_extxbgr_convert_internal
+#define gray_rgb_convert_internal gray_extxbgr_convert_internal
+#include "jdcolext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_ALPHA
+#undef RGB_PIXELSIZE
+#undef ycc_rgb_convert_internal
+#undef gray_rgb_convert_internal
+
+#define RGB_RED EXT_XRGB_RED
+#define RGB_GREEN EXT_XRGB_GREEN
+#define RGB_BLUE EXT_XRGB_BLUE
+#define RGB_ALPHA 0
+#define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE
+#define ycc_rgb_convert_internal ycc_extxrgb_convert_internal
+#define gray_rgb_convert_internal gray_extxrgb_convert_internal
+#include "jdcolext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_ALPHA
+#undef RGB_PIXELSIZE
+#undef ycc_rgb_convert_internal
+#undef gray_rgb_convert_internal
+
+
+/*
+ * Initialize tables for YCC->RGB colorspace conversion.
+ */
+
+LOCAL(void)
+build_ycc_rgb_table (j_decompress_ptr cinfo)
+{
+  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+  int i;
+  INT32 x;
+  SHIFT_TEMPS
+
+  cconvert->Cr_r_tab = (int *)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				(MAXJSAMPLE+1) * SIZEOF(int));
+  cconvert->Cb_b_tab = (int *)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				(MAXJSAMPLE+1) * SIZEOF(int));
+  cconvert->Cr_g_tab = (INT32 *)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				(MAXJSAMPLE+1) * SIZEOF(INT32));
+  cconvert->Cb_g_tab = (INT32 *)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				(MAXJSAMPLE+1) * SIZEOF(INT32));
+
+  for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
+    /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
+    /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
+    /* Cr=>R value is nearest int to 1.40200 * x */
+    cconvert->Cr_r_tab[i] = (int)
+		    RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
+    /* Cb=>B value is nearest int to 1.77200 * x */
+    cconvert->Cb_b_tab[i] = (int)
+		    RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
+    /* Cr=>G value is scaled-up -0.71414 * x */
+    cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x;
+    /* Cb=>G value is scaled-up -0.34414 * x */
+    /* We also add in ONE_HALF so that need not do it in inner loop */
+    cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
+  }
+}
+
+
+/*
+ * Convert some rows of samples to the output colorspace.
+ */
+
+METHODDEF(void)
+ycc_rgb_convert (j_decompress_ptr cinfo,
+		 JSAMPIMAGE input_buf, JDIMENSION input_row,
+		 JSAMPARRAY output_buf, int num_rows)
+{
+  switch (cinfo->out_color_space) {
+    case JCS_EXT_RGB:
+      ycc_extrgb_convert_internal(cinfo, input_buf, input_row, output_buf,
+                                  num_rows);
+      break;
+    case JCS_EXT_RGBX:
+    case JCS_EXT_RGBA:
+      ycc_extrgbx_convert_internal(cinfo, input_buf, input_row, output_buf,
+                                   num_rows);
+      break;
+    case JCS_EXT_BGR:
+      ycc_extbgr_convert_internal(cinfo, input_buf, input_row, output_buf,
+                                  num_rows);
+      break;
+    case JCS_EXT_BGRX:
+    case JCS_EXT_BGRA:
+      ycc_extbgrx_convert_internal(cinfo, input_buf, input_row, output_buf,
+                                   num_rows);
+      break;
+    case JCS_EXT_XBGR:
+    case JCS_EXT_ABGR:
+      ycc_extxbgr_convert_internal(cinfo, input_buf, input_row, output_buf,
+                                   num_rows);
+      break;
+    case JCS_EXT_XRGB:
+    case JCS_EXT_ARGB:
+      ycc_extxrgb_convert_internal(cinfo, input_buf, input_row, output_buf,
+                                   num_rows);
+      break;
+    default:
+      ycc_rgb_convert_internal(cinfo, input_buf, input_row, output_buf,
+                               num_rows);
+      break;
+  }
+}
+
+
+/**************** Cases other than YCbCr -> RGB **************/
+
+
+/*
+ * Color conversion for no colorspace change: just copy the data,
+ * converting from separate-planes to interleaved representation.
+ */
+
+METHODDEF(void)
+null_convert (j_decompress_ptr cinfo,
+	      JSAMPIMAGE input_buf, JDIMENSION input_row,
+	      JSAMPARRAY output_buf, int num_rows)
+{
+  register JSAMPROW inptr, outptr;
+  register JDIMENSION count;
+  register int num_components = cinfo->num_components;
+  JDIMENSION num_cols = cinfo->output_width;
+  int ci;
+
+  while (--num_rows >= 0) {
+    for (ci = 0; ci < num_components; ci++) {
+      inptr = input_buf[ci][input_row];
+      outptr = output_buf[0] + ci;
+      for (count = num_cols; count > 0; count--) {
+	*outptr = *inptr++;	/* needn't bother with GETJSAMPLE() here */
+	outptr += num_components;
+      }
+    }
+    input_row++;
+    output_buf++;
+  }
+}
+
+
+/*
+ * Color conversion for grayscale: just copy the data.
+ * This also works for YCbCr -> grayscale conversion, in which
+ * we just copy the Y (luminance) component and ignore chrominance.
+ */
+
+METHODDEF(void)
+grayscale_convert (j_decompress_ptr cinfo,
+		   JSAMPIMAGE input_buf, JDIMENSION input_row,
+		   JSAMPARRAY output_buf, int num_rows)
+{
+  jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
+		    num_rows, cinfo->output_width);
+}
+
+
+/*
+ * Convert grayscale to RGB
+ */
+
+METHODDEF(void)
+gray_rgb_convert (j_decompress_ptr cinfo,
+		  JSAMPIMAGE input_buf, JDIMENSION input_row,
+		  JSAMPARRAY output_buf, int num_rows)
+{
+  switch (cinfo->out_color_space) {
+    case JCS_EXT_RGB:
+      gray_extrgb_convert_internal(cinfo, input_buf, input_row, output_buf,
+                                   num_rows);
+      break;
+    case JCS_EXT_RGBX:
+    case JCS_EXT_RGBA:
+      gray_extrgbx_convert_internal(cinfo, input_buf, input_row, output_buf,
+                                    num_rows);
+      break;
+    case JCS_EXT_BGR:
+      gray_extbgr_convert_internal(cinfo, input_buf, input_row, output_buf,
+                                   num_rows);
+      break;
+    case JCS_EXT_BGRX:
+    case JCS_EXT_BGRA:
+      gray_extbgrx_convert_internal(cinfo, input_buf, input_row, output_buf,
+                                    num_rows);
+      break;
+    case JCS_EXT_XBGR:
+    case JCS_EXT_ABGR:
+      gray_extxbgr_convert_internal(cinfo, input_buf, input_row, output_buf,
+                                    num_rows);
+      break;
+    case JCS_EXT_XRGB:
+    case JCS_EXT_ARGB:
+      gray_extxrgb_convert_internal(cinfo, input_buf, input_row, output_buf,
+                                    num_rows);
+      break;
+    default:
+      gray_rgb_convert_internal(cinfo, input_buf, input_row, output_buf,
+                                num_rows);
+      break;
+  }
+}
+
+
+/*
+ * Adobe-style YCCK->CMYK conversion.
+ * We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
+ * conversion as above, while passing K (black) unchanged.
+ * We assume build_ycc_rgb_table has been called.
+ */
+
+METHODDEF(void)
+ycck_cmyk_convert (j_decompress_ptr cinfo,
+		   JSAMPIMAGE input_buf, JDIMENSION input_row,
+		   JSAMPARRAY output_buf, int num_rows)
+{
+  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+  register int y, cb, cr;
+  register JSAMPROW outptr;
+  register JSAMPROW inptr0, inptr1, inptr2, inptr3;
+  register JDIMENSION col;
+  JDIMENSION num_cols = cinfo->output_width;
+  /* copy these pointers into registers if possible */
+  register JSAMPLE * range_limit = cinfo->sample_range_limit;
+  register int * Crrtab = cconvert->Cr_r_tab;
+  register int * Cbbtab = cconvert->Cb_b_tab;
+  register INT32 * Crgtab = cconvert->Cr_g_tab;
+  register INT32 * Cbgtab = cconvert->Cb_g_tab;
+  SHIFT_TEMPS
+
+  while (--num_rows >= 0) {
+    inptr0 = input_buf[0][input_row];
+    inptr1 = input_buf[1][input_row];
+    inptr2 = input_buf[2][input_row];
+    inptr3 = input_buf[3][input_row];
+    input_row++;
+    outptr = *output_buf++;
+    for (col = 0; col < num_cols; col++) {
+      y  = GETJSAMPLE(inptr0[col]);
+      cb = GETJSAMPLE(inptr1[col]);
+      cr = GETJSAMPLE(inptr2[col]);
+      /* Range-limiting is essential due to noise introduced by DCT losses. */
+      outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])];	/* red */
+      outptr[1] = range_limit[MAXJSAMPLE - (y +			/* green */
+			      ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
+						 SCALEBITS)))];
+      outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])];	/* blue */
+      /* K passes through unchanged */
+      outptr[3] = inptr3[col];	/* don't need GETJSAMPLE here */
+      outptr += 4;
+    }
+  }
+}
+
+
+/*
+ * Empty method for start_pass.
+ */
+
+METHODDEF(void)
+start_pass_dcolor (j_decompress_ptr cinfo)
+{
+  /* no work needed */
+}
+
+
+/*
+ * Module initialization routine for output colorspace conversion.
+ */
+
+GLOBAL(void)
+jinit_color_deconverter (j_decompress_ptr cinfo)
+{
+  my_cconvert_ptr cconvert;
+  int ci;
+
+  cconvert = (my_cconvert_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_color_deconverter));
+  cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
+  cconvert->pub.start_pass = start_pass_dcolor;
+
+  /* Make sure num_components agrees with jpeg_color_space */
+  switch (cinfo->jpeg_color_space) {
+  case JCS_GRAYSCALE:
+    if (cinfo->num_components != 1)
+      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+    break;
+
+  case JCS_RGB:
+  case JCS_YCbCr:
+    if (cinfo->num_components != 3)
+      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+    break;
+
+  case JCS_CMYK:
+  case JCS_YCCK:
+    if (cinfo->num_components != 4)
+      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+    break;
+
+  default:			/* JCS_UNKNOWN can be anything */
+    if (cinfo->num_components < 1)
+      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+    break;
+  }
+
+  /* Set out_color_components and conversion method based on requested space.
+   * Also clear the component_needed flags for any unused components,
+   * so that earlier pipeline stages can avoid useless computation.
+   */
+
+  switch (cinfo->out_color_space) {
+  case JCS_GRAYSCALE:
+    cinfo->out_color_components = 1;
+    if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
+	cinfo->jpeg_color_space == JCS_YCbCr) {
+      cconvert->pub.color_convert = grayscale_convert;
+      /* For color->grayscale conversion, only the Y (0) component is needed */
+      for (ci = 1; ci < cinfo->num_components; ci++)
+	cinfo->comp_info[ci].component_needed = FALSE;
+    } else
+      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+    break;
+
+  case JCS_RGB:
+  case JCS_EXT_RGB:
+  case JCS_EXT_RGBX:
+  case JCS_EXT_BGR:
+  case JCS_EXT_BGRX:
+  case JCS_EXT_XBGR:
+  case JCS_EXT_XRGB:
+  case JCS_EXT_RGBA:
+  case JCS_EXT_BGRA:
+  case JCS_EXT_ABGR:
+  case JCS_EXT_ARGB:
+    cinfo->out_color_components = rgb_pixelsize[cinfo->out_color_space];
+    if (cinfo->jpeg_color_space == JCS_YCbCr) {
+      if (jsimd_can_ycc_rgb())
+        cconvert->pub.color_convert = jsimd_ycc_rgb_convert;
+      else {
+        cconvert->pub.color_convert = ycc_rgb_convert;
+        build_ycc_rgb_table(cinfo);
+      }
+    } else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
+      cconvert->pub.color_convert = gray_rgb_convert;
+    } else if (cinfo->jpeg_color_space == cinfo->out_color_space &&
+      rgb_pixelsize[cinfo->out_color_space] == 3) {
+      cconvert->pub.color_convert = null_convert;
+    } else
+      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+    break;
+
+  case JCS_CMYK:
+    cinfo->out_color_components = 4;
+    if (cinfo->jpeg_color_space == JCS_YCCK) {
+      cconvert->pub.color_convert = ycck_cmyk_convert;
+      build_ycc_rgb_table(cinfo);
+    } else if (cinfo->jpeg_color_space == JCS_CMYK) {
+      cconvert->pub.color_convert = null_convert;
+    } else
+      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+    break;
+
+  default:
+    /* Permit null conversion to same output space */
+    if (cinfo->out_color_space == cinfo->jpeg_color_space) {
+      cinfo->out_color_components = cinfo->num_components;
+      cconvert->pub.color_convert = null_convert;
+    } else			/* unsupported non-null conversion */
+      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+    break;
+  }
+
+  if (cinfo->quantize_colors)
+    cinfo->output_components = 1; /* single colormapped output component */
+  else
+    cinfo->output_components = cinfo->out_color_components;
+}

=== added file 'src/libjpeg-turbo/jdct.h'
--- src/libjpeg-turbo/jdct.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdct.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,184 @@ 
+/*
+ * jdct.h
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This include file contains common declarations for the forward and
+ * inverse DCT modules.  These declarations are private to the DCT managers
+ * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
+ * The individual DCT algorithms are kept in separate files to ease 
+ * machine-dependent tuning (e.g., assembly coding).
+ */
+
+
+/*
+ * A forward DCT routine is given a pointer to a work area of type DCTELEM[];
+ * the DCT is to be performed in-place in that buffer.  Type DCTELEM is int
+ * for 8-bit samples, INT32 for 12-bit samples.  (NOTE: Floating-point DCT
+ * implementations use an array of type FAST_FLOAT, instead.)
+ * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
+ * The DCT outputs are returned scaled up by a factor of 8; they therefore
+ * have a range of +-8K for 8-bit data, +-128K for 12-bit data.  This
+ * convention improves accuracy in integer implementations and saves some
+ * work in floating-point ones.
+ * Quantization of the output coefficients is done by jcdctmgr.c. This
+ * step requires an unsigned type and also one with twice the bits.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#ifndef WITH_SIMD
+typedef int DCTELEM;		/* 16 or 32 bits is fine */
+typedef unsigned int UDCTELEM;
+typedef unsigned long long UDCTELEM2;
+#else
+typedef short DCTELEM;  /* prefer 16 bit with SIMD for parellelism */
+typedef unsigned short UDCTELEM;
+typedef unsigned int UDCTELEM2;
+#endif
+#else
+typedef INT32 DCTELEM;		/* must have 32 bits */
+typedef UINT32 UDCTELEM;
+typedef unsigned long long UDCTELEM2;
+#endif
+
+
+/*
+ * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
+ * to an output sample array.  The routine must dequantize the input data as
+ * well as perform the IDCT; for dequantization, it uses the multiplier table
+ * pointed to by compptr->dct_table.  The output data is to be placed into the
+ * sample array starting at a specified column.  (Any row offset needed will
+ * be applied to the array pointer before it is passed to the IDCT code.)
+ * Note that the number of samples emitted by the IDCT routine is
+ * DCT_scaled_size * DCT_scaled_size.
+ */
+
+/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
+
+/*
+ * Each IDCT routine has its own ideas about the best dct_table element type.
+ */
+
+typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
+#if BITS_IN_JSAMPLE == 8
+typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
+#define IFAST_SCALE_BITS  2	/* fractional bits in scale factors */
+#else
+typedef INT32 IFAST_MULT_TYPE;	/* need 32 bits for scaled quantizers */
+#define IFAST_SCALE_BITS  13	/* fractional bits in scale factors */
+#endif
+typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
+
+
+/*
+ * Each IDCT routine is responsible for range-limiting its results and
+ * converting them to unsigned form (0..MAXJSAMPLE).  The raw outputs could
+ * be quite far out of range if the input data is corrupt, so a bulletproof
+ * range-limiting step is required.  We use a mask-and-table-lookup method
+ * to do the combined operations quickly.  See the comments with
+ * prepare_range_limit_table (in jdmaster.c) for more info.
+ */
+
+#define IDCT_range_limit(cinfo)  ((cinfo)->sample_range_limit + CENTERJSAMPLE)
+
+#define RANGE_MASK  (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_fdct_islow		jFDislow
+#define jpeg_fdct_ifast		jFDifast
+#define jpeg_fdct_float		jFDfloat
+#define jpeg_idct_islow		jRDislow
+#define jpeg_idct_ifast		jRDifast
+#define jpeg_idct_float		jRDfloat
+#define jpeg_idct_4x4		jRD4x4
+#define jpeg_idct_2x2		jRD2x2
+#define jpeg_idct_1x1		jRD1x1
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+/* Extern declarations for the forward and inverse DCT routines. */
+
+EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
+EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
+EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
+
+EXTERN(void) jpeg_idct_islow
+    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_ifast
+    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_float
+    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_4x4
+    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_2x2
+    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN(void) jpeg_idct_1x1
+    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+
+
+/*
+ * Macros for handling fixed-point arithmetic; these are used by many
+ * but not all of the DCT/IDCT modules.
+ *
+ * All values are expected to be of type INT32.
+ * Fractional constants are scaled left by CONST_BITS bits.
+ * CONST_BITS is defined within each module using these macros,
+ * and may differ from one module to the next.
+ */
+
+#define ONE	((INT32) 1)
+#define CONST_SCALE (ONE << CONST_BITS)
+
+/* Convert a positive real constant to an integer scaled by CONST_SCALE.
+ * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
+ * thus causing a lot of useless floating-point operations at run time.
+ */
+
+#define FIX(x)	((INT32) ((x) * CONST_SCALE + 0.5))
+
+/* Descale and correctly round an INT32 value that's scaled by N bits.
+ * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
+ * the fudge factor is correct for either sign of X.
+ */
+
+#define DESCALE(x,n)  RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
+
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+ * This macro is used only when the two inputs will actually be no more than
+ * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
+ * full 32x32 multiply.  This provides a useful speedup on many machines.
+ * Unfortunately there is no way to specify a 16x16->32 multiply portably
+ * in C, but some C compilers will do the right thing if you provide the
+ * correct combination of casts.
+ */
+
+#ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */
+#define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT16) (const)))
+#endif
+#ifdef SHORTxLCONST_32		/* known to work with Microsoft C 6.0 */
+#define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT32) (const)))
+#endif
+
+#ifndef MULTIPLY16C16		/* default definition */
+#define MULTIPLY16C16(var,const)  ((var) * (const))
+#endif
+
+/* Same except both inputs are variables. */
+
+#ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */
+#define MULTIPLY16V16(var1,var2)  (((INT16) (var1)) * ((INT16) (var2)))
+#endif
+
+#ifndef MULTIPLY16V16		/* default definition */
+#define MULTIPLY16V16(var1,var2)  ((var1) * (var2))
+#endif

=== added file 'src/libjpeg-turbo/jddctmgr.c'
--- src/libjpeg-turbo/jddctmgr.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jddctmgr.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,288 @@ 
+/*
+ * jddctmgr.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
+ * Copyright (C) 2010, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the inverse-DCT management logic.
+ * This code selects a particular IDCT implementation to be used,
+ * and it performs related housekeeping chores.  No code in this file
+ * is executed per IDCT step, only during output pass setup.
+ *
+ * Note that the IDCT routines are responsible for performing coefficient
+ * dequantization as well as the IDCT proper.  This module sets up the
+ * dequantization multiplier table needed by the IDCT routine.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h"		/* Private declarations for DCT subsystem */
+#include "jsimddct.h"
+#include "jpegcomp.h"
+
+
+/*
+ * The decompressor input side (jdinput.c) saves away the appropriate
+ * quantization table for each component at the start of the first scan
+ * involving that component.  (This is necessary in order to correctly
+ * decode files that reuse Q-table slots.)
+ * When we are ready to make an output pass, the saved Q-table is converted
+ * to a multiplier table that will actually be used by the IDCT routine.
+ * The multiplier table contents are IDCT-method-dependent.  To support
+ * application changes in IDCT method between scans, we can remake the
+ * multiplier tables if necessary.
+ * In buffered-image mode, the first output pass may occur before any data
+ * has been seen for some components, and thus before their Q-tables have
+ * been saved away.  To handle this case, multiplier tables are preset
+ * to zeroes; the result of the IDCT will be a neutral gray level.
+ */
+
+
+/* Private subobject for this module */
+
+typedef struct {
+  struct jpeg_inverse_dct pub;	/* public fields */
+
+  /* This array contains the IDCT method code that each multiplier table
+   * is currently set up for, or -1 if it's not yet set up.
+   * The actual multiplier tables are pointed to by dct_table in the
+   * per-component comp_info structures.
+   */
+  int cur_method[MAX_COMPONENTS];
+} my_idct_controller;
+
+typedef my_idct_controller * my_idct_ptr;
+
+
+/* Allocated multiplier tables: big enough for any supported variant */
+
+typedef union {
+  ISLOW_MULT_TYPE islow_array[DCTSIZE2];
+#ifdef DCT_IFAST_SUPPORTED
+  IFAST_MULT_TYPE ifast_array[DCTSIZE2];
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+  FLOAT_MULT_TYPE float_array[DCTSIZE2];
+#endif
+} multiplier_table;
+
+
+/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
+ * so be sure to compile that code if either ISLOW or SCALING is requested.
+ */
+#ifdef DCT_ISLOW_SUPPORTED
+#define PROVIDE_ISLOW_TABLES
+#else
+#ifdef IDCT_SCALING_SUPPORTED
+#define PROVIDE_ISLOW_TABLES
+#endif
+#endif
+
+
+/*
+ * Prepare for an output pass.
+ * Here we select the proper IDCT routine for each component and build
+ * a matching multiplier table.
+ */
+
+METHODDEF(void)
+start_pass (j_decompress_ptr cinfo)
+{
+  my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
+  int ci, i;
+  jpeg_component_info *compptr;
+  int method = 0;
+  inverse_DCT_method_ptr method_ptr = NULL;
+  JQUANT_TBL * qtbl;
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    /* Select the proper IDCT routine for this component's scaling */
+    switch (compptr->_DCT_scaled_size) {
+#ifdef IDCT_SCALING_SUPPORTED
+    case 1:
+      method_ptr = jpeg_idct_1x1;
+      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
+      break;
+    case 2:
+      if (jsimd_can_idct_2x2())
+        method_ptr = jsimd_idct_2x2;
+      else
+        method_ptr = jpeg_idct_2x2;
+      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
+      break;
+    case 4:
+      if (jsimd_can_idct_4x4())
+        method_ptr = jsimd_idct_4x4;
+      else
+        method_ptr = jpeg_idct_4x4;
+      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
+      break;
+#endif
+    case DCTSIZE:
+      switch (cinfo->dct_method) {
+#ifdef DCT_ISLOW_SUPPORTED
+      case JDCT_ISLOW:
+	if (jsimd_can_idct_islow())
+	  method_ptr = jsimd_idct_islow;
+	else
+	  method_ptr = jpeg_idct_islow;
+	method = JDCT_ISLOW;
+	break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+      case JDCT_IFAST:
+	if (jsimd_can_idct_ifast())
+	  method_ptr = jsimd_idct_ifast;
+	else
+	  method_ptr = jpeg_idct_ifast;
+	method = JDCT_IFAST;
+	break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+      case JDCT_FLOAT:
+	if (jsimd_can_idct_float())
+	  method_ptr = jsimd_idct_float;
+	else
+	  method_ptr = jpeg_idct_float;
+	method = JDCT_FLOAT;
+	break;
+#endif
+      default:
+	ERREXIT(cinfo, JERR_NOT_COMPILED);
+	break;
+      }
+      break;
+    default:
+      ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->_DCT_scaled_size);
+      break;
+    }
+    idct->pub.inverse_DCT[ci] = method_ptr;
+    /* Create multiplier table from quant table.
+     * However, we can skip this if the component is uninteresting
+     * or if we already built the table.  Also, if no quant table
+     * has yet been saved for the component, we leave the
+     * multiplier table all-zero; we'll be reading zeroes from the
+     * coefficient controller's buffer anyway.
+     */
+    if (! compptr->component_needed || idct->cur_method[ci] == method)
+      continue;
+    qtbl = compptr->quant_table;
+    if (qtbl == NULL)		/* happens if no data yet for component */
+      continue;
+    idct->cur_method[ci] = method;
+    switch (method) {
+#ifdef PROVIDE_ISLOW_TABLES
+    case JDCT_ISLOW:
+      {
+	/* For LL&M IDCT method, multipliers are equal to raw quantization
+	 * coefficients, but are stored as ints to ensure access efficiency.
+	 */
+	ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
+	for (i = 0; i < DCTSIZE2; i++) {
+	  ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
+	}
+      }
+      break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+    case JDCT_IFAST:
+      {
+	/* For AA&N IDCT method, multipliers are equal to quantization
+	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
+	 *   scalefactor[0] = 1
+	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
+	 * For integer operation, the multiplier table is to be scaled by
+	 * IFAST_SCALE_BITS.
+	 */
+	IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
+#define CONST_BITS 14
+	static const INT16 aanscales[DCTSIZE2] = {
+	  /* precomputed values scaled up by 14 bits */
+	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
+	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
+	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
+	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
+	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
+	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
+	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
+	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
+	};
+	SHIFT_TEMPS
+
+	for (i = 0; i < DCTSIZE2; i++) {
+	  ifmtbl[i] = (IFAST_MULT_TYPE)
+	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
+				  (INT32) aanscales[i]),
+		    CONST_BITS-IFAST_SCALE_BITS);
+	}
+      }
+      break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+    case JDCT_FLOAT:
+      {
+	/* For float AA&N IDCT method, multipliers are equal to quantization
+	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
+	 *   scalefactor[0] = 1
+	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
+	 */
+	FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
+	int row, col;
+	static const double aanscalefactor[DCTSIZE] = {
+	  1.0, 1.387039845, 1.306562965, 1.175875602,
+	  1.0, 0.785694958, 0.541196100, 0.275899379
+	};
+
+	i = 0;
+	for (row = 0; row < DCTSIZE; row++) {
+	  for (col = 0; col < DCTSIZE; col++) {
+	    fmtbl[i] = (FLOAT_MULT_TYPE)
+	      ((double) qtbl->quantval[i] *
+	       aanscalefactor[row] * aanscalefactor[col]);
+	    i++;
+	  }
+	}
+      }
+      break;
+#endif
+    default:
+      ERREXIT(cinfo, JERR_NOT_COMPILED);
+      break;
+    }
+  }
+}
+
+
+/*
+ * Initialize IDCT manager.
+ */
+
+GLOBAL(void)
+jinit_inverse_dct (j_decompress_ptr cinfo)
+{
+  my_idct_ptr idct;
+  int ci;
+  jpeg_component_info *compptr;
+
+  idct = (my_idct_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_idct_controller));
+  cinfo->idct = (struct jpeg_inverse_dct *) idct;
+  idct->pub.start_pass = start_pass;
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    /* Allocate and pre-zero a multiplier table for each component */
+    compptr->dct_table =
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  SIZEOF(multiplier_table));
+    MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
+    /* Mark multiplier table not yet set up for any method */
+    idct->cur_method[ci] = -1;
+  }
+}

=== added file 'src/libjpeg-turbo/jdhuff.c'
--- src/libjpeg-turbo/jdhuff.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdhuff.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,808 @@ 
+/*
+ * jdhuff.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Copyright (C) 2009-2011, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains Huffman entropy decoding routines.
+ *
+ * Much of the complexity here has to do with supporting input suspension.
+ * If the data source module demands suspension, we want to be able to back
+ * up to the start of the current MCU.  To do this, we copy state variables
+ * into local working storage, and update them back to the permanent
+ * storage only upon successful completion of an MCU.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdhuff.h"		/* Declarations shared with jdphuff.c */
+#include "jpegcomp.h"
+
+
+/*
+ * Expanded entropy decoder object for Huffman decoding.
+ *
+ * The savable_state subrecord contains fields that change within an MCU,
+ * but must not be updated permanently until we complete the MCU.
+ */
+
+typedef struct {
+  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+} savable_state;
+
+/* This macro is to work around compilers with missing or broken
+ * structure assignment.  You'll need to fix this code if you have
+ * such a compiler and you change MAX_COMPS_IN_SCAN.
+ */
+
+#ifndef NO_STRUCT_ASSIGN
+#define ASSIGN_STATE(dest,src)  ((dest) = (src))
+#else
+#if MAX_COMPS_IN_SCAN == 4
+#define ASSIGN_STATE(dest,src)  \
+	((dest).last_dc_val[0] = (src).last_dc_val[0], \
+	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
+	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
+	 (dest).last_dc_val[3] = (src).last_dc_val[3])
+#endif
+#endif
+
+
+typedef struct {
+  struct jpeg_entropy_decoder pub; /* public fields */
+
+  /* These fields are loaded into local variables at start of each MCU.
+   * In case of suspension, we exit WITHOUT updating them.
+   */
+  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
+  savable_state saved;		/* Other state at start of MCU */
+
+  /* These fields are NOT loaded into local working state. */
+  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
+
+  /* Pointers to derived tables (these workspaces have image lifespan) */
+  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
+  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
+
+  /* Precalculated info set up by start_pass for use in decode_mcu: */
+
+  /* Pointers to derived tables to be used for each block within an MCU */
+  d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
+  d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
+  /* Whether we care about the DC and AC coefficient values for each block */
+  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
+  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
+} huff_entropy_decoder;
+
+typedef huff_entropy_decoder * huff_entropy_ptr;
+
+
+/*
+ * Initialize for a Huffman-compressed scan.
+ */
+
+METHODDEF(void)
+start_pass_huff_decoder (j_decompress_ptr cinfo)
+{
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  int ci, blkn, dctbl, actbl;
+  jpeg_component_info * compptr;
+
+  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
+   * This ought to be an error condition, but we make it a warning because
+   * there are some baseline files out there with all zeroes in these bytes.
+   */
+  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
+      cinfo->Ah != 0 || cinfo->Al != 0)
+    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
+
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    dctbl = compptr->dc_tbl_no;
+    actbl = compptr->ac_tbl_no;
+    /* Compute derived values for Huffman tables */
+    /* We may do this more than once for a table, but it's not expensive */
+    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
+			    & entropy->dc_derived_tbls[dctbl]);
+    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
+			    & entropy->ac_derived_tbls[actbl]);
+    /* Initialize DC predictions to 0 */
+    entropy->saved.last_dc_val[ci] = 0;
+  }
+
+  /* Precalculate decoding info for each block in an MCU of this scan */
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    ci = cinfo->MCU_membership[blkn];
+    compptr = cinfo->cur_comp_info[ci];
+    /* Precalculate which table to use for each block */
+    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
+    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
+    /* Decide whether we really care about the coefficient values */
+    if (compptr->component_needed) {
+      entropy->dc_needed[blkn] = TRUE;
+      /* we don't need the ACs if producing a 1/8th-size image */
+      entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
+    } else {
+      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
+    }
+  }
+
+  /* Initialize bitread state variables */
+  entropy->bitstate.bits_left = 0;
+  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
+  entropy->pub.insufficient_data = FALSE;
+
+  /* Initialize restart counter */
+  entropy->restarts_to_go = cinfo->restart_interval;
+}
+
+
+/*
+ * Compute the derived values for a Huffman table.
+ * This routine also performs some validation checks on the table.
+ *
+ * Note this is also used by jdphuff.c.
+ */
+
+GLOBAL(void)
+jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
+			 d_derived_tbl ** pdtbl)
+{
+  JHUFF_TBL *htbl;
+  d_derived_tbl *dtbl;
+  int p, i, l, si, numsymbols;
+  int lookbits, ctr;
+  char huffsize[257];
+  unsigned int huffcode[257];
+  unsigned int code;
+
+  /* Note that huffsize[] and huffcode[] are filled in code-length order,
+   * paralleling the order of the symbols themselves in htbl->huffval[].
+   */
+
+  /* Find the input Huffman table */
+  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
+    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+  htbl =
+    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
+  if (htbl == NULL)
+    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+
+  /* Allocate a workspace if we haven't already done so. */
+  if (*pdtbl == NULL)
+    *pdtbl = (d_derived_tbl *)
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  SIZEOF(d_derived_tbl));
+  dtbl = *pdtbl;
+  dtbl->pub = htbl;		/* fill in back link */
+  
+  /* Figure C.1: make table of Huffman code length for each symbol */
+
+  p = 0;
+  for (l = 1; l <= 16; l++) {
+    i = (int) htbl->bits[l];
+    if (i < 0 || p + i > 256)	/* protect against table overrun */
+      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+    while (i--)
+      huffsize[p++] = (char) l;
+  }
+  huffsize[p] = 0;
+  numsymbols = p;
+  
+  /* Figure C.2: generate the codes themselves */
+  /* We also validate that the counts represent a legal Huffman code tree. */
+  
+  code = 0;
+  si = huffsize[0];
+  p = 0;
+  while (huffsize[p]) {
+    while (((int) huffsize[p]) == si) {
+      huffcode[p++] = code;
+      code++;
+    }
+    /* code is now 1 more than the last code used for codelength si; but
+     * it must still fit in si bits, since no code is allowed to be all ones.
+     */
+    if (((INT32) code) >= (((INT32) 1) << si))
+      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+    code <<= 1;
+    si++;
+  }
+
+  /* Figure F.15: generate decoding tables for bit-sequential decoding */
+
+  p = 0;
+  for (l = 1; l <= 16; l++) {
+    if (htbl->bits[l]) {
+      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
+       * minus the minimum code of length l
+       */
+      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
+      p += htbl->bits[l];
+      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
+    } else {
+      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
+    }
+  }
+  dtbl->valoffset[17] = 0;
+  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
+
+  /* Compute lookahead tables to speed up decoding.
+   * First we set all the table entries to 0, indicating "too long";
+   * then we iterate through the Huffman codes that are short enough and
+   * fill in all the entries that correspond to bit sequences starting
+   * with that code.
+   */
+
+   for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
+     dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
+
+  p = 0;
+  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
+    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
+      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
+      /* Generate left-justified code followed by all possible bit sequences */
+      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
+      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
+	dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
+	lookbits++;
+      }
+    }
+  }
+
+  /* Validate symbols as being reasonable.
+   * For AC tables, we make no check, but accept all byte values 0..255.
+   * For DC tables, we require the symbols to be in range 0..15.
+   * (Tighter bounds could be applied depending on the data depth and mode,
+   * but this is sufficient to ensure safe decoding.)
+   */
+  if (isDC) {
+    for (i = 0; i < numsymbols; i++) {
+      int sym = htbl->huffval[i];
+      if (sym < 0 || sym > 15)
+	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+    }
+  }
+}
+
+
+/*
+ * Out-of-line code for bit fetching (shared with jdphuff.c).
+ * See jdhuff.h for info about usage.
+ * Note: current values of get_buffer and bits_left are passed as parameters,
+ * but are returned in the corresponding fields of the state struct.
+ *
+ * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
+ * of get_buffer to be used.  (On machines with wider words, an even larger
+ * buffer could be used.)  However, on some machines 32-bit shifts are
+ * quite slow and take time proportional to the number of places shifted.
+ * (This is true with most PC compilers, for instance.)  In this case it may
+ * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
+ * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
+ */
+
+#ifdef SLOW_SHIFT_32
+#define MIN_GET_BITS  15	/* minimum allowable value */
+#else
+#define MIN_GET_BITS  (BIT_BUF_SIZE-7)
+#endif
+
+
+GLOBAL(boolean)
+jpeg_fill_bit_buffer (bitread_working_state * state,
+		      register bit_buf_type get_buffer, register int bits_left,
+		      int nbits)
+/* Load up the bit buffer to a depth of at least nbits */
+{
+  /* Copy heavily used state fields into locals (hopefully registers) */
+  register const JOCTET * next_input_byte = state->next_input_byte;
+  register size_t bytes_in_buffer = state->bytes_in_buffer;
+  j_decompress_ptr cinfo = state->cinfo;
+
+  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
+  /* (It is assumed that no request will be for more than that many bits.) */
+  /* We fail to do so only if we hit a marker or are forced to suspend. */
+
+  if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
+    while (bits_left < MIN_GET_BITS) {
+      register int c;
+
+      /* Attempt to read a byte */
+      if (bytes_in_buffer == 0) {
+	if (! (*cinfo->src->fill_input_buffer) (cinfo))
+	  return FALSE;
+	next_input_byte = cinfo->src->next_input_byte;
+	bytes_in_buffer = cinfo->src->bytes_in_buffer;
+      }
+      bytes_in_buffer--;
+      c = GETJOCTET(*next_input_byte++);
+
+      /* If it's 0xFF, check and discard stuffed zero byte */
+      if (c == 0xFF) {
+	/* Loop here to discard any padding FF's on terminating marker,
+	 * so that we can save a valid unread_marker value.  NOTE: we will
+	 * accept multiple FF's followed by a 0 as meaning a single FF data
+	 * byte.  This data pattern is not valid according to the standard.
+	 */
+	do {
+	  if (bytes_in_buffer == 0) {
+	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
+	      return FALSE;
+	    next_input_byte = cinfo->src->next_input_byte;
+	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
+	  }
+	  bytes_in_buffer--;
+	  c = GETJOCTET(*next_input_byte++);
+	} while (c == 0xFF);
+
+	if (c == 0) {
+	  /* Found FF/00, which represents an FF data byte */
+	  c = 0xFF;
+	} else {
+	  /* Oops, it's actually a marker indicating end of compressed data.
+	   * Save the marker code for later use.
+	   * Fine point: it might appear that we should save the marker into
+	   * bitread working state, not straight into permanent state.  But
+	   * once we have hit a marker, we cannot need to suspend within the
+	   * current MCU, because we will read no more bytes from the data
+	   * source.  So it is OK to update permanent state right away.
+	   */
+	  cinfo->unread_marker = c;
+	  /* See if we need to insert some fake zero bits. */
+	  goto no_more_bytes;
+	}
+      }
+
+      /* OK, load c into get_buffer */
+      get_buffer = (get_buffer << 8) | c;
+      bits_left += 8;
+    } /* end while */
+  } else {
+  no_more_bytes:
+    /* We get here if we've read the marker that terminates the compressed
+     * data segment.  There should be enough bits in the buffer register
+     * to satisfy the request; if so, no problem.
+     */
+    if (nbits > bits_left) {
+      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
+       * the data stream, so that we can produce some kind of image.
+       * We use a nonvolatile flag to ensure that only one warning message
+       * appears per data segment.
+       */
+      if (! cinfo->entropy->insufficient_data) {
+	WARNMS(cinfo, JWRN_HIT_MARKER);
+	cinfo->entropy->insufficient_data = TRUE;
+      }
+      /* Fill the buffer with zero bits */
+      get_buffer <<= MIN_GET_BITS - bits_left;
+      bits_left = MIN_GET_BITS;
+    }
+  }
+
+  /* Unload the local registers */
+  state->next_input_byte = next_input_byte;
+  state->bytes_in_buffer = bytes_in_buffer;
+  state->get_buffer = get_buffer;
+  state->bits_left = bits_left;
+
+  return TRUE;
+}
+
+
+/* Macro version of the above, which performs much better but does not
+   handle markers.  We have to hand off any blocks with markers to the
+   slower routines. */
+
+#define GET_BYTE \
+{ \
+  register int c0, c1; \
+  c0 = GETJOCTET(*buffer++); \
+  c1 = GETJOCTET(*buffer); \
+  /* Pre-execute most common case */ \
+  get_buffer = (get_buffer << 8) | c0; \
+  bits_left += 8; \
+  if (c0 == 0xFF) { \
+    /* Pre-execute case of FF/00, which represents an FF data byte */ \
+    buffer++; \
+    if (c1 != 0) { \
+      /* Oops, it's actually a marker indicating end of compressed data. */ \
+      cinfo->unread_marker = c1; \
+      /* Back out pre-execution and fill the buffer with zero bits */ \
+      buffer -= 2; \
+      get_buffer &= ~0xFF; \
+    } \
+  } \
+}
+
+#if __WORDSIZE == 64 || defined(_WIN64)
+
+/* Pre-fetch 48 bytes, because the holding register is 64-bit */
+#define FILL_BIT_BUFFER_FAST \
+  if (bits_left < 16) { \
+    GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
+  }
+
+#else
+
+/* Pre-fetch 16 bytes, because the holding register is 32-bit */
+#define FILL_BIT_BUFFER_FAST \
+  if (bits_left < 16) { \
+    GET_BYTE GET_BYTE \
+  }
+
+#endif
+
+
+/*
+ * Out-of-line code for Huffman code decoding.
+ * See jdhuff.h for info about usage.
+ */
+
+GLOBAL(int)
+jpeg_huff_decode (bitread_working_state * state,
+		  register bit_buf_type get_buffer, register int bits_left,
+		  d_derived_tbl * htbl, int min_bits)
+{
+  register int l = min_bits;
+  register INT32 code;
+
+  /* HUFF_DECODE has determined that the code is at least min_bits */
+  /* bits long, so fetch that many bits in one swoop. */
+
+  CHECK_BIT_BUFFER(*state, l, return -1);
+  code = GET_BITS(l);
+
+  /* Collect the rest of the Huffman code one bit at a time. */
+  /* This is per Figure F.16 in the JPEG spec. */
+
+  while (code > htbl->maxcode[l]) {
+    code <<= 1;
+    CHECK_BIT_BUFFER(*state, 1, return -1);
+    code |= GET_BITS(1);
+    l++;
+  }
+
+  /* Unload the local registers */
+  state->get_buffer = get_buffer;
+  state->bits_left = bits_left;
+
+  /* With garbage input we may reach the sentinel value l = 17. */
+
+  if (l > 16) {
+    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
+    return 0;			/* fake a zero as the safest result */
+  }
+
+  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
+}
+
+
+/*
+ * Figure F.12: extend sign bit.
+ * On some machines, a shift and add will be faster than a table lookup.
+ */
+
+#define AVOID_TABLES
+#ifdef AVOID_TABLES
+
+#define HUFF_EXTEND(x,s)  ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((-1)<<(s)) + 1)))
+
+#else
+
+#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
+
+static const int extend_test[16] =   /* entry n is 2**(n-1) */
+  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
+    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
+
+static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
+  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
+    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
+    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
+    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
+
+#endif /* AVOID_TABLES */
+
+
+/*
+ * Check for a restart marker & resynchronize decoder.
+ * Returns FALSE if must suspend.
+ */
+
+LOCAL(boolean)
+process_restart (j_decompress_ptr cinfo)
+{
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  int ci;
+
+  /* Throw away any unused bits remaining in bit buffer; */
+  /* include any full bytes in next_marker's count of discarded bytes */
+  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
+  entropy->bitstate.bits_left = 0;
+
+  /* Advance past the RSTn marker */
+  if (! (*cinfo->marker->read_restart_marker) (cinfo))
+    return FALSE;
+
+  /* Re-initialize DC predictions to 0 */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
+    entropy->saved.last_dc_val[ci] = 0;
+
+  /* Reset restart counter */
+  entropy->restarts_to_go = cinfo->restart_interval;
+
+  /* Reset out-of-data flag, unless read_restart_marker left us smack up
+   * against a marker.  In that case we will end up treating the next data
+   * segment as empty, and we can avoid producing bogus output pixels by
+   * leaving the flag set.
+   */
+  if (cinfo->unread_marker == 0)
+    entropy->pub.insufficient_data = FALSE;
+
+  return TRUE;
+}
+
+
+LOCAL(boolean)
+decode_mcu_slow (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  BITREAD_STATE_VARS;
+  int blkn;
+  savable_state state;
+  /* Outer loop handles each block in the MCU */
+
+  /* Load up working state */
+  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+  ASSIGN_STATE(state, entropy->saved);
+
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    JBLOCKROW block = MCU_data[blkn];
+    d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
+    d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
+    register int s, k, r;
+
+    /* Decode a single block's worth of coefficients */
+
+    /* Section F.2.2.1: decode the DC coefficient difference */
+    HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
+    if (s) {
+      CHECK_BIT_BUFFER(br_state, s, return FALSE);
+      r = GET_BITS(s);
+      s = HUFF_EXTEND(r, s);
+    }
+
+    if (entropy->dc_needed[blkn]) {
+      /* Convert DC difference to actual value, update last_dc_val */
+      int ci = cinfo->MCU_membership[blkn];
+      s += state.last_dc_val[ci];
+      state.last_dc_val[ci] = s;
+      /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
+      (*block)[0] = (JCOEF) s;
+    }
+
+    if (entropy->ac_needed[blkn]) {
+
+      /* Section F.2.2.2: decode the AC coefficients */
+      /* Since zeroes are skipped, output area must be cleared beforehand */
+      for (k = 1; k < DCTSIZE2; k++) {
+        HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
+
+        r = s >> 4;
+        s &= 15;
+      
+        if (s) {
+          k += r;
+          CHECK_BIT_BUFFER(br_state, s, return FALSE);
+          r = GET_BITS(s);
+          s = HUFF_EXTEND(r, s);
+          /* Output coefficient in natural (dezigzagged) order.
+           * Note: the extra entries in jpeg_natural_order[] will save us
+           * if k >= DCTSIZE2, which could happen if the data is corrupted.
+           */
+          (*block)[jpeg_natural_order[k]] = (JCOEF) s;
+        } else {
+          if (r != 15)
+            break;
+          k += 15;
+        }
+      }
+
+    } else {
+
+      /* Section F.2.2.2: decode the AC coefficients */
+      /* In this path we just discard the values */
+      for (k = 1; k < DCTSIZE2; k++) {
+        HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
+
+        r = s >> 4;
+        s &= 15;
+
+        if (s) {
+          k += r;
+          CHECK_BIT_BUFFER(br_state, s, return FALSE);
+          DROP_BITS(s);
+        } else {
+          if (r != 15)
+            break;
+          k += 15;
+        }
+      }
+    }
+  }
+
+  /* Completed MCU, so update state */
+  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+  ASSIGN_STATE(entropy->saved, state);
+  return TRUE;
+}
+
+
+LOCAL(boolean)
+decode_mcu_fast (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  BITREAD_STATE_VARS;
+  JOCTET *buffer;
+  int blkn;
+  savable_state state;
+  /* Outer loop handles each block in the MCU */
+
+  /* Load up working state */
+  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+  buffer = (JOCTET *) br_state.next_input_byte;
+  ASSIGN_STATE(state, entropy->saved);
+
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    JBLOCKROW block = MCU_data[blkn];
+    d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
+    d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
+    register int s, k, r, l;
+
+    HUFF_DECODE_FAST(s, l, dctbl);
+    if (s) {
+      FILL_BIT_BUFFER_FAST
+      r = GET_BITS(s);
+      s = HUFF_EXTEND(r, s);
+    }
+
+    if (entropy->dc_needed[blkn]) {
+      int ci = cinfo->MCU_membership[blkn];
+      s += state.last_dc_val[ci];
+      state.last_dc_val[ci] = s;
+      (*block)[0] = (JCOEF) s;
+    }
+
+    if (entropy->ac_needed[blkn]) {
+
+      for (k = 1; k < DCTSIZE2; k++) {
+        HUFF_DECODE_FAST(s, l, actbl);
+        r = s >> 4;
+        s &= 15;
+      
+        if (s) {
+          k += r;
+          FILL_BIT_BUFFER_FAST
+          r = GET_BITS(s);
+          s = HUFF_EXTEND(r, s);
+          (*block)[jpeg_natural_order[k]] = (JCOEF) s;
+        } else {
+          if (r != 15) break;
+          k += 15;
+        }
+      }
+
+    } else {
+
+      for (k = 1; k < DCTSIZE2; k++) {
+        HUFF_DECODE_FAST(s, l, actbl);
+        r = s >> 4;
+        s &= 15;
+
+        if (s) {
+          k += r;
+          FILL_BIT_BUFFER_FAST
+          DROP_BITS(s);
+        } else {
+          if (r != 15) break;
+          k += 15;
+        }
+      }
+    }
+  }
+
+  if (cinfo->unread_marker != 0) {
+    cinfo->unread_marker = 0;
+    return FALSE;
+  }
+
+  br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
+  br_state.next_input_byte = buffer;
+  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+  ASSIGN_STATE(entropy->saved, state);
+  return TRUE;
+}
+
+
+/*
+ * Decode and return one MCU's worth of Huffman-compressed coefficients.
+ * The coefficients are reordered from zigzag order into natural array order,
+ * but are not dequantized.
+ *
+ * The i'th block of the MCU is stored into the block pointed to by
+ * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
+ * (Wholesale zeroing is usually a little faster than retail...)
+ *
+ * Returns FALSE if data source requested suspension.  In that case no
+ * changes have been made to permanent state.  (Exception: some output
+ * coefficients may already have been assigned.  This is harmless for
+ * this module, since we'll just re-assign them on the next call.)
+ */
+
+#define BUFSIZE (DCTSIZE2 * 2)
+
+METHODDEF(boolean)
+decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  int usefast = 1;
+
+  /* Process restart marker if needed; may have to suspend */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      if (! process_restart(cinfo))
+	return FALSE;
+    usefast = 0;
+  }
+
+  if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU
+    || cinfo->unread_marker != 0)
+    usefast = 0;
+
+  /* If we've run out of data, just leave the MCU set to zeroes.
+   * This way, we return uniform gray for the remainder of the segment.
+   */
+  if (! entropy->pub.insufficient_data) {
+
+    if (usefast) {
+      if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
+    }
+    else {
+      use_slow:
+      if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
+    }
+
+  }
+
+  /* Account for restart interval (no-op if not using restarts) */
+  entropy->restarts_to_go--;
+
+  return TRUE;
+}
+
+
+/*
+ * Module initialization routine for Huffman entropy decoding.
+ */
+
+GLOBAL(void)
+jinit_huff_decoder (j_decompress_ptr cinfo)
+{
+  huff_entropy_ptr entropy;
+  int i;
+
+  entropy = (huff_entropy_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(huff_entropy_decoder));
+  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
+  entropy->pub.start_pass = start_pass_huff_decoder;
+  entropy->pub.decode_mcu = decode_mcu;
+
+  /* Mark tables unallocated */
+  for (i = 0; i < NUM_HUFF_TBLS; i++) {
+    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
+  }
+}

=== added file 'src/libjpeg-turbo/jdhuff.h'
--- src/libjpeg-turbo/jdhuff.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdhuff.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,234 @@ 
+/*
+ * jdhuff.h
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Copyright (C) 2010-2011, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains declarations for Huffman entropy decoding routines
+ * that are shared between the sequential decoder (jdhuff.c) and the
+ * progressive decoder (jdphuff.c).  No other modules need to see these.
+ */
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_make_d_derived_tbl	jMkDDerived
+#define jpeg_fill_bit_buffer	jFilBitBuf
+#define jpeg_huff_decode	jHufDecode
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/* Derived data constructed for each Huffman table */
+
+#define HUFF_LOOKAHEAD	8	/* # of bits of lookahead */
+
+typedef struct {
+  /* Basic tables: (element [0] of each array is unused) */
+  INT32 maxcode[18];		/* largest code of length k (-1 if none) */
+  /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
+  INT32 valoffset[18];		/* huffval[] offset for codes of length k */
+  /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
+   * the smallest code of length k; so given a code of length k, the
+   * corresponding symbol is huffval[code + valoffset[k]]
+   */
+
+  /* Link to public Huffman table (needed only in jpeg_huff_decode) */
+  JHUFF_TBL *pub;
+
+  /* Lookahead table: indexed by the next HUFF_LOOKAHEAD bits of
+   * the input data stream.  If the next Huffman code is no more
+   * than HUFF_LOOKAHEAD bits long, we can obtain its length and
+   * the corresponding symbol directly from this tables.
+   *
+   * The lower 8 bits of each table entry contain the number of
+   * bits in the corresponding Huffman code, or HUFF_LOOKAHEAD + 1
+   * if too long.  The next 8 bits of each entry contain the
+   * symbol.
+   */
+  int lookup[1<<HUFF_LOOKAHEAD];
+} d_derived_tbl;
+
+/* Expand a Huffman table definition into the derived format */
+EXTERN(void) jpeg_make_d_derived_tbl
+	JPP((j_decompress_ptr cinfo, boolean isDC, int tblno,
+	     d_derived_tbl ** pdtbl));
+
+
+/*
+ * Fetching the next N bits from the input stream is a time-critical operation
+ * for the Huffman decoders.  We implement it with a combination of inline
+ * macros and out-of-line subroutines.  Note that N (the number of bits
+ * demanded at one time) never exceeds 15 for JPEG use.
+ *
+ * We read source bytes into get_buffer and dole out bits as needed.
+ * If get_buffer already contains enough bits, they are fetched in-line
+ * by the macros CHECK_BIT_BUFFER and GET_BITS.  When there aren't enough
+ * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
+ * as full as possible (not just to the number of bits needed; this
+ * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
+ * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
+ * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
+ * at least the requested number of bits --- dummy zeroes are inserted if
+ * necessary.
+ */
+
+#if __WORDSIZE == 64 || defined(_WIN64)
+
+typedef size_t bit_buf_type;	/* type of bit-extraction buffer */
+#define BIT_BUF_SIZE  64		/* size of buffer in bits */
+
+#else
+
+typedef INT32 bit_buf_type;	/* type of bit-extraction buffer */
+#define BIT_BUF_SIZE  32		/* size of buffer in bits */
+
+#endif
+
+/* If long is > 32 bits on your machine, and shifting/masking longs is
+ * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
+ * appropriately should be a win.  Unfortunately we can't define the size
+ * with something like  #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
+ * because not all machines measure sizeof in 8-bit bytes.
+ */
+
+typedef struct {		/* Bitreading state saved across MCUs */
+  bit_buf_type get_buffer;	/* current bit-extraction buffer */
+  int bits_left;		/* # of unused bits in it */
+} bitread_perm_state;
+
+typedef struct {		/* Bitreading working state within an MCU */
+  /* Current data source location */
+  /* We need a copy, rather than munging the original, in case of suspension */
+  const JOCTET * next_input_byte; /* => next byte to read from source */
+  size_t bytes_in_buffer;	/* # of bytes remaining in source buffer */
+  /* Bit input buffer --- note these values are kept in register variables,
+   * not in this struct, inside the inner loops.
+   */
+  bit_buf_type get_buffer;	/* current bit-extraction buffer */
+  int bits_left;		/* # of unused bits in it */
+  /* Pointer needed by jpeg_fill_bit_buffer. */
+  j_decompress_ptr cinfo;	/* back link to decompress master record */
+} bitread_working_state;
+
+/* Macros to declare and load/save bitread local variables. */
+#define BITREAD_STATE_VARS  \
+	register bit_buf_type get_buffer;  \
+	register int bits_left;  \
+	bitread_working_state br_state
+
+#define BITREAD_LOAD_STATE(cinfop,permstate)  \
+	br_state.cinfo = cinfop; \
+	br_state.next_input_byte = cinfop->src->next_input_byte; \
+	br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
+	get_buffer = permstate.get_buffer; \
+	bits_left = permstate.bits_left;
+
+#define BITREAD_SAVE_STATE(cinfop,permstate)  \
+	cinfop->src->next_input_byte = br_state.next_input_byte; \
+	cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
+	permstate.get_buffer = get_buffer; \
+	permstate.bits_left = bits_left
+
+/*
+ * These macros provide the in-line portion of bit fetching.
+ * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
+ * before using GET_BITS, PEEK_BITS, or DROP_BITS.
+ * The variables get_buffer and bits_left are assumed to be locals,
+ * but the state struct might not be (jpeg_huff_decode needs this).
+ *	CHECK_BIT_BUFFER(state,n,action);
+ *		Ensure there are N bits in get_buffer; if suspend, take action.
+ *      val = GET_BITS(n);
+ *		Fetch next N bits.
+ *      val = PEEK_BITS(n);
+ *		Fetch next N bits without removing them from the buffer.
+ *	DROP_BITS(n);
+ *		Discard next N bits.
+ * The value N should be a simple variable, not an expression, because it
+ * is evaluated multiple times.
+ */
+
+#define CHECK_BIT_BUFFER(state,nbits,action) \
+	{ if (bits_left < (nbits)) {  \
+	    if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits))  \
+	      { action; }  \
+	    get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
+
+#define GET_BITS(nbits) \
+	(((int) (get_buffer >> (bits_left -= (nbits)))) & ((1<<(nbits))-1))
+
+#define PEEK_BITS(nbits) \
+	(((int) (get_buffer >> (bits_left -  (nbits)))) & ((1<<(nbits))-1))
+
+#define DROP_BITS(nbits) \
+	(bits_left -= (nbits))
+
+/* Load up the bit buffer to a depth of at least nbits */
+EXTERN(boolean) jpeg_fill_bit_buffer
+	JPP((bitread_working_state * state, register bit_buf_type get_buffer,
+	     register int bits_left, int nbits));
+
+
+/*
+ * Code for extracting next Huffman-coded symbol from input bit stream.
+ * Again, this is time-critical and we make the main paths be macros.
+ *
+ * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
+ * without looping.  Usually, more than 95% of the Huffman codes will be 8
+ * or fewer bits long.  The few overlength codes are handled with a loop,
+ * which need not be inline code.
+ *
+ * Notes about the HUFF_DECODE macro:
+ * 1. Near the end of the data segment, we may fail to get enough bits
+ *    for a lookahead.  In that case, we do it the hard way.
+ * 2. If the lookahead table contains no entry, the next code must be
+ *    more than HUFF_LOOKAHEAD bits long.
+ * 3. jpeg_huff_decode returns -1 if forced to suspend.
+ */
+
+#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
+{ register int nb, look; \
+  if (bits_left < HUFF_LOOKAHEAD) { \
+    if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
+    get_buffer = state.get_buffer; bits_left = state.bits_left; \
+    if (bits_left < HUFF_LOOKAHEAD) { \
+      nb = 1; goto slowlabel; \
+    } \
+  } \
+  look = PEEK_BITS(HUFF_LOOKAHEAD); \
+  if ((nb = (htbl->lookup[look] >> HUFF_LOOKAHEAD)) <= HUFF_LOOKAHEAD) { \
+    DROP_BITS(nb); \
+    result = htbl->lookup[look] & ((1 << HUFF_LOOKAHEAD) - 1); \
+  } else { \
+slowlabel: \
+    if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
+	{ failaction; } \
+    get_buffer = state.get_buffer; bits_left = state.bits_left; \
+  } \
+}
+
+#define HUFF_DECODE_FAST(s,nb,htbl) \
+  FILL_BIT_BUFFER_FAST; \
+  s = PEEK_BITS(HUFF_LOOKAHEAD); \
+  s = htbl->lookup[s]; \
+  nb = s >> HUFF_LOOKAHEAD; \
+  /* Pre-execute the common case of nb <= HUFF_LOOKAHEAD */ \
+  DROP_BITS(nb); \
+  s = s & ((1 << HUFF_LOOKAHEAD) - 1); \
+  if (nb > HUFF_LOOKAHEAD) { \
+    /* Equivalent of jpeg_huff_decode() */ \
+    /* Don't use GET_BITS() here because we don't want to modify bits_left */ \
+    s = (get_buffer >> bits_left) & ((1 << (nb)) - 1); \
+    while (s > htbl->maxcode[nb]) { \
+      s <<= 1; \
+      s |= GET_BITS(1); \
+      nb++; \
+    } \
+    s = htbl->pub->huffval[ (int) (s + htbl->valoffset[nb]) & 0xFF ]; \
+  }
+
+/* Out-of-line case for Huffman code fetching */
+EXTERN(int) jpeg_huff_decode
+	JPP((bitread_working_state * state, register bit_buf_type get_buffer,
+	     register int bits_left, d_derived_tbl * htbl, int min_bits));

=== added file 'src/libjpeg-turbo/jdinput.c'
--- src/libjpeg-turbo/jdinput.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdinput.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,471 @@ 
+/*
+ * jdinput.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2002-2009 by Guido Vollbeding.
+ * Copyright (C) 2010, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains input control logic for the JPEG decompressor.
+ * These routines are concerned with controlling the decompressor's input
+ * processing (marker reading and coefficient decoding).  The actual input
+ * reading is done in jdmarker.c, jdhuff.c, and jdphuff.c.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jpegcomp.h"
+
+
+/* Private state */
+
+typedef struct {
+  struct jpeg_input_controller pub; /* public fields */
+
+  boolean inheaders;		/* TRUE until first SOS is reached */
+} my_input_controller;
+
+typedef my_input_controller * my_inputctl_ptr;
+
+
+/* Forward declarations */
+METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo));
+
+
+/*
+ * Routines to calculate various quantities related to the size of the image.
+ */
+
+
+#if JPEG_LIB_VERSION >= 80
+/*
+ * Compute output image dimensions and related values.
+ * NOTE: this is exported for possible use by application.
+ * Hence it mustn't do anything that can't be done twice.
+ */
+
+GLOBAL(void)
+jpeg_core_output_dimensions (j_decompress_ptr cinfo)
+/* Do computations that are needed before master selection phase.
+ * This function is used for transcoding and full decompression.
+ */
+{
+#ifdef IDCT_SCALING_SUPPORTED
+  int ci;
+  jpeg_component_info *compptr;
+
+  /* Compute actual output image dimensions and DCT scaling choices. */
+  if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom) {
+    /* Provide 1/block_size scaling */
+    cinfo->output_width = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_width, (long) cinfo->block_size);
+    cinfo->output_height = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_height, (long) cinfo->block_size);
+    cinfo->min_DCT_h_scaled_size = 1;
+    cinfo->min_DCT_v_scaled_size = 1;
+  } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 2) {
+    /* Provide 2/block_size scaling */
+    cinfo->output_width = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_width * 2L, (long) cinfo->block_size);
+    cinfo->output_height = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_height * 2L, (long) cinfo->block_size);
+    cinfo->min_DCT_h_scaled_size = 2;
+    cinfo->min_DCT_v_scaled_size = 2;
+  } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 4) {
+    /* Provide 4/block_size scaling */
+    cinfo->output_width = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_width * 4L, (long) cinfo->block_size);
+    cinfo->output_height = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_height * 4L, (long) cinfo->block_size);
+    cinfo->min_DCT_h_scaled_size = 4;
+    cinfo->min_DCT_v_scaled_size = 4;
+  } else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 8) {
+    /* Provide 8/block_size scaling */
+    cinfo->output_width = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_width * 8L, (long) cinfo->block_size);
+    cinfo->output_height = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_height * 8L, (long) cinfo->block_size);
+    cinfo->min_DCT_h_scaled_size = 8;
+    cinfo->min_DCT_v_scaled_size = 8;
+  }
+  /* Recompute dimensions of components */
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size;
+    compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size;
+  }
+
+#else /* !IDCT_SCALING_SUPPORTED */
+
+  /* Hardwire it to "no scaling" */
+  cinfo->output_width = cinfo->image_width;
+  cinfo->output_height = cinfo->image_height;
+  /* jdinput.c has already initialized DCT_scaled_size,
+   * and has computed unscaled downsampled_width and downsampled_height.
+   */
+
+#endif /* IDCT_SCALING_SUPPORTED */
+}
+#endif
+
+
+LOCAL(void)
+initial_setup (j_decompress_ptr cinfo)
+/* Called once, when first SOS marker is reached */
+{
+  int ci;
+  jpeg_component_info *compptr;
+
+  /* Make sure image isn't bigger than I can handle */
+  if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
+      (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
+    ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
+
+  /* For now, precision must match compiled-in value... */
+  if (cinfo->data_precision != BITS_IN_JSAMPLE)
+    ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
+
+  /* Check that number of components won't exceed internal array sizes */
+  if (cinfo->num_components > MAX_COMPONENTS)
+    ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+	     MAX_COMPONENTS);
+
+  /* Compute maximum sampling factors; check factor validity */
+  cinfo->max_h_samp_factor = 1;
+  cinfo->max_v_samp_factor = 1;
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
+	compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
+      ERREXIT(cinfo, JERR_BAD_SAMPLING);
+    cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
+				   compptr->h_samp_factor);
+    cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
+				   compptr->v_samp_factor);
+  }
+
+#if JPEG_LIB_VERSION >=80
+    cinfo->block_size = DCTSIZE;
+    cinfo->natural_order = jpeg_natural_order;
+    cinfo->lim_Se = DCTSIZE2-1;
+#endif
+
+  /* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE.
+   * In the full decompressor, this will be overridden by jdmaster.c;
+   * but in the transcoder, jdmaster.c is not used, so we must do it here.
+   */
+#if JPEG_LIB_VERSION >= 70
+  cinfo->min_DCT_h_scaled_size = cinfo->min_DCT_v_scaled_size = DCTSIZE;
+#else
+  cinfo->min_DCT_scaled_size = DCTSIZE;
+#endif
+
+  /* Compute dimensions of components */
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+#if JPEG_LIB_VERSION >= 70
+    compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = DCTSIZE;
+#else
+    compptr->DCT_scaled_size = DCTSIZE;
+#endif
+    /* Size in DCT blocks */
+    compptr->width_in_blocks = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
+		    (long) (cinfo->max_h_samp_factor * DCTSIZE));
+    compptr->height_in_blocks = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
+		    (long) (cinfo->max_v_samp_factor * DCTSIZE));
+    /* downsampled_width and downsampled_height will also be overridden by
+     * jdmaster.c if we are doing full decompression.  The transcoder library
+     * doesn't use these values, but the calling application might.
+     */
+    /* Size in samples */
+    compptr->downsampled_width = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
+		    (long) cinfo->max_h_samp_factor);
+    compptr->downsampled_height = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
+		    (long) cinfo->max_v_samp_factor);
+    /* Mark component needed, until color conversion says otherwise */
+    compptr->component_needed = TRUE;
+    /* Mark no quantization table yet saved for component */
+    compptr->quant_table = NULL;
+  }
+
+  /* Compute number of fully interleaved MCU rows. */
+  cinfo->total_iMCU_rows = (JDIMENSION)
+    jdiv_round_up((long) cinfo->image_height,
+		  (long) (cinfo->max_v_samp_factor*DCTSIZE));
+
+  /* Decide whether file contains multiple scans */
+  if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
+    cinfo->inputctl->has_multiple_scans = TRUE;
+  else
+    cinfo->inputctl->has_multiple_scans = FALSE;
+}
+
+
+LOCAL(void)
+per_scan_setup (j_decompress_ptr cinfo)
+/* Do computations that are needed before processing a JPEG scan */
+/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
+{
+  int ci, mcublks, tmp;
+  jpeg_component_info *compptr;
+  
+  if (cinfo->comps_in_scan == 1) {
+    
+    /* Noninterleaved (single-component) scan */
+    compptr = cinfo->cur_comp_info[0];
+    
+    /* Overall image size in MCUs */
+    cinfo->MCUs_per_row = compptr->width_in_blocks;
+    cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
+    
+    /* For noninterleaved scan, always one block per MCU */
+    compptr->MCU_width = 1;
+    compptr->MCU_height = 1;
+    compptr->MCU_blocks = 1;
+    compptr->MCU_sample_width = compptr->_DCT_scaled_size;
+    compptr->last_col_width = 1;
+    /* For noninterleaved scans, it is convenient to define last_row_height
+     * as the number of block rows present in the last iMCU row.
+     */
+    tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+    if (tmp == 0) tmp = compptr->v_samp_factor;
+    compptr->last_row_height = tmp;
+    
+    /* Prepare array describing MCU composition */
+    cinfo->blocks_in_MCU = 1;
+    cinfo->MCU_membership[0] = 0;
+    
+  } else {
+    
+    /* Interleaved (multi-component) scan */
+    if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
+      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
+	       MAX_COMPS_IN_SCAN);
+    
+    /* Overall image size in MCUs */
+    cinfo->MCUs_per_row = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_width,
+		    (long) (cinfo->max_h_samp_factor*DCTSIZE));
+    cinfo->MCU_rows_in_scan = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_height,
+		    (long) (cinfo->max_v_samp_factor*DCTSIZE));
+    
+    cinfo->blocks_in_MCU = 0;
+    
+    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+      compptr = cinfo->cur_comp_info[ci];
+      /* Sampling factors give # of blocks of component in each MCU */
+      compptr->MCU_width = compptr->h_samp_factor;
+      compptr->MCU_height = compptr->v_samp_factor;
+      compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
+      compptr->MCU_sample_width = compptr->MCU_width * compptr->_DCT_scaled_size;
+      /* Figure number of non-dummy blocks in last MCU column & row */
+      tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
+      if (tmp == 0) tmp = compptr->MCU_width;
+      compptr->last_col_width = tmp;
+      tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
+      if (tmp == 0) tmp = compptr->MCU_height;
+      compptr->last_row_height = tmp;
+      /* Prepare array describing MCU composition */
+      mcublks = compptr->MCU_blocks;
+      if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
+	ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
+      while (mcublks-- > 0) {
+	cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
+      }
+    }
+    
+  }
+}
+
+
+/*
+ * Save away a copy of the Q-table referenced by each component present
+ * in the current scan, unless already saved during a prior scan.
+ *
+ * In a multiple-scan JPEG file, the encoder could assign different components
+ * the same Q-table slot number, but change table definitions between scans
+ * so that each component uses a different Q-table.  (The IJG encoder is not
+ * currently capable of doing this, but other encoders might.)  Since we want
+ * to be able to dequantize all the components at the end of the file, this
+ * means that we have to save away the table actually used for each component.
+ * We do this by copying the table at the start of the first scan containing
+ * the component.
+ * The JPEG spec prohibits the encoder from changing the contents of a Q-table
+ * slot between scans of a component using that slot.  If the encoder does so
+ * anyway, this decoder will simply use the Q-table values that were current
+ * at the start of the first scan for the component.
+ *
+ * The decompressor output side looks only at the saved quant tables,
+ * not at the current Q-table slots.
+ */
+
+LOCAL(void)
+latch_quant_tables (j_decompress_ptr cinfo)
+{
+  int ci, qtblno;
+  jpeg_component_info *compptr;
+  JQUANT_TBL * qtbl;
+
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    /* No work if we already saved Q-table for this component */
+    if (compptr->quant_table != NULL)
+      continue;
+    /* Make sure specified quantization table is present */
+    qtblno = compptr->quant_tbl_no;
+    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
+	cinfo->quant_tbl_ptrs[qtblno] == NULL)
+      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
+    /* OK, save away the quantization table */
+    qtbl = (JQUANT_TBL *)
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  SIZEOF(JQUANT_TBL));
+    MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
+    compptr->quant_table = qtbl;
+  }
+}
+
+
+/*
+ * Initialize the input modules to read a scan of compressed data.
+ * The first call to this is done by jdmaster.c after initializing
+ * the entire decompressor (during jpeg_start_decompress).
+ * Subsequent calls come from consume_markers, below.
+ */
+
+METHODDEF(void)
+start_input_pass (j_decompress_ptr cinfo)
+{
+  per_scan_setup(cinfo);
+  latch_quant_tables(cinfo);
+  (*cinfo->entropy->start_pass) (cinfo);
+  (*cinfo->coef->start_input_pass) (cinfo);
+  cinfo->inputctl->consume_input = cinfo->coef->consume_data;
+}
+
+
+/*
+ * Finish up after inputting a compressed-data scan.
+ * This is called by the coefficient controller after it's read all
+ * the expected data of the scan.
+ */
+
+METHODDEF(void)
+finish_input_pass (j_decompress_ptr cinfo)
+{
+  cinfo->inputctl->consume_input = consume_markers;
+}
+
+
+/*
+ * Read JPEG markers before, between, or after compressed-data scans.
+ * Change state as necessary when a new scan is reached.
+ * Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+ *
+ * The consume_input method pointer points either here or to the
+ * coefficient controller's consume_data routine, depending on whether
+ * we are reading a compressed data segment or inter-segment markers.
+ */
+
+METHODDEF(int)
+consume_markers (j_decompress_ptr cinfo)
+{
+  my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
+  int val;
+
+  if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
+    return JPEG_REACHED_EOI;
+
+  val = (*cinfo->marker->read_markers) (cinfo);
+
+  switch (val) {
+  case JPEG_REACHED_SOS:	/* Found SOS */
+    if (inputctl->inheaders) {	/* 1st SOS */
+      initial_setup(cinfo);
+      inputctl->inheaders = FALSE;
+      /* Note: start_input_pass must be called by jdmaster.c
+       * before any more input can be consumed.  jdapimin.c is
+       * responsible for enforcing this sequencing.
+       */
+    } else {			/* 2nd or later SOS marker */
+      if (! inputctl->pub.has_multiple_scans)
+	ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
+      start_input_pass(cinfo);
+    }
+    break;
+  case JPEG_REACHED_EOI:	/* Found EOI */
+    inputctl->pub.eoi_reached = TRUE;
+    if (inputctl->inheaders) {	/* Tables-only datastream, apparently */
+      if (cinfo->marker->saw_SOF)
+	ERREXIT(cinfo, JERR_SOF_NO_SOS);
+    } else {
+      /* Prevent infinite loop in coef ctlr's decompress_data routine
+       * if user set output_scan_number larger than number of scans.
+       */
+      if (cinfo->output_scan_number > cinfo->input_scan_number)
+	cinfo->output_scan_number = cinfo->input_scan_number;
+    }
+    break;
+  case JPEG_SUSPENDED:
+    break;
+  }
+
+  return val;
+}
+
+
+/*
+ * Reset state to begin a fresh datastream.
+ */
+
+METHODDEF(void)
+reset_input_controller (j_decompress_ptr cinfo)
+{
+  my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
+
+  inputctl->pub.consume_input = consume_markers;
+  inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
+  inputctl->pub.eoi_reached = FALSE;
+  inputctl->inheaders = TRUE;
+  /* Reset other modules */
+  (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+  (*cinfo->marker->reset_marker_reader) (cinfo);
+  /* Reset progression state -- would be cleaner if entropy decoder did this */
+  cinfo->coef_bits = NULL;
+}
+
+
+/*
+ * Initialize the input controller module.
+ * This is called only once, when the decompression object is created.
+ */
+
+GLOBAL(void)
+jinit_input_controller (j_decompress_ptr cinfo)
+{
+  my_inputctl_ptr inputctl;
+
+  /* Create subobject in permanent pool */
+  inputctl = (my_inputctl_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+				SIZEOF(my_input_controller));
+  cinfo->inputctl = (struct jpeg_input_controller *) inputctl;
+  /* Initialize method pointers */
+  inputctl->pub.consume_input = consume_markers;
+  inputctl->pub.reset_input_controller = reset_input_controller;
+  inputctl->pub.start_input_pass = start_input_pass;
+  inputctl->pub.finish_input_pass = finish_input_pass;
+  /* Initialize state: can't use reset_input_controller since we don't
+   * want to try to reset other modules yet.
+   */
+  inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
+  inputctl->pub.eoi_reached = FALSE;
+  inputctl->inheaders = TRUE;
+}

=== added file 'src/libjpeg-turbo/jdmainct.c'
--- src/libjpeg-turbo/jdmainct.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdmainct.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,514 @@ 
+/*
+ * jdmainct.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Copyright (C) 2010, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the main buffer controller for decompression.
+ * The main buffer lies between the JPEG decompressor proper and the
+ * post-processor; it holds downsampled data in the JPEG colorspace.
+ *
+ * Note that this code is bypassed in raw-data mode, since the application
+ * supplies the equivalent of the main buffer in that case.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jpegcomp.h"
+
+
+/*
+ * In the current system design, the main buffer need never be a full-image
+ * buffer; any full-height buffers will be found inside the coefficient or
+ * postprocessing controllers.  Nonetheless, the main controller is not
+ * trivial.  Its responsibility is to provide context rows for upsampling/
+ * rescaling, and doing this in an efficient fashion is a bit tricky.
+ *
+ * Postprocessor input data is counted in "row groups".  A row group
+ * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
+ * sample rows of each component.  (We require DCT_scaled_size values to be
+ * chosen such that these numbers are integers.  In practice DCT_scaled_size
+ * values will likely be powers of two, so we actually have the stronger
+ * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
+ * Upsampling will typically produce max_v_samp_factor pixel rows from each
+ * row group (times any additional scale factor that the upsampler is
+ * applying).
+ *
+ * The coefficient controller will deliver data to us one iMCU row at a time;
+ * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
+ * exactly min_DCT_scaled_size row groups.  (This amount of data corresponds
+ * to one row of MCUs when the image is fully interleaved.)  Note that the
+ * number of sample rows varies across components, but the number of row
+ * groups does not.  Some garbage sample rows may be included in the last iMCU
+ * row at the bottom of the image.
+ *
+ * Depending on the vertical scaling algorithm used, the upsampler may need
+ * access to the sample row(s) above and below its current input row group.
+ * The upsampler is required to set need_context_rows TRUE at global selection
+ * time if so.  When need_context_rows is FALSE, this controller can simply
+ * obtain one iMCU row at a time from the coefficient controller and dole it
+ * out as row groups to the postprocessor.
+ *
+ * When need_context_rows is TRUE, this controller guarantees that the buffer
+ * passed to postprocessing contains at least one row group's worth of samples
+ * above and below the row group(s) being processed.  Note that the context
+ * rows "above" the first passed row group appear at negative row offsets in
+ * the passed buffer.  At the top and bottom of the image, the required
+ * context rows are manufactured by duplicating the first or last real sample
+ * row; this avoids having special cases in the upsampling inner loops.
+ *
+ * The amount of context is fixed at one row group just because that's a
+ * convenient number for this controller to work with.  The existing
+ * upsamplers really only need one sample row of context.  An upsampler
+ * supporting arbitrary output rescaling might wish for more than one row
+ * group of context when shrinking the image; tough, we don't handle that.
+ * (This is justified by the assumption that downsizing will be handled mostly
+ * by adjusting the DCT_scaled_size values, so that the actual scale factor at
+ * the upsample step needn't be much less than one.)
+ *
+ * To provide the desired context, we have to retain the last two row groups
+ * of one iMCU row while reading in the next iMCU row.  (The last row group
+ * can't be processed until we have another row group for its below-context,
+ * and so we have to save the next-to-last group too for its above-context.)
+ * We could do this most simply by copying data around in our buffer, but
+ * that'd be very slow.  We can avoid copying any data by creating a rather
+ * strange pointer structure.  Here's how it works.  We allocate a workspace
+ * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
+ * of row groups per iMCU row).  We create two sets of redundant pointers to
+ * the workspace.  Labeling the physical row groups 0 to M+1, the synthesized
+ * pointer lists look like this:
+ *                   M+1                          M-1
+ * master pointer --> 0         master pointer --> 0
+ *                    1                            1
+ *                   ...                          ...
+ *                   M-3                          M-3
+ *                   M-2                           M
+ *                   M-1                          M+1
+ *                    M                           M-2
+ *                   M+1                          M-1
+ *                    0                            0
+ * We read alternate iMCU rows using each master pointer; thus the last two
+ * row groups of the previous iMCU row remain un-overwritten in the workspace.
+ * The pointer lists are set up so that the required context rows appear to
+ * be adjacent to the proper places when we pass the pointer lists to the
+ * upsampler.
+ *
+ * The above pictures describe the normal state of the pointer lists.
+ * At top and bottom of the image, we diddle the pointer lists to duplicate
+ * the first or last sample row as necessary (this is cheaper than copying
+ * sample rows around).
+ *
+ * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1.  In that
+ * situation each iMCU row provides only one row group so the buffering logic
+ * must be different (eg, we must read two iMCU rows before we can emit the
+ * first row group).  For now, we simply do not support providing context
+ * rows when min_DCT_scaled_size is 1.  That combination seems unlikely to
+ * be worth providing --- if someone wants a 1/8th-size preview, they probably
+ * want it quick and dirty, so a context-free upsampler is sufficient.
+ */
+
+
+/* Private buffer controller object */
+
+typedef struct {
+  struct jpeg_d_main_controller pub; /* public fields */
+
+  /* Pointer to allocated workspace (M or M+2 row groups). */
+  JSAMPARRAY buffer[MAX_COMPONENTS];
+
+  boolean buffer_full;		/* Have we gotten an iMCU row from decoder? */
+  JDIMENSION rowgroup_ctr;	/* counts row groups output to postprocessor */
+
+  /* Remaining fields are only used in the context case. */
+
+  /* These are the master pointers to the funny-order pointer lists. */
+  JSAMPIMAGE xbuffer[2];	/* pointers to weird pointer lists */
+
+  int whichptr;			/* indicates which pointer set is now in use */
+  int context_state;		/* process_data state machine status */
+  JDIMENSION rowgroups_avail;	/* row groups available to postprocessor */
+  JDIMENSION iMCU_row_ctr;	/* counts iMCU rows to detect image top/bot */
+} my_main_controller;
+
+typedef my_main_controller * my_main_ptr;
+
+/* context_state values: */
+#define CTX_PREPARE_FOR_IMCU	0	/* need to prepare for MCU row */
+#define CTX_PROCESS_IMCU	1	/* feeding iMCU to postprocessor */
+#define CTX_POSTPONED_ROW	2	/* feeding postponed row group */
+
+
+/* Forward declarations */
+METHODDEF(void) process_data_simple_main
+	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
+	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
+METHODDEF(void) process_data_context_main
+	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
+	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
+#ifdef QUANT_2PASS_SUPPORTED
+METHODDEF(void) process_data_crank_post
+	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
+	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
+#endif
+
+
+LOCAL(void)
+alloc_funny_pointers (j_decompress_ptr cinfo)
+/* Allocate space for the funny pointer lists.
+ * This is done only once, not once per pass.
+ */
+{
+  my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
+  int ci, rgroup;
+  int M = cinfo->_min_DCT_scaled_size;
+  jpeg_component_info *compptr;
+  JSAMPARRAY xbuf;
+
+  /* Get top-level space for component array pointers.
+   * We alloc both arrays with one call to save a few cycles.
+   */
+  main_ptr->xbuffer[0] = (JSAMPIMAGE)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
+  main_ptr->xbuffer[1] = main_ptr->xbuffer[0] + cinfo->num_components;
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
+      cinfo->_min_DCT_scaled_size; /* height of a row group of component */
+    /* Get space for pointer lists --- M+4 row groups in each list.
+     * We alloc both pointer lists with one call to save a few cycles.
+     */
+    xbuf = (JSAMPARRAY)
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
+    xbuf += rgroup;		/* want one row group at negative offsets */
+    main_ptr->xbuffer[0][ci] = xbuf;
+    xbuf += rgroup * (M + 4);
+    main_ptr->xbuffer[1][ci] = xbuf;
+  }
+}
+
+
+LOCAL(void)
+make_funny_pointers (j_decompress_ptr cinfo)
+/* Create the funny pointer lists discussed in the comments above.
+ * The actual workspace is already allocated (in main_ptr->buffer),
+ * and the space for the pointer lists is allocated too.
+ * This routine just fills in the curiously ordered lists.
+ * This will be repeated at the beginning of each pass.
+ */
+{
+  my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
+  int ci, i, rgroup;
+  int M = cinfo->_min_DCT_scaled_size;
+  jpeg_component_info *compptr;
+  JSAMPARRAY buf, xbuf0, xbuf1;
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
+      cinfo->_min_DCT_scaled_size; /* height of a row group of component */
+    xbuf0 = main_ptr->xbuffer[0][ci];
+    xbuf1 = main_ptr->xbuffer[1][ci];
+    /* First copy the workspace pointers as-is */
+    buf = main_ptr->buffer[ci];
+    for (i = 0; i < rgroup * (M + 2); i++) {
+      xbuf0[i] = xbuf1[i] = buf[i];
+    }
+    /* In the second list, put the last four row groups in swapped order */
+    for (i = 0; i < rgroup * 2; i++) {
+      xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
+      xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
+    }
+    /* The wraparound pointers at top and bottom will be filled later
+     * (see set_wraparound_pointers, below).  Initially we want the "above"
+     * pointers to duplicate the first actual data line.  This only needs
+     * to happen in xbuffer[0].
+     */
+    for (i = 0; i < rgroup; i++) {
+      xbuf0[i - rgroup] = xbuf0[0];
+    }
+  }
+}
+
+
+LOCAL(void)
+set_wraparound_pointers (j_decompress_ptr cinfo)
+/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
+ * This changes the pointer list state from top-of-image to the normal state.
+ */
+{
+  my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
+  int ci, i, rgroup;
+  int M = cinfo->_min_DCT_scaled_size;
+  jpeg_component_info *compptr;
+  JSAMPARRAY xbuf0, xbuf1;
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
+      cinfo->_min_DCT_scaled_size; /* height of a row group of component */
+    xbuf0 = main_ptr->xbuffer[0][ci];
+    xbuf1 = main_ptr->xbuffer[1][ci];
+    for (i = 0; i < rgroup; i++) {
+      xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
+      xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
+      xbuf0[rgroup*(M+2) + i] = xbuf0[i];
+      xbuf1[rgroup*(M+2) + i] = xbuf1[i];
+    }
+  }
+}
+
+
+LOCAL(void)
+set_bottom_pointers (j_decompress_ptr cinfo)
+/* Change the pointer lists to duplicate the last sample row at the bottom
+ * of the image.  whichptr indicates which xbuffer holds the final iMCU row.
+ * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
+ */
+{
+  my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
+  int ci, i, rgroup, iMCUheight, rows_left;
+  jpeg_component_info *compptr;
+  JSAMPARRAY xbuf;
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    /* Count sample rows in one iMCU row and in one row group */
+    iMCUheight = compptr->v_samp_factor * compptr->_DCT_scaled_size;
+    rgroup = iMCUheight / cinfo->_min_DCT_scaled_size;
+    /* Count nondummy sample rows remaining for this component */
+    rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
+    if (rows_left == 0) rows_left = iMCUheight;
+    /* Count nondummy row groups.  Should get same answer for each component,
+     * so we need only do it once.
+     */
+    if (ci == 0) {
+      main_ptr->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
+    }
+    /* Duplicate the last real sample row rgroup*2 times; this pads out the
+     * last partial rowgroup and ensures at least one full rowgroup of context.
+     */
+    xbuf = main_ptr->xbuffer[main_ptr->whichptr][ci];
+    for (i = 0; i < rgroup * 2; i++) {
+      xbuf[rows_left + i] = xbuf[rows_left-1];
+    }
+  }
+}
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+  my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
+
+  switch (pass_mode) {
+  case JBUF_PASS_THRU:
+    if (cinfo->upsample->need_context_rows) {
+      main_ptr->pub.process_data = process_data_context_main;
+      make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
+      main_ptr->whichptr = 0;	/* Read first iMCU row into xbuffer[0] */
+      main_ptr->context_state = CTX_PREPARE_FOR_IMCU;
+      main_ptr->iMCU_row_ctr = 0;
+    } else {
+      /* Simple case with no context needed */
+      main_ptr->pub.process_data = process_data_simple_main;
+    }
+    main_ptr->buffer_full = FALSE;	/* Mark buffer empty */
+    main_ptr->rowgroup_ctr = 0;
+    break;
+#ifdef QUANT_2PASS_SUPPORTED
+  case JBUF_CRANK_DEST:
+    /* For last pass of 2-pass quantization, just crank the postprocessor */
+    main_ptr->pub.process_data = process_data_crank_post;
+    break;
+#endif
+  default:
+    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+    break;
+  }
+}
+
+
+/*
+ * Process some data.
+ * This handles the simple case where no context is required.
+ */
+
+METHODDEF(void)
+process_data_simple_main (j_decompress_ptr cinfo,
+			  JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+			  JDIMENSION out_rows_avail)
+{
+  my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
+  JDIMENSION rowgroups_avail;
+
+  /* Read input data if we haven't filled the main buffer yet */
+  if (! main_ptr->buffer_full) {
+    if (! (*cinfo->coef->decompress_data) (cinfo, main_ptr->buffer))
+      return;			/* suspension forced, can do nothing more */
+    main_ptr->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */
+  }
+
+  /* There are always min_DCT_scaled_size row groups in an iMCU row. */
+  rowgroups_avail = (JDIMENSION) cinfo->_min_DCT_scaled_size;
+  /* Note: at the bottom of the image, we may pass extra garbage row groups
+   * to the postprocessor.  The postprocessor has to check for bottom
+   * of image anyway (at row resolution), so no point in us doing it too.
+   */
+
+  /* Feed the postprocessor */
+  (*cinfo->post->post_process_data) (cinfo, main_ptr->buffer,
+				     &main_ptr->rowgroup_ctr, rowgroups_avail,
+				     output_buf, out_row_ctr, out_rows_avail);
+
+  /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
+  if (main_ptr->rowgroup_ctr >= rowgroups_avail) {
+    main_ptr->buffer_full = FALSE;
+    main_ptr->rowgroup_ctr = 0;
+  }
+}
+
+
+/*
+ * Process some data.
+ * This handles the case where context rows must be provided.
+ */
+
+METHODDEF(void)
+process_data_context_main (j_decompress_ptr cinfo,
+			   JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+			   JDIMENSION out_rows_avail)
+{
+  my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
+
+  /* Read input data if we haven't filled the main buffer yet */
+  if (! main_ptr->buffer_full) {
+    if (! (*cinfo->coef->decompress_data) (cinfo,
+					   main_ptr->xbuffer[main_ptr->whichptr]))
+      return;			/* suspension forced, can do nothing more */
+    main_ptr->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */
+    main_ptr->iMCU_row_ctr++;	/* count rows received */
+  }
+
+  /* Postprocessor typically will not swallow all the input data it is handed
+   * in one call (due to filling the output buffer first).  Must be prepared
+   * to exit and restart.  This switch lets us keep track of how far we got.
+   * Note that each case falls through to the next on successful completion.
+   */
+  switch (main_ptr->context_state) {
+  case CTX_POSTPONED_ROW:
+    /* Call postprocessor using previously set pointers for postponed row */
+    (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr],
+			&main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail,
+			output_buf, out_row_ctr, out_rows_avail);
+    if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail)
+      return;			/* Need to suspend */
+    main_ptr->context_state = CTX_PREPARE_FOR_IMCU;
+    if (*out_row_ctr >= out_rows_avail)
+      return;			/* Postprocessor exactly filled output buf */
+    /*FALLTHROUGH*/
+  case CTX_PREPARE_FOR_IMCU:
+    /* Prepare to process first M-1 row groups of this iMCU row */
+    main_ptr->rowgroup_ctr = 0;
+    main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->_min_DCT_scaled_size - 1);
+    /* Check for bottom of image: if so, tweak pointers to "duplicate"
+     * the last sample row, and adjust rowgroups_avail to ignore padding rows.
+     */
+    if (main_ptr->iMCU_row_ctr == cinfo->total_iMCU_rows)
+      set_bottom_pointers(cinfo);
+    main_ptr->context_state = CTX_PROCESS_IMCU;
+    /*FALLTHROUGH*/
+  case CTX_PROCESS_IMCU:
+    /* Call postprocessor using previously set pointers */
+    (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr],
+			&main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail,
+			output_buf, out_row_ctr, out_rows_avail);
+    if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail)
+      return;			/* Need to suspend */
+    /* After the first iMCU, change wraparound pointers to normal state */
+    if (main_ptr->iMCU_row_ctr == 1)
+      set_wraparound_pointers(cinfo);
+    /* Prepare to load new iMCU row using other xbuffer list */
+    main_ptr->whichptr ^= 1;	/* 0=>1 or 1=>0 */
+    main_ptr->buffer_full = FALSE;
+    /* Still need to process last row group of this iMCU row, */
+    /* which is saved at index M+1 of the other xbuffer */
+    main_ptr->rowgroup_ctr = (JDIMENSION) (cinfo->_min_DCT_scaled_size + 1);
+    main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->_min_DCT_scaled_size + 2);
+    main_ptr->context_state = CTX_POSTPONED_ROW;
+  }
+}
+
+
+/*
+ * Process some data.
+ * Final pass of two-pass quantization: just call the postprocessor.
+ * Source data will be the postprocessor controller's internal buffer.
+ */
+
+#ifdef QUANT_2PASS_SUPPORTED
+
+METHODDEF(void)
+process_data_crank_post (j_decompress_ptr cinfo,
+			 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+			 JDIMENSION out_rows_avail)
+{
+  (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
+				     (JDIMENSION *) NULL, (JDIMENSION) 0,
+				     output_buf, out_row_ctr, out_rows_avail);
+}
+
+#endif /* QUANT_2PASS_SUPPORTED */
+
+
+/*
+ * Initialize main buffer controller.
+ */
+
+GLOBAL(void)
+jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
+{
+  my_main_ptr main_ptr;
+  int ci, rgroup, ngroups;
+  jpeg_component_info *compptr;
+
+  main_ptr = (my_main_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_main_controller));
+  cinfo->main = (struct jpeg_d_main_controller *) main_ptr;
+  main_ptr->pub.start_pass = start_pass_main;
+
+  if (need_full_buffer)		/* shouldn't happen */
+    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+
+  /* Allocate the workspace.
+   * ngroups is the number of row groups we need.
+   */
+  if (cinfo->upsample->need_context_rows) {
+    if (cinfo->_min_DCT_scaled_size < 2) /* unsupported, see comments above */
+      ERREXIT(cinfo, JERR_NOTIMPL);
+    alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
+    ngroups = cinfo->_min_DCT_scaled_size + 2;
+  } else {
+    ngroups = cinfo->_min_DCT_scaled_size;
+  }
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
+      cinfo->_min_DCT_scaled_size; /* height of a row group of component */
+    main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray)
+			((j_common_ptr) cinfo, JPOOL_IMAGE,
+			 compptr->width_in_blocks * compptr->_DCT_scaled_size,
+			 (JDIMENSION) (rgroup * ngroups));
+  }
+}

=== added file 'src/libjpeg-turbo/jdmarker.c'
--- src/libjpeg-turbo/jdmarker.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdmarker.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,1364 @@ 
+/*
+ * jdmarker.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * Copyright (C) 2012, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to decode JPEG datastream markers.
+ * Most of the complexity arises from our desire to support input
+ * suspension: if not all of the data for a marker is available,
+ * we must exit back to the application.  On resumption, we reprocess
+ * the marker.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+typedef enum {			/* JPEG marker codes */
+  M_SOF0  = 0xc0,
+  M_SOF1  = 0xc1,
+  M_SOF2  = 0xc2,
+  M_SOF3  = 0xc3,
+  
+  M_SOF5  = 0xc5,
+  M_SOF6  = 0xc6,
+  M_SOF7  = 0xc7,
+  
+  M_JPG   = 0xc8,
+  M_SOF9  = 0xc9,
+  M_SOF10 = 0xca,
+  M_SOF11 = 0xcb,
+  
+  M_SOF13 = 0xcd,
+  M_SOF14 = 0xce,
+  M_SOF15 = 0xcf,
+  
+  M_DHT   = 0xc4,
+  
+  M_DAC   = 0xcc,
+  
+  M_RST0  = 0xd0,
+  M_RST1  = 0xd1,
+  M_RST2  = 0xd2,
+  M_RST3  = 0xd3,
+  M_RST4  = 0xd4,
+  M_RST5  = 0xd5,
+  M_RST6  = 0xd6,
+  M_RST7  = 0xd7,
+  
+  M_SOI   = 0xd8,
+  M_EOI   = 0xd9,
+  M_SOS   = 0xda,
+  M_DQT   = 0xdb,
+  M_DNL   = 0xdc,
+  M_DRI   = 0xdd,
+  M_DHP   = 0xde,
+  M_EXP   = 0xdf,
+  
+  M_APP0  = 0xe0,
+  M_APP1  = 0xe1,
+  M_APP2  = 0xe2,
+  M_APP3  = 0xe3,
+  M_APP4  = 0xe4,
+  M_APP5  = 0xe5,
+  M_APP6  = 0xe6,
+  M_APP7  = 0xe7,
+  M_APP8  = 0xe8,
+  M_APP9  = 0xe9,
+  M_APP10 = 0xea,
+  M_APP11 = 0xeb,
+  M_APP12 = 0xec,
+  M_APP13 = 0xed,
+  M_APP14 = 0xee,
+  M_APP15 = 0xef,
+  
+  M_JPG0  = 0xf0,
+  M_JPG13 = 0xfd,
+  M_COM   = 0xfe,
+  
+  M_TEM   = 0x01,
+  
+  M_ERROR = 0x100
+} JPEG_MARKER;
+
+
+/* Private state */
+
+typedef struct {
+  struct jpeg_marker_reader pub; /* public fields */
+
+  /* Application-overridable marker processing methods */
+  jpeg_marker_parser_method process_COM;
+  jpeg_marker_parser_method process_APPn[16];
+
+  /* Limit on marker data length to save for each marker type */
+  unsigned int length_limit_COM;
+  unsigned int length_limit_APPn[16];
+
+  /* Status of COM/APPn marker saving */
+  jpeg_saved_marker_ptr cur_marker;	/* NULL if not processing a marker */
+  unsigned int bytes_read;		/* data bytes read so far in marker */
+  /* Note: cur_marker is not linked into marker_list until it's all read. */
+} my_marker_reader;
+
+typedef my_marker_reader * my_marker_ptr;
+
+
+/*
+ * Macros for fetching data from the data source module.
+ *
+ * At all times, cinfo->src->next_input_byte and ->bytes_in_buffer reflect
+ * the current restart point; we update them only when we have reached a
+ * suitable place to restart if a suspension occurs.
+ */
+
+/* Declare and initialize local copies of input pointer/count */
+#define INPUT_VARS(cinfo)  \
+	struct jpeg_source_mgr * datasrc = (cinfo)->src;  \
+	const JOCTET * next_input_byte = datasrc->next_input_byte;  \
+	size_t bytes_in_buffer = datasrc->bytes_in_buffer
+
+/* Unload the local copies --- do this only at a restart boundary */
+#define INPUT_SYNC(cinfo)  \
+	( datasrc->next_input_byte = next_input_byte,  \
+	  datasrc->bytes_in_buffer = bytes_in_buffer )
+
+/* Reload the local copies --- used only in MAKE_BYTE_AVAIL */
+#define INPUT_RELOAD(cinfo)  \
+	( next_input_byte = datasrc->next_input_byte,  \
+	  bytes_in_buffer = datasrc->bytes_in_buffer )
+
+/* Internal macro for INPUT_BYTE and INPUT_2BYTES: make a byte available.
+ * Note we do *not* do INPUT_SYNC before calling fill_input_buffer,
+ * but we must reload the local copies after a successful fill.
+ */
+#define MAKE_BYTE_AVAIL(cinfo,action)  \
+	if (bytes_in_buffer == 0) {  \
+	  if (! (*datasrc->fill_input_buffer) (cinfo))  \
+	    { action; }  \
+	  INPUT_RELOAD(cinfo);  \
+	}
+
+/* Read a byte into variable V.
+ * If must suspend, take the specified action (typically "return FALSE").
+ */
+#define INPUT_BYTE(cinfo,V,action)  \
+	MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
+		  bytes_in_buffer--; \
+		  V = GETJOCTET(*next_input_byte++); )
+
+/* As above, but read two bytes interpreted as an unsigned 16-bit integer.
+ * V should be declared unsigned int or perhaps INT32.
+ */
+#define INPUT_2BYTES(cinfo,V,action)  \
+	MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
+		  bytes_in_buffer--; \
+		  V = ((unsigned int) GETJOCTET(*next_input_byte++)) << 8; \
+		  MAKE_BYTE_AVAIL(cinfo,action); \
+		  bytes_in_buffer--; \
+		  V += GETJOCTET(*next_input_byte++); )
+
+
+/*
+ * Routines to process JPEG markers.
+ *
+ * Entry condition: JPEG marker itself has been read and its code saved
+ *   in cinfo->unread_marker; input restart point is just after the marker.
+ *
+ * Exit: if return TRUE, have read and processed any parameters, and have
+ *   updated the restart point to point after the parameters.
+ *   If return FALSE, was forced to suspend before reaching end of
+ *   marker parameters; restart point has not been moved.  Same routine
+ *   will be called again after application supplies more input data.
+ *
+ * This approach to suspension assumes that all of a marker's parameters
+ * can fit into a single input bufferload.  This should hold for "normal"
+ * markers.  Some COM/APPn markers might have large parameter segments
+ * that might not fit.  If we are simply dropping such a marker, we use
+ * skip_input_data to get past it, and thereby put the problem on the
+ * source manager's shoulders.  If we are saving the marker's contents
+ * into memory, we use a slightly different convention: when forced to
+ * suspend, the marker processor updates the restart point to the end of
+ * what it's consumed (ie, the end of the buffer) before returning FALSE.
+ * On resumption, cinfo->unread_marker still contains the marker code,
+ * but the data source will point to the next chunk of marker data.
+ * The marker processor must retain internal state to deal with this.
+ *
+ * Note that we don't bother to avoid duplicate trace messages if a
+ * suspension occurs within marker parameters.  Other side effects
+ * require more care.
+ */
+
+
+LOCAL(boolean)
+get_soi (j_decompress_ptr cinfo)
+/* Process an SOI marker */
+{
+  int i;
+  
+  TRACEMS(cinfo, 1, JTRC_SOI);
+
+  if (cinfo->marker->saw_SOI)
+    ERREXIT(cinfo, JERR_SOI_DUPLICATE);
+
+  /* Reset all parameters that are defined to be reset by SOI */
+
+  for (i = 0; i < NUM_ARITH_TBLS; i++) {
+    cinfo->arith_dc_L[i] = 0;
+    cinfo->arith_dc_U[i] = 1;
+    cinfo->arith_ac_K[i] = 5;
+  }
+  cinfo->restart_interval = 0;
+
+  /* Set initial assumptions for colorspace etc */
+
+  cinfo->jpeg_color_space = JCS_UNKNOWN;
+  cinfo->CCIR601_sampling = FALSE; /* Assume non-CCIR sampling??? */
+
+  cinfo->saw_JFIF_marker = FALSE;
+  cinfo->JFIF_major_version = 1; /* set default JFIF APP0 values */
+  cinfo->JFIF_minor_version = 1;
+  cinfo->density_unit = 0;
+  cinfo->X_density = 1;
+  cinfo->Y_density = 1;
+  cinfo->saw_Adobe_marker = FALSE;
+  cinfo->Adobe_transform = 0;
+
+  cinfo->marker->saw_SOI = TRUE;
+
+  return TRUE;
+}
+
+
+LOCAL(boolean)
+get_sof (j_decompress_ptr cinfo, boolean is_prog, boolean is_arith)
+/* Process a SOFn marker */
+{
+  INT32 length;
+  int c, ci;
+  jpeg_component_info * compptr;
+  INPUT_VARS(cinfo);
+
+  cinfo->progressive_mode = is_prog;
+  cinfo->arith_code = is_arith;
+
+  INPUT_2BYTES(cinfo, length, return FALSE);
+
+  INPUT_BYTE(cinfo, cinfo->data_precision, return FALSE);
+  INPUT_2BYTES(cinfo, cinfo->image_height, return FALSE);
+  INPUT_2BYTES(cinfo, cinfo->image_width, return FALSE);
+  INPUT_BYTE(cinfo, cinfo->num_components, return FALSE);
+
+  length -= 8;
+
+  TRACEMS4(cinfo, 1, JTRC_SOF, cinfo->unread_marker,
+	   (int) cinfo->image_width, (int) cinfo->image_height,
+	   cinfo->num_components);
+
+  if (cinfo->marker->saw_SOF)
+    ERREXIT(cinfo, JERR_SOF_DUPLICATE);
+
+  /* We don't support files in which the image height is initially specified */
+  /* as 0 and is later redefined by DNL.  As long as we have to check that,  */
+  /* might as well have a general sanity check. */
+  if (cinfo->image_height <= 0 || cinfo->image_width <= 0
+      || cinfo->num_components <= 0)
+    ERREXIT(cinfo, JERR_EMPTY_IMAGE);
+
+  if (length != (cinfo->num_components * 3))
+    ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+  if (cinfo->comp_info == NULL)	/* do only once, even if suspend */
+    cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small)
+			((j_common_ptr) cinfo, JPOOL_IMAGE,
+			 cinfo->num_components * SIZEOF(jpeg_component_info));
+  
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    compptr->component_index = ci;
+    INPUT_BYTE(cinfo, compptr->component_id, return FALSE);
+    INPUT_BYTE(cinfo, c, return FALSE);
+    compptr->h_samp_factor = (c >> 4) & 15;
+    compptr->v_samp_factor = (c     ) & 15;
+    INPUT_BYTE(cinfo, compptr->quant_tbl_no, return FALSE);
+
+    TRACEMS4(cinfo, 1, JTRC_SOF_COMPONENT,
+	     compptr->component_id, compptr->h_samp_factor,
+	     compptr->v_samp_factor, compptr->quant_tbl_no);
+  }
+
+  cinfo->marker->saw_SOF = TRUE;
+
+  INPUT_SYNC(cinfo);
+  return TRUE;
+}
+
+
+LOCAL(boolean)
+get_sos (j_decompress_ptr cinfo)
+/* Process a SOS marker */
+{
+  INT32 length;
+  int i, ci, n, c, cc;
+  jpeg_component_info * compptr;
+  INPUT_VARS(cinfo);
+
+  if (! cinfo->marker->saw_SOF)
+    ERREXIT(cinfo, JERR_SOS_NO_SOF);
+
+  INPUT_2BYTES(cinfo, length, return FALSE);
+
+  INPUT_BYTE(cinfo, n, return FALSE); /* Number of components */
+
+  TRACEMS1(cinfo, 1, JTRC_SOS, n);
+
+  if (length != (n * 2 + 6) || n < 1 || n > MAX_COMPS_IN_SCAN)
+    ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+  cinfo->comps_in_scan = n;
+
+  /* Collect the component-spec parameters */
+
+  for (i = 0; i < cinfo->num_components; i++)
+    cinfo->cur_comp_info[i] = NULL;
+
+  for (i = 0; i < n; i++) {
+    INPUT_BYTE(cinfo, cc, return FALSE);
+    INPUT_BYTE(cinfo, c, return FALSE);
+    
+    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+	 ci++, compptr++) {
+      if (cc == compptr->component_id && !cinfo->cur_comp_info[ci])
+	goto id_found;
+    }
+
+    ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc);
+
+  id_found:
+
+    cinfo->cur_comp_info[i] = compptr;
+    compptr->dc_tbl_no = (c >> 4) & 15;
+    compptr->ac_tbl_no = (c     ) & 15;
+    
+    TRACEMS3(cinfo, 1, JTRC_SOS_COMPONENT, cc,
+	     compptr->dc_tbl_no, compptr->ac_tbl_no);
+  }
+
+  /* Collect the additional scan parameters Ss, Se, Ah/Al. */
+  INPUT_BYTE(cinfo, c, return FALSE);
+  cinfo->Ss = c;
+  INPUT_BYTE(cinfo, c, return FALSE);
+  cinfo->Se = c;
+  INPUT_BYTE(cinfo, c, return FALSE);
+  cinfo->Ah = (c >> 4) & 15;
+  cinfo->Al = (c     ) & 15;
+
+  TRACEMS4(cinfo, 1, JTRC_SOS_PARAMS, cinfo->Ss, cinfo->Se,
+	   cinfo->Ah, cinfo->Al);
+
+  /* Prepare to scan data & restart markers */
+  cinfo->marker->next_restart_num = 0;
+
+  /* Count another SOS marker */
+  cinfo->input_scan_number++;
+
+  INPUT_SYNC(cinfo);
+  return TRUE;
+}
+
+
+#ifdef D_ARITH_CODING_SUPPORTED
+
+LOCAL(boolean)
+get_dac (j_decompress_ptr cinfo)
+/* Process a DAC marker */
+{
+  INT32 length;
+  int index, val;
+  INPUT_VARS(cinfo);
+
+  INPUT_2BYTES(cinfo, length, return FALSE);
+  length -= 2;
+  
+  while (length > 0) {
+    INPUT_BYTE(cinfo, index, return FALSE);
+    INPUT_BYTE(cinfo, val, return FALSE);
+
+    length -= 2;
+
+    TRACEMS2(cinfo, 1, JTRC_DAC, index, val);
+
+    if (index < 0 || index >= (2*NUM_ARITH_TBLS))
+      ERREXIT1(cinfo, JERR_DAC_INDEX, index);
+
+    if (index >= NUM_ARITH_TBLS) { /* define AC table */
+      cinfo->arith_ac_K[index-NUM_ARITH_TBLS] = (UINT8) val;
+    } else {			/* define DC table */
+      cinfo->arith_dc_L[index] = (UINT8) (val & 0x0F);
+      cinfo->arith_dc_U[index] = (UINT8) (val >> 4);
+      if (cinfo->arith_dc_L[index] > cinfo->arith_dc_U[index])
+	ERREXIT1(cinfo, JERR_DAC_VALUE, val);
+    }
+  }
+
+  if (length != 0)
+    ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+  INPUT_SYNC(cinfo);
+  return TRUE;
+}
+
+#else /* ! D_ARITH_CODING_SUPPORTED */
+
+#define get_dac(cinfo)  skip_variable(cinfo)
+
+#endif /* D_ARITH_CODING_SUPPORTED */
+
+
+LOCAL(boolean)
+get_dht (j_decompress_ptr cinfo)
+/* Process a DHT marker */
+{
+  INT32 length;
+  UINT8 bits[17];
+  UINT8 huffval[256];
+  int i, index, count;
+  JHUFF_TBL **htblptr;
+  INPUT_VARS(cinfo);
+
+  INPUT_2BYTES(cinfo, length, return FALSE);
+  length -= 2;
+  
+  while (length > 16) {
+    INPUT_BYTE(cinfo, index, return FALSE);
+
+    TRACEMS1(cinfo, 1, JTRC_DHT, index);
+      
+    bits[0] = 0;
+    count = 0;
+    for (i = 1; i <= 16; i++) {
+      INPUT_BYTE(cinfo, bits[i], return FALSE);
+      count += bits[i];
+    }
+
+    length -= 1 + 16;
+
+    TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
+	     bits[1], bits[2], bits[3], bits[4],
+	     bits[5], bits[6], bits[7], bits[8]);
+    TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
+	     bits[9], bits[10], bits[11], bits[12],
+	     bits[13], bits[14], bits[15], bits[16]);
+
+    /* Here we just do minimal validation of the counts to avoid walking
+     * off the end of our table space.  jdhuff.c will check more carefully.
+     */
+    if (count > 256 || ((INT32) count) > length)
+      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+
+    for (i = 0; i < count; i++)
+      INPUT_BYTE(cinfo, huffval[i], return FALSE);
+
+    length -= count;
+
+    if (index & 0x10) {		/* AC table definition */
+      index -= 0x10;
+      htblptr = &cinfo->ac_huff_tbl_ptrs[index];
+    } else {			/* DC table definition */
+      htblptr = &cinfo->dc_huff_tbl_ptrs[index];
+    }
+
+    if (index < 0 || index >= NUM_HUFF_TBLS)
+      ERREXIT1(cinfo, JERR_DHT_INDEX, index);
+
+    if (*htblptr == NULL)
+      *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+  
+    MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
+    MEMCOPY((*htblptr)->huffval, huffval, SIZEOF((*htblptr)->huffval));
+  }
+
+  if (length != 0)
+    ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+  INPUT_SYNC(cinfo);
+  return TRUE;
+}
+
+
+LOCAL(boolean)
+get_dqt (j_decompress_ptr cinfo)
+/* Process a DQT marker */
+{
+  INT32 length;
+  int n, i, prec;
+  unsigned int tmp;
+  JQUANT_TBL *quant_ptr;
+  INPUT_VARS(cinfo);
+
+  INPUT_2BYTES(cinfo, length, return FALSE);
+  length -= 2;
+
+  while (length > 0) {
+    INPUT_BYTE(cinfo, n, return FALSE);
+    prec = n >> 4;
+    n &= 0x0F;
+
+    TRACEMS2(cinfo, 1, JTRC_DQT, n, prec);
+
+    if (n >= NUM_QUANT_TBLS)
+      ERREXIT1(cinfo, JERR_DQT_INDEX, n);
+      
+    if (cinfo->quant_tbl_ptrs[n] == NULL)
+      cinfo->quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) cinfo);
+    quant_ptr = cinfo->quant_tbl_ptrs[n];
+
+    for (i = 0; i < DCTSIZE2; i++) {
+      if (prec)
+	INPUT_2BYTES(cinfo, tmp, return FALSE);
+      else
+	INPUT_BYTE(cinfo, tmp, return FALSE);
+      /* We convert the zigzag-order table to natural array order. */
+      quant_ptr->quantval[jpeg_natural_order[i]] = (UINT16) tmp;
+    }
+
+    if (cinfo->err->trace_level >= 2) {
+      for (i = 0; i < DCTSIZE2; i += 8) {
+	TRACEMS8(cinfo, 2, JTRC_QUANTVALS,
+		 quant_ptr->quantval[i],   quant_ptr->quantval[i+1],
+		 quant_ptr->quantval[i+2], quant_ptr->quantval[i+3],
+		 quant_ptr->quantval[i+4], quant_ptr->quantval[i+5],
+		 quant_ptr->quantval[i+6], quant_ptr->quantval[i+7]);
+      }
+    }
+
+    length -= DCTSIZE2+1;
+    if (prec) length -= DCTSIZE2;
+  }
+
+  if (length != 0)
+    ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+  INPUT_SYNC(cinfo);
+  return TRUE;
+}
+
+
+LOCAL(boolean)
+get_dri (j_decompress_ptr cinfo)
+/* Process a DRI marker */
+{
+  INT32 length;
+  unsigned int tmp;
+  INPUT_VARS(cinfo);
+
+  INPUT_2BYTES(cinfo, length, return FALSE);
+  
+  if (length != 4)
+    ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+  INPUT_2BYTES(cinfo, tmp, return FALSE);
+
+  TRACEMS1(cinfo, 1, JTRC_DRI, tmp);
+
+  cinfo->restart_interval = tmp;
+
+  INPUT_SYNC(cinfo);
+  return TRUE;
+}
+
+
+/*
+ * Routines for processing APPn and COM markers.
+ * These are either saved in memory or discarded, per application request.
+ * APP0 and APP14 are specially checked to see if they are
+ * JFIF and Adobe markers, respectively.
+ */
+
+#define APP0_DATA_LEN	14	/* Length of interesting data in APP0 */
+#define APP14_DATA_LEN	12	/* Length of interesting data in APP14 */
+#define APPN_DATA_LEN	14	/* Must be the largest of the above!! */
+
+
+LOCAL(void)
+examine_app0 (j_decompress_ptr cinfo, JOCTET FAR * data,
+	      unsigned int datalen, INT32 remaining)
+/* Examine first few bytes from an APP0.
+ * Take appropriate action if it is a JFIF marker.
+ * datalen is # of bytes at data[], remaining is length of rest of marker data.
+ */
+{
+  INT32 totallen = (INT32) datalen + remaining;
+
+  if (datalen >= APP0_DATA_LEN &&
+      GETJOCTET(data[0]) == 0x4A &&
+      GETJOCTET(data[1]) == 0x46 &&
+      GETJOCTET(data[2]) == 0x49 &&
+      GETJOCTET(data[3]) == 0x46 &&
+      GETJOCTET(data[4]) == 0) {
+    /* Found JFIF APP0 marker: save info */
+    cinfo->saw_JFIF_marker = TRUE;
+    cinfo->JFIF_major_version = GETJOCTET(data[5]);
+    cinfo->JFIF_minor_version = GETJOCTET(data[6]);
+    cinfo->density_unit = GETJOCTET(data[7]);
+    cinfo->X_density = (GETJOCTET(data[8]) << 8) + GETJOCTET(data[9]);
+    cinfo->Y_density = (GETJOCTET(data[10]) << 8) + GETJOCTET(data[11]);
+    /* Check version.
+     * Major version must be 1, anything else signals an incompatible change.
+     * (We used to treat this as an error, but now it's a nonfatal warning,
+     * because some bozo at Hijaak couldn't read the spec.)
+     * Minor version should be 0..2, but process anyway if newer.
+     */
+    if (cinfo->JFIF_major_version != 1)
+      WARNMS2(cinfo, JWRN_JFIF_MAJOR,
+	      cinfo->JFIF_major_version, cinfo->JFIF_minor_version);
+    /* Generate trace messages */
+    TRACEMS5(cinfo, 1, JTRC_JFIF,
+	     cinfo->JFIF_major_version, cinfo->JFIF_minor_version,
+	     cinfo->X_density, cinfo->Y_density, cinfo->density_unit);
+    /* Validate thumbnail dimensions and issue appropriate messages */
+    if (GETJOCTET(data[12]) | GETJOCTET(data[13]))
+      TRACEMS2(cinfo, 1, JTRC_JFIF_THUMBNAIL,
+	       GETJOCTET(data[12]), GETJOCTET(data[13]));
+    totallen -= APP0_DATA_LEN;
+    if (totallen !=
+	((INT32)GETJOCTET(data[12]) * (INT32)GETJOCTET(data[13]) * (INT32) 3))
+      TRACEMS1(cinfo, 1, JTRC_JFIF_BADTHUMBNAILSIZE, (int) totallen);
+  } else if (datalen >= 6 &&
+      GETJOCTET(data[0]) == 0x4A &&
+      GETJOCTET(data[1]) == 0x46 &&
+      GETJOCTET(data[2]) == 0x58 &&
+      GETJOCTET(data[3]) == 0x58 &&
+      GETJOCTET(data[4]) == 0) {
+    /* Found JFIF "JFXX" extension APP0 marker */
+    /* The library doesn't actually do anything with these,
+     * but we try to produce a helpful trace message.
+     */
+    switch (GETJOCTET(data[5])) {
+    case 0x10:
+      TRACEMS1(cinfo, 1, JTRC_THUMB_JPEG, (int) totallen);
+      break;
+    case 0x11:
+      TRACEMS1(cinfo, 1, JTRC_THUMB_PALETTE, (int) totallen);
+      break;
+    case 0x13:
+      TRACEMS1(cinfo, 1, JTRC_THUMB_RGB, (int) totallen);
+      break;
+    default:
+      TRACEMS2(cinfo, 1, JTRC_JFIF_EXTENSION,
+	       GETJOCTET(data[5]), (int) totallen);
+      break;
+    }
+  } else {
+    /* Start of APP0 does not match "JFIF" or "JFXX", or too short */
+    TRACEMS1(cinfo, 1, JTRC_APP0, (int) totallen);
+  }
+}
+
+
+LOCAL(void)
+examine_app14 (j_decompress_ptr cinfo, JOCTET FAR * data,
+	       unsigned int datalen, INT32 remaining)
+/* Examine first few bytes from an APP14.
+ * Take appropriate action if it is an Adobe marker.
+ * datalen is # of bytes at data[], remaining is length of rest of marker data.
+ */
+{
+  unsigned int version, flags0, flags1, transform;
+
+  if (datalen >= APP14_DATA_LEN &&
+      GETJOCTET(data[0]) == 0x41 &&
+      GETJOCTET(data[1]) == 0x64 &&
+      GETJOCTET(data[2]) == 0x6F &&
+      GETJOCTET(data[3]) == 0x62 &&
+      GETJOCTET(data[4]) == 0x65) {
+    /* Found Adobe APP14 marker */
+    version = (GETJOCTET(data[5]) << 8) + GETJOCTET(data[6]);
+    flags0 = (GETJOCTET(data[7]) << 8) + GETJOCTET(data[8]);
+    flags1 = (GETJOCTET(data[9]) << 8) + GETJOCTET(data[10]);
+    transform = GETJOCTET(data[11]);
+    TRACEMS4(cinfo, 1, JTRC_ADOBE, version, flags0, flags1, transform);
+    cinfo->saw_Adobe_marker = TRUE;
+    cinfo->Adobe_transform = (UINT8) transform;
+  } else {
+    /* Start of APP14 does not match "Adobe", or too short */
+    TRACEMS1(cinfo, 1, JTRC_APP14, (int) (datalen + remaining));
+  }
+}
+
+
+METHODDEF(boolean)
+get_interesting_appn (j_decompress_ptr cinfo)
+/* Process an APP0 or APP14 marker without saving it */
+{
+  INT32 length;
+  JOCTET b[APPN_DATA_LEN];
+  unsigned int i, numtoread;
+  INPUT_VARS(cinfo);
+
+  INPUT_2BYTES(cinfo, length, return FALSE);
+  length -= 2;
+
+  /* get the interesting part of the marker data */
+  if (length >= APPN_DATA_LEN)
+    numtoread = APPN_DATA_LEN;
+  else if (length > 0)
+    numtoread = (unsigned int) length;
+  else
+    numtoread = 0;
+  for (i = 0; i < numtoread; i++)
+    INPUT_BYTE(cinfo, b[i], return FALSE);
+  length -= numtoread;
+
+  /* process it */
+  switch (cinfo->unread_marker) {
+  case M_APP0:
+    examine_app0(cinfo, (JOCTET FAR *) b, numtoread, length);
+    break;
+  case M_APP14:
+    examine_app14(cinfo, (JOCTET FAR *) b, numtoread, length);
+    break;
+  default:
+    /* can't get here unless jpeg_save_markers chooses wrong processor */
+    ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker);
+    break;
+  }
+
+  /* skip any remaining data -- could be lots */
+  INPUT_SYNC(cinfo);
+  if (length > 0)
+    (*cinfo->src->skip_input_data) (cinfo, (long) length);
+
+  return TRUE;
+}
+
+
+#ifdef SAVE_MARKERS_SUPPORTED
+
+METHODDEF(boolean)
+save_marker (j_decompress_ptr cinfo)
+/* Save an APPn or COM marker into the marker list */
+{
+  my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+  jpeg_saved_marker_ptr cur_marker = marker->cur_marker;
+  unsigned int bytes_read, data_length;
+  JOCTET FAR * data;
+  INT32 length = 0;
+  INPUT_VARS(cinfo);
+
+  if (cur_marker == NULL) {
+    /* begin reading a marker */
+    INPUT_2BYTES(cinfo, length, return FALSE);
+    length -= 2;
+    if (length >= 0) {		/* watch out for bogus length word */
+      /* figure out how much we want to save */
+      unsigned int limit;
+      if (cinfo->unread_marker == (int) M_COM)
+	limit = marker->length_limit_COM;
+      else
+	limit = marker->length_limit_APPn[cinfo->unread_marker - (int) M_APP0];
+      if ((unsigned int) length < limit)
+	limit = (unsigned int) length;
+      /* allocate and initialize the marker item */
+      cur_marker = (jpeg_saved_marker_ptr)
+	(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				    SIZEOF(struct jpeg_marker_struct) + limit);
+      cur_marker->next = NULL;
+      cur_marker->marker = (UINT8) cinfo->unread_marker;
+      cur_marker->original_length = (unsigned int) length;
+      cur_marker->data_length = limit;
+      /* data area is just beyond the jpeg_marker_struct */
+      data = cur_marker->data = (JOCTET FAR *) (cur_marker + 1);
+      marker->cur_marker = cur_marker;
+      marker->bytes_read = 0;
+      bytes_read = 0;
+      data_length = limit;
+    } else {
+      /* deal with bogus length word */
+      bytes_read = data_length = 0;
+      data = NULL;
+    }
+  } else {
+    /* resume reading a marker */
+    bytes_read = marker->bytes_read;
+    data_length = cur_marker->data_length;
+    data = cur_marker->data + bytes_read;
+  }
+
+  while (bytes_read < data_length) {
+    INPUT_SYNC(cinfo);		/* move the restart point to here */
+    marker->bytes_read = bytes_read;
+    /* If there's not at least one byte in buffer, suspend */
+    MAKE_BYTE_AVAIL(cinfo, return FALSE);
+    /* Copy bytes with reasonable rapidity */
+    while (bytes_read < data_length && bytes_in_buffer > 0) {
+      *data++ = *next_input_byte++;
+      bytes_in_buffer--;
+      bytes_read++;
+    }
+  }
+
+  /* Done reading what we want to read */
+  if (cur_marker != NULL) {	/* will be NULL if bogus length word */
+    /* Add new marker to end of list */
+    if (cinfo->marker_list == NULL) {
+      cinfo->marker_list = cur_marker;
+    } else {
+      jpeg_saved_marker_ptr prev = cinfo->marker_list;
+      while (prev->next != NULL)
+	prev = prev->next;
+      prev->next = cur_marker;
+    }
+    /* Reset pointer & calc remaining data length */
+    data = cur_marker->data;
+    length = cur_marker->original_length - data_length;
+  }
+  /* Reset to initial state for next marker */
+  marker->cur_marker = NULL;
+
+  /* Process the marker if interesting; else just make a generic trace msg */
+  switch (cinfo->unread_marker) {
+  case M_APP0:
+    examine_app0(cinfo, data, data_length, length);
+    break;
+  case M_APP14:
+    examine_app14(cinfo, data, data_length, length);
+    break;
+  default:
+    TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker,
+	     (int) (data_length + length));
+    break;
+  }
+
+  /* skip any remaining data -- could be lots */
+  INPUT_SYNC(cinfo);		/* do before skip_input_data */
+  if (length > 0)
+    (*cinfo->src->skip_input_data) (cinfo, (long) length);
+
+  return TRUE;
+}
+
+#endif /* SAVE_MARKERS_SUPPORTED */
+
+
+METHODDEF(boolean)
+skip_variable (j_decompress_ptr cinfo)
+/* Skip over an unknown or uninteresting variable-length marker */
+{
+  INT32 length;
+  INPUT_VARS(cinfo);
+
+  INPUT_2BYTES(cinfo, length, return FALSE);
+  length -= 2;
+  
+  TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int) length);
+
+  INPUT_SYNC(cinfo);		/* do before skip_input_data */
+  if (length > 0)
+    (*cinfo->src->skip_input_data) (cinfo, (long) length);
+
+  return TRUE;
+}
+
+
+/*
+ * Find the next JPEG marker, save it in cinfo->unread_marker.
+ * Returns FALSE if had to suspend before reaching a marker;
+ * in that case cinfo->unread_marker is unchanged.
+ *
+ * Note that the result might not be a valid marker code,
+ * but it will never be 0 or FF.
+ */
+
+LOCAL(boolean)
+next_marker (j_decompress_ptr cinfo)
+{
+  int c;
+  INPUT_VARS(cinfo);
+
+  for (;;) {
+    INPUT_BYTE(cinfo, c, return FALSE);
+    /* Skip any non-FF bytes.
+     * This may look a bit inefficient, but it will not occur in a valid file.
+     * We sync after each discarded byte so that a suspending data source
+     * can discard the byte from its buffer.
+     */
+    while (c != 0xFF) {
+      cinfo->marker->discarded_bytes++;
+      INPUT_SYNC(cinfo);
+      INPUT_BYTE(cinfo, c, return FALSE);
+    }
+    /* This loop swallows any duplicate FF bytes.  Extra FFs are legal as
+     * pad bytes, so don't count them in discarded_bytes.  We assume there
+     * will not be so many consecutive FF bytes as to overflow a suspending
+     * data source's input buffer.
+     */
+    do {
+      INPUT_BYTE(cinfo, c, return FALSE);
+    } while (c == 0xFF);
+    if (c != 0)
+      break;			/* found a valid marker, exit loop */
+    /* Reach here if we found a stuffed-zero data sequence (FF/00).
+     * Discard it and loop back to try again.
+     */
+    cinfo->marker->discarded_bytes += 2;
+    INPUT_SYNC(cinfo);
+  }
+
+  if (cinfo->marker->discarded_bytes != 0) {
+    WARNMS2(cinfo, JWRN_EXTRANEOUS_DATA, cinfo->marker->discarded_bytes, c);
+    cinfo->marker->discarded_bytes = 0;
+  }
+
+  cinfo->unread_marker = c;
+
+  INPUT_SYNC(cinfo);
+  return TRUE;
+}
+
+
+LOCAL(boolean)
+first_marker (j_decompress_ptr cinfo)
+/* Like next_marker, but used to obtain the initial SOI marker. */
+/* For this marker, we do not allow preceding garbage or fill; otherwise,
+ * we might well scan an entire input file before realizing it ain't JPEG.
+ * If an application wants to process non-JFIF files, it must seek to the
+ * SOI before calling the JPEG library.
+ */
+{
+  int c, c2;
+  INPUT_VARS(cinfo);
+
+  INPUT_BYTE(cinfo, c, return FALSE);
+  INPUT_BYTE(cinfo, c2, return FALSE);
+  if (c != 0xFF || c2 != (int) M_SOI)
+    ERREXIT2(cinfo, JERR_NO_SOI, c, c2);
+
+  cinfo->unread_marker = c2;
+
+  INPUT_SYNC(cinfo);
+  return TRUE;
+}
+
+
+/*
+ * Read markers until SOS or EOI.
+ *
+ * Returns same codes as are defined for jpeg_consume_input:
+ * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+ */
+
+METHODDEF(int)
+read_markers (j_decompress_ptr cinfo)
+{
+  /* Outer loop repeats once for each marker. */
+  for (;;) {
+    /* Collect the marker proper, unless we already did. */
+    /* NB: first_marker() enforces the requirement that SOI appear first. */
+    if (cinfo->unread_marker == 0) {
+      if (! cinfo->marker->saw_SOI) {
+	if (! first_marker(cinfo))
+	  return JPEG_SUSPENDED;
+      } else {
+	if (! next_marker(cinfo))
+	  return JPEG_SUSPENDED;
+      }
+    }
+    /* At this point cinfo->unread_marker contains the marker code and the
+     * input point is just past the marker proper, but before any parameters.
+     * A suspension will cause us to return with this state still true.
+     */
+    switch (cinfo->unread_marker) {
+    case M_SOI:
+      if (! get_soi(cinfo))
+	return JPEG_SUSPENDED;
+      break;
+
+    case M_SOF0:		/* Baseline */
+    case M_SOF1:		/* Extended sequential, Huffman */
+      if (! get_sof(cinfo, FALSE, FALSE))
+	return JPEG_SUSPENDED;
+      break;
+
+    case M_SOF2:		/* Progressive, Huffman */
+      if (! get_sof(cinfo, TRUE, FALSE))
+	return JPEG_SUSPENDED;
+      break;
+
+    case M_SOF9:		/* Extended sequential, arithmetic */
+      if (! get_sof(cinfo, FALSE, TRUE))
+	return JPEG_SUSPENDED;
+      break;
+
+    case M_SOF10:		/* Progressive, arithmetic */
+      if (! get_sof(cinfo, TRUE, TRUE))
+	return JPEG_SUSPENDED;
+      break;
+
+    /* Currently unsupported SOFn types */
+    case M_SOF3:		/* Lossless, Huffman */
+    case M_SOF5:		/* Differential sequential, Huffman */
+    case M_SOF6:		/* Differential progressive, Huffman */
+    case M_SOF7:		/* Differential lossless, Huffman */
+    case M_JPG:			/* Reserved for JPEG extensions */
+    case M_SOF11:		/* Lossless, arithmetic */
+    case M_SOF13:		/* Differential sequential, arithmetic */
+    case M_SOF14:		/* Differential progressive, arithmetic */
+    case M_SOF15:		/* Differential lossless, arithmetic */
+      ERREXIT1(cinfo, JERR_SOF_UNSUPPORTED, cinfo->unread_marker);
+      break;
+
+    case M_SOS:
+      if (! get_sos(cinfo))
+	return JPEG_SUSPENDED;
+      cinfo->unread_marker = 0;	/* processed the marker */
+      return JPEG_REACHED_SOS;
+    
+    case M_EOI:
+      TRACEMS(cinfo, 1, JTRC_EOI);
+      cinfo->unread_marker = 0;	/* processed the marker */
+      return JPEG_REACHED_EOI;
+      
+    case M_DAC:
+      if (! get_dac(cinfo))
+	return JPEG_SUSPENDED;
+      break;
+      
+    case M_DHT:
+      if (! get_dht(cinfo))
+	return JPEG_SUSPENDED;
+      break;
+      
+    case M_DQT:
+      if (! get_dqt(cinfo))
+	return JPEG_SUSPENDED;
+      break;
+      
+    case M_DRI:
+      if (! get_dri(cinfo))
+	return JPEG_SUSPENDED;
+      break;
+      
+    case M_APP0:
+    case M_APP1:
+    case M_APP2:
+    case M_APP3:
+    case M_APP4:
+    case M_APP5:
+    case M_APP6:
+    case M_APP7:
+    case M_APP8:
+    case M_APP9:
+    case M_APP10:
+    case M_APP11:
+    case M_APP12:
+    case M_APP13:
+    case M_APP14:
+    case M_APP15:
+      if (! (*((my_marker_ptr) cinfo->marker)->process_APPn[
+		cinfo->unread_marker - (int) M_APP0]) (cinfo))
+	return JPEG_SUSPENDED;
+      break;
+      
+    case M_COM:
+      if (! (*((my_marker_ptr) cinfo->marker)->process_COM) (cinfo))
+	return JPEG_SUSPENDED;
+      break;
+
+    case M_RST0:		/* these are all parameterless */
+    case M_RST1:
+    case M_RST2:
+    case M_RST3:
+    case M_RST4:
+    case M_RST5:
+    case M_RST6:
+    case M_RST7:
+    case M_TEM:
+      TRACEMS1(cinfo, 1, JTRC_PARMLESS_MARKER, cinfo->unread_marker);
+      break;
+
+    case M_DNL:			/* Ignore DNL ... perhaps the wrong thing */
+      if (! skip_variable(cinfo))
+	return JPEG_SUSPENDED;
+      break;
+
+    default:			/* must be DHP, EXP, JPGn, or RESn */
+      /* For now, we treat the reserved markers as fatal errors since they are
+       * likely to be used to signal incompatible JPEG Part 3 extensions.
+       * Once the JPEG 3 version-number marker is well defined, this code
+       * ought to change!
+       */
+      ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker);
+      break;
+    }
+    /* Successfully processed marker, so reset state variable */
+    cinfo->unread_marker = 0;
+  } /* end loop */
+}
+
+
+/*
+ * Read a restart marker, which is expected to appear next in the datastream;
+ * if the marker is not there, take appropriate recovery action.
+ * Returns FALSE if suspension is required.
+ *
+ * This is called by the entropy decoder after it has read an appropriate
+ * number of MCUs.  cinfo->unread_marker may be nonzero if the entropy decoder
+ * has already read a marker from the data source.  Under normal conditions
+ * cinfo->unread_marker will be reset to 0 before returning; if not reset,
+ * it holds a marker which the decoder will be unable to read past.
+ */
+
+METHODDEF(boolean)
+read_restart_marker (j_decompress_ptr cinfo)
+{
+  /* Obtain a marker unless we already did. */
+  /* Note that next_marker will complain if it skips any data. */
+  if (cinfo->unread_marker == 0) {
+    if (! next_marker(cinfo))
+      return FALSE;
+  }
+
+  if (cinfo->unread_marker ==
+      ((int) M_RST0 + cinfo->marker->next_restart_num)) {
+    /* Normal case --- swallow the marker and let entropy decoder continue */
+    TRACEMS1(cinfo, 3, JTRC_RST, cinfo->marker->next_restart_num);
+    cinfo->unread_marker = 0;
+  } else {
+    /* Uh-oh, the restart markers have been messed up. */
+    /* Let the data source manager determine how to resync. */
+    if (! (*cinfo->src->resync_to_restart) (cinfo,
+					    cinfo->marker->next_restart_num))
+      return FALSE;
+  }
+
+  /* Update next-restart state */
+  cinfo->marker->next_restart_num = (cinfo->marker->next_restart_num + 1) & 7;
+
+  return TRUE;
+}
+
+
+/*
+ * This is the default resync_to_restart method for data source managers
+ * to use if they don't have any better approach.  Some data source managers
+ * may be able to back up, or may have additional knowledge about the data
+ * which permits a more intelligent recovery strategy; such managers would
+ * presumably supply their own resync method.
+ *
+ * read_restart_marker calls resync_to_restart if it finds a marker other than
+ * the restart marker it was expecting.  (This code is *not* used unless
+ * a nonzero restart interval has been declared.)  cinfo->unread_marker is
+ * the marker code actually found (might be anything, except 0 or FF).
+ * The desired restart marker number (0..7) is passed as a parameter.
+ * This routine is supposed to apply whatever error recovery strategy seems
+ * appropriate in order to position the input stream to the next data segment.
+ * Note that cinfo->unread_marker is treated as a marker appearing before
+ * the current data-source input point; usually it should be reset to zero
+ * before returning.
+ * Returns FALSE if suspension is required.
+ *
+ * This implementation is substantially constrained by wanting to treat the
+ * input as a data stream; this means we can't back up.  Therefore, we have
+ * only the following actions to work with:
+ *   1. Simply discard the marker and let the entropy decoder resume at next
+ *      byte of file.
+ *   2. Read forward until we find another marker, discarding intervening
+ *      data.  (In theory we could look ahead within the current bufferload,
+ *      without having to discard data if we don't find the desired marker.
+ *      This idea is not implemented here, in part because it makes behavior
+ *      dependent on buffer size and chance buffer-boundary positions.)
+ *   3. Leave the marker unread (by failing to zero cinfo->unread_marker).
+ *      This will cause the entropy decoder to process an empty data segment,
+ *      inserting dummy zeroes, and then we will reprocess the marker.
+ *
+ * #2 is appropriate if we think the desired marker lies ahead, while #3 is
+ * appropriate if the found marker is a future restart marker (indicating
+ * that we have missed the desired restart marker, probably because it got
+ * corrupted).
+ * We apply #2 or #3 if the found marker is a restart marker no more than
+ * two counts behind or ahead of the expected one.  We also apply #2 if the
+ * found marker is not a legal JPEG marker code (it's certainly bogus data).
+ * If the found marker is a restart marker more than 2 counts away, we do #1
+ * (too much risk that the marker is erroneous; with luck we will be able to
+ * resync at some future point).
+ * For any valid non-restart JPEG marker, we apply #3.  This keeps us from
+ * overrunning the end of a scan.  An implementation limited to single-scan
+ * files might find it better to apply #2 for markers other than EOI, since
+ * any other marker would have to be bogus data in that case.
+ */
+
+GLOBAL(boolean)
+jpeg_resync_to_restart (j_decompress_ptr cinfo, int desired)
+{
+  int marker = cinfo->unread_marker;
+  int action = 1;
+  
+  /* Always put up a warning. */
+  WARNMS2(cinfo, JWRN_MUST_RESYNC, marker, desired);
+  
+  /* Outer loop handles repeated decision after scanning forward. */
+  for (;;) {
+    if (marker < (int) M_SOF0)
+      action = 2;		/* invalid marker */
+    else if (marker < (int) M_RST0 || marker > (int) M_RST7)
+      action = 3;		/* valid non-restart marker */
+    else {
+      if (marker == ((int) M_RST0 + ((desired+1) & 7)) ||
+	  marker == ((int) M_RST0 + ((desired+2) & 7)))
+	action = 3;		/* one of the next two expected restarts */
+      else if (marker == ((int) M_RST0 + ((desired-1) & 7)) ||
+	       marker == ((int) M_RST0 + ((desired-2) & 7)))
+	action = 2;		/* a prior restart, so advance */
+      else
+	action = 1;		/* desired restart or too far away */
+    }
+    TRACEMS2(cinfo, 4, JTRC_RECOVERY_ACTION, marker, action);
+    switch (action) {
+    case 1:
+      /* Discard marker and let entropy decoder resume processing. */
+      cinfo->unread_marker = 0;
+      return TRUE;
+    case 2:
+      /* Scan to the next marker, and repeat the decision loop. */
+      if (! next_marker(cinfo))
+	return FALSE;
+      marker = cinfo->unread_marker;
+      break;
+    case 3:
+      /* Return without advancing past this marker. */
+      /* Entropy decoder will be forced to process an empty segment. */
+      return TRUE;
+    }
+  } /* end loop */
+}
+
+
+/*
+ * Reset marker processing state to begin a fresh datastream.
+ */
+
+METHODDEF(void)
+reset_marker_reader (j_decompress_ptr cinfo)
+{
+  my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+
+  cinfo->comp_info = NULL;		/* until allocated by get_sof */
+  cinfo->input_scan_number = 0;		/* no SOS seen yet */
+  cinfo->unread_marker = 0;		/* no pending marker */
+  marker->pub.saw_SOI = FALSE;		/* set internal state too */
+  marker->pub.saw_SOF = FALSE;
+  marker->pub.discarded_bytes = 0;
+  marker->cur_marker = NULL;
+}
+
+
+/*
+ * Initialize the marker reader module.
+ * This is called only once, when the decompression object is created.
+ */
+
+GLOBAL(void)
+jinit_marker_reader (j_decompress_ptr cinfo)
+{
+  my_marker_ptr marker;
+  int i;
+
+  /* Create subobject in permanent pool */
+  marker = (my_marker_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+				SIZEOF(my_marker_reader));
+  cinfo->marker = (struct jpeg_marker_reader *) marker;
+  /* Initialize public method pointers */
+  marker->pub.reset_marker_reader = reset_marker_reader;
+  marker->pub.read_markers = read_markers;
+  marker->pub.read_restart_marker = read_restart_marker;
+  /* Initialize COM/APPn processing.
+   * By default, we examine and then discard APP0 and APP14,
+   * but simply discard COM and all other APPn.
+   */
+  marker->process_COM = skip_variable;
+  marker->length_limit_COM = 0;
+  for (i = 0; i < 16; i++) {
+    marker->process_APPn[i] = skip_variable;
+    marker->length_limit_APPn[i] = 0;
+  }
+  marker->process_APPn[0] = get_interesting_appn;
+  marker->process_APPn[14] = get_interesting_appn;
+  /* Reset marker processing state */
+  reset_marker_reader(cinfo);
+}
+
+
+/*
+ * Control saving of COM and APPn markers into marker_list.
+ */
+
+#ifdef SAVE_MARKERS_SUPPORTED
+
+GLOBAL(void)
+jpeg_save_markers (j_decompress_ptr cinfo, int marker_code,
+		   unsigned int length_limit)
+{
+  my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+  long maxlength;
+  jpeg_marker_parser_method processor;
+
+  /* Length limit mustn't be larger than what we can allocate
+   * (should only be a concern in a 16-bit environment).
+   */
+  maxlength = cinfo->mem->max_alloc_chunk - SIZEOF(struct jpeg_marker_struct);
+  if (((long) length_limit) > maxlength)
+    length_limit = (unsigned int) maxlength;
+
+  /* Choose processor routine to use.
+   * APP0/APP14 have special requirements.
+   */
+  if (length_limit) {
+    processor = save_marker;
+    /* If saving APP0/APP14, save at least enough for our internal use. */
+    if (marker_code == (int) M_APP0 && length_limit < APP0_DATA_LEN)
+      length_limit = APP0_DATA_LEN;
+    else if (marker_code == (int) M_APP14 && length_limit < APP14_DATA_LEN)
+      length_limit = APP14_DATA_LEN;
+  } else {
+    processor = skip_variable;
+    /* If discarding APP0/APP14, use our regular on-the-fly processor. */
+    if (marker_code == (int) M_APP0 || marker_code == (int) M_APP14)
+      processor = get_interesting_appn;
+  }
+
+  if (marker_code == (int) M_COM) {
+    marker->process_COM = processor;
+    marker->length_limit_COM = length_limit;
+  } else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15) {
+    marker->process_APPn[marker_code - (int) M_APP0] = processor;
+    marker->length_limit_APPn[marker_code - (int) M_APP0] = length_limit;
+  } else
+    ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
+}
+
+#endif /* SAVE_MARKERS_SUPPORTED */
+
+
+/*
+ * Install a special processing method for COM or APPn markers.
+ */
+
+GLOBAL(void)
+jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code,
+			   jpeg_marker_parser_method routine)
+{
+  my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+
+  if (marker_code == (int) M_COM)
+    marker->process_COM = routine;
+  else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15)
+    marker->process_APPn[marker_code - (int) M_APP0] = routine;
+  else
+    ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
+}

=== added file 'src/libjpeg-turbo/jdmaster.c'
--- src/libjpeg-turbo/jdmaster.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdmaster.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,601 @@ 
+/*
+ * jdmaster.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Copyright (C) 2009-2011, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains master control logic for the JPEG decompressor.
+ * These routines are concerned with selecting the modules to be executed
+ * and with determining the number of passes and the work to be done in each
+ * pass.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jpegcomp.h"
+
+
+/* Private state */
+
+typedef struct {
+  struct jpeg_decomp_master pub; /* public fields */
+
+  int pass_number;		/* # of passes completed */
+
+  boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
+
+  /* Saved references to initialized quantizer modules,
+   * in case we need to switch modes.
+   */
+  struct jpeg_color_quantizer * quantizer_1pass;
+  struct jpeg_color_quantizer * quantizer_2pass;
+} my_decomp_master;
+
+typedef my_decomp_master * my_master_ptr;
+
+
+/*
+ * Determine whether merged upsample/color conversion should be used.
+ * CRUCIAL: this must match the actual capabilities of jdmerge.c!
+ */
+
+LOCAL(boolean)
+use_merged_upsample (j_decompress_ptr cinfo)
+{
+#ifdef UPSAMPLE_MERGING_SUPPORTED
+  /* Merging is the equivalent of plain box-filter upsampling */
+  if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
+    return FALSE;
+  /* jdmerge.c only supports YCC=>RGB color conversion */
+  if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
+      (cinfo->out_color_space != JCS_RGB &&
+      cinfo->out_color_space != JCS_EXT_RGB &&
+      cinfo->out_color_space != JCS_EXT_RGBX &&
+      cinfo->out_color_space != JCS_EXT_BGR &&
+      cinfo->out_color_space != JCS_EXT_BGRX &&
+      cinfo->out_color_space != JCS_EXT_XBGR &&
+      cinfo->out_color_space != JCS_EXT_XRGB &&
+      cinfo->out_color_space != JCS_EXT_RGBA &&
+      cinfo->out_color_space != JCS_EXT_BGRA &&
+      cinfo->out_color_space != JCS_EXT_ABGR &&
+      cinfo->out_color_space != JCS_EXT_ARGB) ||
+      cinfo->out_color_components != rgb_pixelsize[cinfo->out_color_space])
+    return FALSE;
+  /* and it only handles 2h1v or 2h2v sampling ratios */
+  if (cinfo->comp_info[0].h_samp_factor != 2 ||
+      cinfo->comp_info[1].h_samp_factor != 1 ||
+      cinfo->comp_info[2].h_samp_factor != 1 ||
+      cinfo->comp_info[0].v_samp_factor >  2 ||
+      cinfo->comp_info[1].v_samp_factor != 1 ||
+      cinfo->comp_info[2].v_samp_factor != 1)
+    return FALSE;
+  /* furthermore, it doesn't work if we've scaled the IDCTs differently */
+  if (cinfo->comp_info[0]._DCT_scaled_size != cinfo->_min_DCT_scaled_size ||
+      cinfo->comp_info[1]._DCT_scaled_size != cinfo->_min_DCT_scaled_size ||
+      cinfo->comp_info[2]._DCT_scaled_size != cinfo->_min_DCT_scaled_size)
+    return FALSE;
+  /* ??? also need to test for upsample-time rescaling, when & if supported */
+  return TRUE;			/* by golly, it'll work... */
+#else
+  return FALSE;
+#endif
+}
+
+
+/*
+ * Compute output image dimensions and related values.
+ * NOTE: this is exported for possible use by application.
+ * Hence it mustn't do anything that can't be done twice.
+ * Also note that it may be called before the master module is initialized!
+ */
+
+GLOBAL(void)
+jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
+/* Do computations that are needed before master selection phase */
+{
+#ifdef IDCT_SCALING_SUPPORTED
+  int ci;
+  jpeg_component_info *compptr;
+#endif
+
+  /* Prevent application from calling me at wrong times */
+  if (cinfo->global_state != DSTATE_READY)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+#ifdef IDCT_SCALING_SUPPORTED
+
+  /* Compute actual output image dimensions and DCT scaling choices. */
+  if (cinfo->scale_num * 8 <= cinfo->scale_denom) {
+    /* Provide 1/8 scaling */
+    cinfo->output_width = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_width, 8L);
+    cinfo->output_height = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_height, 8L);
+#if JPEG_LIB_VERSION >= 70
+    cinfo->min_DCT_h_scaled_size = cinfo->min_DCT_v_scaled_size = 1;
+#else
+    cinfo->min_DCT_scaled_size = 1;
+#endif
+  } else if (cinfo->scale_num * 4 <= cinfo->scale_denom) {
+    /* Provide 1/4 scaling */
+    cinfo->output_width = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_width, 4L);
+    cinfo->output_height = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_height, 4L);
+#if JPEG_LIB_VERSION >= 70
+    cinfo->min_DCT_h_scaled_size = cinfo->min_DCT_v_scaled_size = 2;
+#else
+    cinfo->min_DCT_scaled_size = 2;
+#endif
+  } else if (cinfo->scale_num * 2 <= cinfo->scale_denom) {
+    /* Provide 1/2 scaling */
+    cinfo->output_width = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_width, 2L);
+    cinfo->output_height = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_height, 2L);
+#if JPEG_LIB_VERSION >= 70
+    cinfo->min_DCT_h_scaled_size = cinfo->min_DCT_v_scaled_size = 4;
+#else
+    cinfo->min_DCT_scaled_size = 4;
+#endif
+  } else {
+    /* Provide 1/1 scaling */
+    cinfo->output_width = cinfo->image_width;
+    cinfo->output_height = cinfo->image_height;
+#if JPEG_LIB_VERSION >= 70
+    cinfo->min_DCT_h_scaled_size = cinfo->min_DCT_v_scaled_size = DCTSIZE;
+#else
+    cinfo->min_DCT_scaled_size = DCTSIZE;
+#endif
+  }
+  /* In selecting the actual DCT scaling for each component, we try to
+   * scale up the chroma components via IDCT scaling rather than upsampling.
+   * This saves time if the upsampler gets to use 1:1 scaling.
+   * Note this code assumes that the supported DCT scalings are powers of 2.
+   */
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    int ssize = cinfo->_min_DCT_scaled_size;
+    while (ssize < DCTSIZE &&
+	   (compptr->h_samp_factor * ssize * 2 <=
+	    cinfo->max_h_samp_factor * cinfo->_min_DCT_scaled_size) &&
+	   (compptr->v_samp_factor * ssize * 2 <=
+	    cinfo->max_v_samp_factor * cinfo->_min_DCT_scaled_size)) {
+      ssize = ssize * 2;
+    }
+#if JPEG_LIB_VERSION >= 70
+    compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = ssize;
+#else
+    compptr->DCT_scaled_size = ssize;
+#endif
+  }
+
+  /* Recompute downsampled dimensions of components;
+   * application needs to know these if using raw downsampled data.
+   */
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    /* Size in samples, after IDCT scaling */
+    compptr->downsampled_width = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_width *
+		    (long) (compptr->h_samp_factor * compptr->_DCT_scaled_size),
+		    (long) (cinfo->max_h_samp_factor * DCTSIZE));
+    compptr->downsampled_height = (JDIMENSION)
+      jdiv_round_up((long) cinfo->image_height *
+		    (long) (compptr->v_samp_factor * compptr->_DCT_scaled_size),
+		    (long) (cinfo->max_v_samp_factor * DCTSIZE));
+  }
+
+#else /* !IDCT_SCALING_SUPPORTED */
+
+  /* Hardwire it to "no scaling" */
+  cinfo->output_width = cinfo->image_width;
+  cinfo->output_height = cinfo->image_height;
+  /* jdinput.c has already initialized DCT_scaled_size to DCTSIZE,
+   * and has computed unscaled downsampled_width and downsampled_height.
+   */
+
+#endif /* IDCT_SCALING_SUPPORTED */
+
+  /* Report number of components in selected colorspace. */
+  /* Probably this should be in the color conversion module... */
+  switch (cinfo->out_color_space) {
+  case JCS_GRAYSCALE:
+    cinfo->out_color_components = 1;
+    break;
+  case JCS_RGB:
+  case JCS_EXT_RGB:
+  case JCS_EXT_RGBX:
+  case JCS_EXT_BGR:
+  case JCS_EXT_BGRX:
+  case JCS_EXT_XBGR:
+  case JCS_EXT_XRGB:
+  case JCS_EXT_RGBA:
+  case JCS_EXT_BGRA:
+  case JCS_EXT_ABGR:
+  case JCS_EXT_ARGB:
+    cinfo->out_color_components = rgb_pixelsize[cinfo->out_color_space];
+    break;
+  case JCS_YCbCr:
+    cinfo->out_color_components = 3;
+    break;
+  case JCS_CMYK:
+  case JCS_YCCK:
+    cinfo->out_color_components = 4;
+    break;
+  default:			/* else must be same colorspace as in file */
+    cinfo->out_color_components = cinfo->num_components;
+    break;
+  }
+  cinfo->output_components = (cinfo->quantize_colors ? 1 :
+			      cinfo->out_color_components);
+
+  /* See if upsampler will want to emit more than one row at a time */
+  if (use_merged_upsample(cinfo))
+    cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
+  else
+    cinfo->rec_outbuf_height = 1;
+}
+
+
+/*
+ * Several decompression processes need to range-limit values to the range
+ * 0..MAXJSAMPLE; the input value may fall somewhat outside this range
+ * due to noise introduced by quantization, roundoff error, etc.  These
+ * processes are inner loops and need to be as fast as possible.  On most
+ * machines, particularly CPUs with pipelines or instruction prefetch,
+ * a (subscript-check-less) C table lookup
+ *		x = sample_range_limit[x];
+ * is faster than explicit tests
+ *		if (x < 0)  x = 0;
+ *		else if (x > MAXJSAMPLE)  x = MAXJSAMPLE;
+ * These processes all use a common table prepared by the routine below.
+ *
+ * For most steps we can mathematically guarantee that the initial value
+ * of x is within MAXJSAMPLE+1 of the legal range, so a table running from
+ * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient.  But for the initial
+ * limiting step (just after the IDCT), a wildly out-of-range value is 
+ * possible if the input data is corrupt.  To avoid any chance of indexing
+ * off the end of memory and getting a bad-pointer trap, we perform the
+ * post-IDCT limiting thus:
+ *		x = range_limit[x & MASK];
+ * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
+ * samples.  Under normal circumstances this is more than enough range and
+ * a correct output will be generated; with bogus input data the mask will
+ * cause wraparound, and we will safely generate a bogus-but-in-range output.
+ * For the post-IDCT step, we want to convert the data from signed to unsigned
+ * representation by adding CENTERJSAMPLE at the same time that we limit it.
+ * So the post-IDCT limiting table ends up looking like this:
+ *   CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
+ *   MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
+ *   0          (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
+ *   0,1,...,CENTERJSAMPLE-1
+ * Negative inputs select values from the upper half of the table after
+ * masking.
+ *
+ * We can save some space by overlapping the start of the post-IDCT table
+ * with the simpler range limiting table.  The post-IDCT table begins at
+ * sample_range_limit + CENTERJSAMPLE.
+ *
+ * Note that the table is allocated in near data space on PCs; it's small
+ * enough and used often enough to justify this.
+ */
+
+LOCAL(void)
+prepare_range_limit_table (j_decompress_ptr cinfo)
+/* Allocate and fill in the sample_range_limit table */
+{
+  JSAMPLE * table;
+  int i;
+
+  table = (JSAMPLE *)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+		(5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE));
+  table += (MAXJSAMPLE+1);	/* allow negative subscripts of simple table */
+  cinfo->sample_range_limit = table;
+  /* First segment of "simple" table: limit[x] = 0 for x < 0 */
+  MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
+  /* Main part of "simple" table: limit[x] = x */
+  for (i = 0; i <= MAXJSAMPLE; i++)
+    table[i] = (JSAMPLE) i;
+  table += CENTERJSAMPLE;	/* Point to where post-IDCT table starts */
+  /* End of simple table, rest of first half of post-IDCT table */
+  for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
+    table[i] = MAXJSAMPLE;
+  /* Second half of post-IDCT table */
+  MEMZERO(table + (2 * (MAXJSAMPLE+1)),
+	  (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
+  MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
+	  cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE));
+}
+
+
+/*
+ * Master selection of decompression modules.
+ * This is done once at jpeg_start_decompress time.  We determine
+ * which modules will be used and give them appropriate initialization calls.
+ * We also initialize the decompressor input side to begin consuming data.
+ *
+ * Since jpeg_read_header has finished, we know what is in the SOF
+ * and (first) SOS markers.  We also have all the application parameter
+ * settings.
+ */
+
+LOCAL(void)
+master_selection (j_decompress_ptr cinfo)
+{
+  my_master_ptr master = (my_master_ptr) cinfo->master;
+  boolean use_c_buffer;
+  long samplesperrow;
+  JDIMENSION jd_samplesperrow;
+
+  /* Initialize dimensions and other stuff */
+  jpeg_calc_output_dimensions(cinfo);
+  prepare_range_limit_table(cinfo);
+
+  /* Width of an output scanline must be representable as JDIMENSION. */
+  samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
+  jd_samplesperrow = (JDIMENSION) samplesperrow;
+  if ((long) jd_samplesperrow != samplesperrow)
+    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+
+  /* Initialize my private state */
+  master->pass_number = 0;
+  master->using_merged_upsample = use_merged_upsample(cinfo);
+
+  /* Color quantizer selection */
+  master->quantizer_1pass = NULL;
+  master->quantizer_2pass = NULL;
+  /* No mode changes if not using buffered-image mode. */
+  if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
+    cinfo->enable_1pass_quant = FALSE;
+    cinfo->enable_external_quant = FALSE;
+    cinfo->enable_2pass_quant = FALSE;
+  }
+  if (cinfo->quantize_colors) {
+    if (cinfo->raw_data_out)
+      ERREXIT(cinfo, JERR_NOTIMPL);
+    /* 2-pass quantizer only works in 3-component color space. */
+    if (cinfo->out_color_components != 3) {
+      cinfo->enable_1pass_quant = TRUE;
+      cinfo->enable_external_quant = FALSE;
+      cinfo->enable_2pass_quant = FALSE;
+      cinfo->colormap = NULL;
+    } else if (cinfo->colormap != NULL) {
+      cinfo->enable_external_quant = TRUE;
+    } else if (cinfo->two_pass_quantize) {
+      cinfo->enable_2pass_quant = TRUE;
+    } else {
+      cinfo->enable_1pass_quant = TRUE;
+    }
+
+    if (cinfo->enable_1pass_quant) {
+#ifdef QUANT_1PASS_SUPPORTED
+      jinit_1pass_quantizer(cinfo);
+      master->quantizer_1pass = cinfo->cquantize;
+#else
+      ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+    }
+
+    /* We use the 2-pass code to map to external colormaps. */
+    if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
+#ifdef QUANT_2PASS_SUPPORTED
+      jinit_2pass_quantizer(cinfo);
+      master->quantizer_2pass = cinfo->cquantize;
+#else
+      ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+    }
+    /* If both quantizers are initialized, the 2-pass one is left active;
+     * this is necessary for starting with quantization to an external map.
+     */
+  }
+
+  /* Post-processing: in particular, color conversion first */
+  if (! cinfo->raw_data_out) {
+    if (master->using_merged_upsample) {
+#ifdef UPSAMPLE_MERGING_SUPPORTED
+      jinit_merged_upsampler(cinfo); /* does color conversion too */
+#else
+      ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+    } else {
+      jinit_color_deconverter(cinfo);
+      jinit_upsampler(cinfo);
+    }
+    jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
+  }
+  /* Inverse DCT */
+  jinit_inverse_dct(cinfo);
+  /* Entropy decoding: either Huffman or arithmetic coding. */
+  if (cinfo->arith_code) {
+#ifdef D_ARITH_CODING_SUPPORTED
+    jinit_arith_decoder(cinfo);
+#else
+    ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
+#endif
+  } else {
+    if (cinfo->progressive_mode) {
+#ifdef D_PROGRESSIVE_SUPPORTED
+      jinit_phuff_decoder(cinfo);
+#else
+      ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+    } else
+      jinit_huff_decoder(cinfo);
+  }
+
+  /* Initialize principal buffer controllers. */
+  use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
+  jinit_d_coef_controller(cinfo, use_c_buffer);
+
+  if (! cinfo->raw_data_out)
+    jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
+
+  /* We can now tell the memory manager to allocate virtual arrays. */
+  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+
+  /* Initialize input side of decompressor to consume first scan. */
+  (*cinfo->inputctl->start_input_pass) (cinfo);
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+  /* If jpeg_start_decompress will read the whole file, initialize
+   * progress monitoring appropriately.  The input step is counted
+   * as one pass.
+   */
+  if (cinfo->progress != NULL && ! cinfo->buffered_image &&
+      cinfo->inputctl->has_multiple_scans) {
+    int nscans;
+    /* Estimate number of scans to set pass_limit. */
+    if (cinfo->progressive_mode) {
+      /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
+      nscans = 2 + 3 * cinfo->num_components;
+    } else {
+      /* For a nonprogressive multiscan file, estimate 1 scan per component. */
+      nscans = cinfo->num_components;
+    }
+    cinfo->progress->pass_counter = 0L;
+    cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
+    cinfo->progress->completed_passes = 0;
+    cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
+    /* Count the input pass as done */
+    master->pass_number++;
+  }
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+}
+
+
+/*
+ * Per-pass setup.
+ * This is called at the beginning of each output pass.  We determine which
+ * modules will be active during this pass and give them appropriate
+ * start_pass calls.  We also set is_dummy_pass to indicate whether this
+ * is a "real" output pass or a dummy pass for color quantization.
+ * (In the latter case, jdapistd.c will crank the pass to completion.)
+ */
+
+METHODDEF(void)
+prepare_for_output_pass (j_decompress_ptr cinfo)
+{
+  my_master_ptr master = (my_master_ptr) cinfo->master;
+
+  if (master->pub.is_dummy_pass) {
+#ifdef QUANT_2PASS_SUPPORTED
+    /* Final pass of 2-pass quantization */
+    master->pub.is_dummy_pass = FALSE;
+    (*cinfo->cquantize->start_pass) (cinfo, FALSE);
+    (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
+    (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
+#else
+    ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif /* QUANT_2PASS_SUPPORTED */
+  } else {
+    if (cinfo->quantize_colors && cinfo->colormap == NULL) {
+      /* Select new quantization method */
+      if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
+	cinfo->cquantize = master->quantizer_2pass;
+	master->pub.is_dummy_pass = TRUE;
+      } else if (cinfo->enable_1pass_quant) {
+	cinfo->cquantize = master->quantizer_1pass;
+      } else {
+	ERREXIT(cinfo, JERR_MODE_CHANGE);
+      }
+    }
+    (*cinfo->idct->start_pass) (cinfo);
+    (*cinfo->coef->start_output_pass) (cinfo);
+    if (! cinfo->raw_data_out) {
+      if (! master->using_merged_upsample)
+	(*cinfo->cconvert->start_pass) (cinfo);
+      (*cinfo->upsample->start_pass) (cinfo);
+      if (cinfo->quantize_colors)
+	(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
+      (*cinfo->post->start_pass) (cinfo,
+	    (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
+      (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
+    }
+  }
+
+  /* Set up progress monitor's pass info if present */
+  if (cinfo->progress != NULL) {
+    cinfo->progress->completed_passes = master->pass_number;
+    cinfo->progress->total_passes = master->pass_number +
+				    (master->pub.is_dummy_pass ? 2 : 1);
+    /* In buffered-image mode, we assume one more output pass if EOI not
+     * yet reached, but no more passes if EOI has been reached.
+     */
+    if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
+      cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
+    }
+  }
+}
+
+
+/*
+ * Finish up at end of an output pass.
+ */
+
+METHODDEF(void)
+finish_output_pass (j_decompress_ptr cinfo)
+{
+  my_master_ptr master = (my_master_ptr) cinfo->master;
+
+  if (cinfo->quantize_colors)
+    (*cinfo->cquantize->finish_pass) (cinfo);
+  master->pass_number++;
+}
+
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+
+/*
+ * Switch to a new external colormap between output passes.
+ */
+
+GLOBAL(void)
+jpeg_new_colormap (j_decompress_ptr cinfo)
+{
+  my_master_ptr master = (my_master_ptr) cinfo->master;
+
+  /* Prevent application from calling me at wrong times */
+  if (cinfo->global_state != DSTATE_BUFIMAGE)
+    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+  if (cinfo->quantize_colors && cinfo->enable_external_quant &&
+      cinfo->colormap != NULL) {
+    /* Select 2-pass quantizer for external colormap use */
+    cinfo->cquantize = master->quantizer_2pass;
+    /* Notify quantizer of colormap change */
+    (*cinfo->cquantize->new_color_map) (cinfo);
+    master->pub.is_dummy_pass = FALSE; /* just in case */
+  } else
+    ERREXIT(cinfo, JERR_MODE_CHANGE);
+}
+
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+
+
+/*
+ * Initialize master decompression control and select active modules.
+ * This is performed at the start of jpeg_start_decompress.
+ */
+
+GLOBAL(void)
+jinit_master_decompress (j_decompress_ptr cinfo)
+{
+  my_master_ptr master;
+
+  master = (my_master_ptr)
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  SIZEOF(my_decomp_master));
+  cinfo->master = (struct jpeg_decomp_master *) master;
+  master->pub.prepare_for_output_pass = prepare_for_output_pass;
+  master->pub.finish_output_pass = finish_output_pass;
+
+  master->pub.is_dummy_pass = FALSE;
+
+  master_selection(cinfo);
+}

=== added file 'src/libjpeg-turbo/jdmerge.c'
--- src/libjpeg-turbo/jdmerge.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdmerge.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,455 @@ 
+/*
+ * jdmerge.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
+ * Copyright (C) 2009, 2011, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains code for merged upsampling/color conversion.
+ *
+ * This file combines functions from jdsample.c and jdcolor.c;
+ * read those files first to understand what's going on.
+ *
+ * When the chroma components are to be upsampled by simple replication
+ * (ie, box filtering), we can save some work in color conversion by
+ * calculating all the output pixels corresponding to a pair of chroma
+ * samples at one time.  In the conversion equations
+ *	R = Y           + K1 * Cr
+ *	G = Y + K2 * Cb + K3 * Cr
+ *	B = Y + K4 * Cb
+ * only the Y term varies among the group of pixels corresponding to a pair
+ * of chroma samples, so the rest of the terms can be calculated just once.
+ * At typical sampling ratios, this eliminates half or three-quarters of the
+ * multiplications needed for color conversion.
+ *
+ * This file currently provides implementations for the following cases:
+ *	YCbCr => RGB color conversion only.
+ *	Sampling ratios of 2h1v or 2h2v.
+ *	No scaling needed at upsample time.
+ *	Corner-aligned (non-CCIR601) sampling alignment.
+ * Other special cases could be added, but in most applications these are
+ * the only common cases.  (For uncommon cases we fall back on the more
+ * general code in jdsample.c and jdcolor.c.)
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jsimd.h"
+#include "config.h"
+
+#ifdef UPSAMPLE_MERGING_SUPPORTED
+
+
+/* Private subobject */
+
+typedef struct {
+  struct jpeg_upsampler pub;	/* public fields */
+
+  /* Pointer to routine to do actual upsampling/conversion of one row group */
+  JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
+			   JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
+			   JSAMPARRAY output_buf));
+
+  /* Private state for YCC->RGB conversion */
+  int * Cr_r_tab;		/* => table for Cr to R conversion */
+  int * Cb_b_tab;		/* => table for Cb to B conversion */
+  INT32 * Cr_g_tab;		/* => table for Cr to G conversion */
+  INT32 * Cb_g_tab;		/* => table for Cb to G conversion */
+
+  /* For 2:1 vertical sampling, we produce two output rows at a time.
+   * We need a "spare" row buffer to hold the second output row if the
+   * application provides just a one-row buffer; we also use the spare
+   * to discard the dummy last row if the image height is odd.
+   */
+  JSAMPROW spare_row;
+  boolean spare_full;		/* T if spare buffer is occupied */
+
+  JDIMENSION out_row_width;	/* samples per output row */
+  JDIMENSION rows_to_go;	/* counts rows remaining in image */
+} my_upsampler;
+
+typedef my_upsampler * my_upsample_ptr;
+
+#define SCALEBITS	16	/* speediest right-shift on some machines */
+#define ONE_HALF	((INT32) 1 << (SCALEBITS-1))
+#define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
+
+
+/* Include inline routines for colorspace extensions */
+
+#include "jdmrgext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+
+#define RGB_RED EXT_RGB_RED
+#define RGB_GREEN EXT_RGB_GREEN
+#define RGB_BLUE EXT_RGB_BLUE
+#define RGB_PIXELSIZE EXT_RGB_PIXELSIZE
+#define h2v1_merged_upsample_internal extrgb_h2v1_merged_upsample_internal
+#define h2v2_merged_upsample_internal extrgb_h2v2_merged_upsample_internal
+#include "jdmrgext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+#undef h2v1_merged_upsample_internal
+#undef h2v2_merged_upsample_internal
+
+#define RGB_RED EXT_RGBX_RED
+#define RGB_GREEN EXT_RGBX_GREEN
+#define RGB_BLUE EXT_RGBX_BLUE
+#define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE
+#define h2v1_merged_upsample_internal extrgbx_h2v1_merged_upsample_internal
+#define h2v2_merged_upsample_internal extrgbx_h2v2_merged_upsample_internal
+#include "jdmrgext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+#undef h2v1_merged_upsample_internal
+#undef h2v2_merged_upsample_internal
+
+#define RGB_RED EXT_BGR_RED
+#define RGB_GREEN EXT_BGR_GREEN
+#define RGB_BLUE EXT_BGR_BLUE
+#define RGB_PIXELSIZE EXT_BGR_PIXELSIZE
+#define h2v1_merged_upsample_internal extbgr_h2v1_merged_upsample_internal
+#define h2v2_merged_upsample_internal extbgr_h2v2_merged_upsample_internal
+#include "jdmrgext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+#undef h2v1_merged_upsample_internal
+#undef h2v2_merged_upsample_internal
+
+#define RGB_RED EXT_BGRX_RED
+#define RGB_GREEN EXT_BGRX_GREEN
+#define RGB_BLUE EXT_BGRX_BLUE
+#define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE
+#define h2v1_merged_upsample_internal extbgrx_h2v1_merged_upsample_internal
+#define h2v2_merged_upsample_internal extbgrx_h2v2_merged_upsample_internal
+#include "jdmrgext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+#undef h2v1_merged_upsample_internal
+#undef h2v2_merged_upsample_internal
+
+#define RGB_RED EXT_XBGR_RED
+#define RGB_GREEN EXT_XBGR_GREEN
+#define RGB_BLUE EXT_XBGR_BLUE
+#define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE
+#define h2v1_merged_upsample_internal extxbgr_h2v1_merged_upsample_internal
+#define h2v2_merged_upsample_internal extxbgr_h2v2_merged_upsample_internal
+#include "jdmrgext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+#undef h2v1_merged_upsample_internal
+#undef h2v2_merged_upsample_internal
+
+#define RGB_RED EXT_XRGB_RED
+#define RGB_GREEN EXT_XRGB_GREEN
+#define RGB_BLUE EXT_XRGB_BLUE
+#define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE
+#define h2v1_merged_upsample_internal extxrgb_h2v1_merged_upsample_internal
+#define h2v2_merged_upsample_internal extxrgb_h2v2_merged_upsample_internal
+#include "jdmrgext.c.inc"
+#undef RGB_RED
+#undef RGB_GREEN
+#undef RGB_BLUE
+#undef RGB_PIXELSIZE
+#undef h2v1_merged_upsample_internal
+#undef h2v2_merged_upsample_internal
+
+
+/*
+ * Initialize tables for YCC->RGB colorspace conversion.
+ * This is taken directly from jdcolor.c; see that file for more info.
+ */
+
+LOCAL(void)
+build_ycc_rgb_table (j_decompress_ptr cinfo)
+{
+  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+  int i;
+  INT32 x;
+  SHIFT_TEMPS
+
+  upsample->Cr_r_tab = (int *)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				(MAXJSAMPLE+1) * SIZEOF(int));
+  upsample->Cb_b_tab = (int *)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				(MAXJSAMPLE+1) * SIZEOF(int));
+  upsample->Cr_g_tab = (INT32 *)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				(MAXJSAMPLE+1) * SIZEOF(INT32));
+  upsample->Cb_g_tab = (INT32 *)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				(MAXJSAMPLE+1) * SIZEOF(INT32));
+
+  for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
+    /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
+    /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
+    /* Cr=>R value is nearest int to 1.40200 * x */
+    upsample->Cr_r_tab[i] = (int)
+		    RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
+    /* Cb=>B value is nearest int to 1.77200 * x */
+    upsample->Cb_b_tab[i] = (int)
+		    RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
+    /* Cr=>G value is scaled-up -0.71414 * x */
+    upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x;
+    /* Cb=>G value is scaled-up -0.34414 * x */
+    /* We also add in ONE_HALF so that need not do it in inner loop */
+    upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
+  }
+}
+
+
+/*
+ * Initialize for an upsampling pass.
+ */
+
+METHODDEF(void)
+start_pass_merged_upsample (j_decompress_ptr cinfo)
+{
+  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+
+  /* Mark the spare buffer empty */
+  upsample->spare_full = FALSE;
+  /* Initialize total-height counter for detecting bottom of image */
+  upsample->rows_to_go = cinfo->output_height;
+}
+
+
+/*
+ * Control routine to do upsampling (and color conversion).
+ *
+ * The control routine just handles the row buffering considerations.
+ */
+
+METHODDEF(void)
+merged_2v_upsample (j_decompress_ptr cinfo,
+		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+		    JDIMENSION in_row_groups_avail,
+		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+		    JDIMENSION out_rows_avail)
+/* 2:1 vertical sampling case: may need a spare row. */
+{
+  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+  JSAMPROW work_ptrs[2];
+  JDIMENSION num_rows;		/* number of rows returned to caller */
+
+  if (upsample->spare_full) {
+    /* If we have a spare row saved from a previous cycle, just return it. */
+    jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
+		      1, upsample->out_row_width);
+    num_rows = 1;
+    upsample->spare_full = FALSE;
+  } else {
+    /* Figure number of rows to return to caller. */
+    num_rows = 2;
+    /* Not more than the distance to the end of the image. */
+    if (num_rows > upsample->rows_to_go)
+      num_rows = upsample->rows_to_go;
+    /* And not more than what the client can accept: */
+    out_rows_avail -= *out_row_ctr;
+    if (num_rows > out_rows_avail)
+      num_rows = out_rows_avail;
+    /* Create output pointer array for upsampler. */
+    work_ptrs[0] = output_buf[*out_row_ctr];
+    if (num_rows > 1) {
+      work_ptrs[1] = output_buf[*out_row_ctr + 1];
+    } else {
+      work_ptrs[1] = upsample->spare_row;
+      upsample->spare_full = TRUE;
+    }
+    /* Now do the upsampling. */
+    (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
+  }
+
+  /* Adjust counts */
+  *out_row_ctr += num_rows;
+  upsample->rows_to_go -= num_rows;
+  /* When the buffer is emptied, declare this input row group consumed */
+  if (! upsample->spare_full)
+    (*in_row_group_ctr)++;
+}
+
+
+METHODDEF(void)
+merged_1v_upsample (j_decompress_ptr cinfo,
+		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+		    JDIMENSION in_row_groups_avail,
+		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+		    JDIMENSION out_rows_avail)
+/* 1:1 vertical sampling case: much easier, never need a spare row. */
+{
+  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+
+  /* Just do the upsampling. */
+  (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
+			 output_buf + *out_row_ctr);
+  /* Adjust counts */
+  (*out_row_ctr)++;
+  (*in_row_group_ctr)++;
+}
+
+
+/*
+ * These are the routines invoked by the control routines to do
+ * the actual upsampling/conversion.  One row group is processed per call.
+ *
+ * Note: since we may be writing directly into application-supplied buffers,
+ * we have to be honest about the output width; we can't assume the buffer
+ * has been rounded up to an even width.
+ */
+
+
+/*
+ * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
+ */
+
+METHODDEF(void)
+h2v1_merged_upsample (j_decompress_ptr cinfo,
+		      JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
+		      JSAMPARRAY output_buf)
+{
+  switch (cinfo->out_color_space) {
+    case JCS_EXT_RGB:
+      extrgb_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
+                                           output_buf);
+      break;
+    case JCS_EXT_RGBX:
+    case JCS_EXT_RGBA:
+      extrgbx_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
+                                            output_buf);
+      break;
+    case JCS_EXT_BGR:
+      extbgr_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
+                                           output_buf);
+      break;
+    case JCS_EXT_BGRX:
+    case JCS_EXT_BGRA:
+      extbgrx_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
+                                            output_buf);
+      break;
+    case JCS_EXT_XBGR:
+    case JCS_EXT_ABGR:
+      extxbgr_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
+                                            output_buf);
+      break;
+    case JCS_EXT_XRGB:
+    case JCS_EXT_ARGB:
+      extxrgb_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
+                                            output_buf);
+      break;
+    default:
+      h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
+                                    output_buf);
+      break;
+  }
+}
+
+
+/*
+ * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
+ */
+
+METHODDEF(void)
+h2v2_merged_upsample (j_decompress_ptr cinfo,
+		      JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
+		      JSAMPARRAY output_buf)
+{
+  switch (cinfo->out_color_space) {
+    case JCS_EXT_RGB:
+      extrgb_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
+                                           output_buf);
+      break;
+    case JCS_EXT_RGBX:
+    case JCS_EXT_RGBA:
+      extrgbx_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
+                                            output_buf);
+      break;
+    case JCS_EXT_BGR:
+      extbgr_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
+                                           output_buf);
+      break;
+    case JCS_EXT_BGRX:
+    case JCS_EXT_BGRA:
+      extbgrx_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
+                                            output_buf);
+      break;
+    case JCS_EXT_XBGR:
+    case JCS_EXT_ABGR:
+      extxbgr_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
+                                            output_buf);
+      break;
+    case JCS_EXT_XRGB:
+    case JCS_EXT_ARGB:
+      extxrgb_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
+                                            output_buf);
+      break;
+    default:
+      h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr,
+                                    output_buf);
+      break;
+  }
+}
+
+
+/*
+ * Module initialization routine for merged upsampling/color conversion.
+ *
+ * NB: this is called under the conditions determined by use_merged_upsample()
+ * in jdmaster.c.  That routine MUST correspond to the actual capabilities
+ * of this module; no safety checks are made here.
+ */
+
+GLOBAL(void)
+jinit_merged_upsampler (j_decompress_ptr cinfo)
+{
+  my_upsample_ptr upsample;
+
+  upsample = (my_upsample_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_upsampler));
+  cinfo->upsample = (struct jpeg_upsampler *) upsample;
+  upsample->pub.start_pass = start_pass_merged_upsample;
+  upsample->pub.need_context_rows = FALSE;
+
+  upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
+
+  if (cinfo->max_v_samp_factor == 2) {
+    upsample->pub.upsample = merged_2v_upsample;
+    if (jsimd_can_h2v2_merged_upsample())
+      upsample->upmethod = jsimd_h2v2_merged_upsample;
+    else
+      upsample->upmethod = h2v2_merged_upsample;
+    /* Allocate a spare row buffer */
+    upsample->spare_row = (JSAMPROW)
+      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+		(size_t) (upsample->out_row_width * SIZEOF(JSAMPLE)));
+  } else {
+    upsample->pub.upsample = merged_1v_upsample;
+    if (jsimd_can_h2v1_merged_upsample())
+      upsample->upmethod = jsimd_h2v1_merged_upsample;
+    else
+      upsample->upmethod = h2v1_merged_upsample;
+    /* No spare row needed */
+    upsample->spare_row = NULL;
+  }
+
+  build_ycc_rgb_table(cinfo);
+}
+
+#endif /* UPSAMPLE_MERGING_SUPPORTED */

=== added file 'src/libjpeg-turbo/jdmrgext.c.inc'
--- src/libjpeg-turbo/jdmrgext.c.inc	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdmrgext.c.inc	2012-06-27 08:13:27 +0000
@@ -0,0 +1,156 @@ 
+/*
+ * jdmrgext.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains code for merged upsampling/color conversion.
+ */
+
+
+/* This file is included by jdmerge.c */
+
+
+/*
+ * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
+ */
+
+INLINE
+LOCAL(void)
+h2v1_merged_upsample_internal (j_decompress_ptr cinfo,
+                               JSAMPIMAGE input_buf,
+                               JDIMENSION in_row_group_ctr,
+                               JSAMPARRAY output_buf)
+{
+  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+  register int y, cred, cgreen, cblue;
+  int cb, cr;
+  register JSAMPROW outptr;
+  JSAMPROW inptr0, inptr1, inptr2;
+  JDIMENSION col;
+  /* copy these pointers into registers if possible */
+  register JSAMPLE * range_limit = cinfo->sample_range_limit;
+  int * Crrtab = upsample->Cr_r_tab;
+  int * Cbbtab = upsample->Cb_b_tab;
+  INT32 * Crgtab = upsample->Cr_g_tab;
+  INT32 * Cbgtab = upsample->Cb_g_tab;
+  SHIFT_TEMPS
+
+  inptr0 = input_buf[0][in_row_group_ctr];
+  inptr1 = input_buf[1][in_row_group_ctr];
+  inptr2 = input_buf[2][in_row_group_ctr];
+  outptr = output_buf[0];
+  /* Loop for each pair of output pixels */
+  for (col = cinfo->output_width >> 1; col > 0; col--) {
+    /* Do the chroma part of the calculation */
+    cb = GETJSAMPLE(*inptr1++);
+    cr = GETJSAMPLE(*inptr2++);
+    cred = Crrtab[cr];
+    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+    cblue = Cbbtab[cb];
+    /* Fetch 2 Y values and emit 2 pixels */
+    y  = GETJSAMPLE(*inptr0++);
+    outptr[RGB_RED] =   range_limit[y + cred];
+    outptr[RGB_GREEN] = range_limit[y + cgreen];
+    outptr[RGB_BLUE] =  range_limit[y + cblue];
+    outptr += RGB_PIXELSIZE;
+    y  = GETJSAMPLE(*inptr0++);
+    outptr[RGB_RED] =   range_limit[y + cred];
+    outptr[RGB_GREEN] = range_limit[y + cgreen];
+    outptr[RGB_BLUE] =  range_limit[y + cblue];
+    outptr += RGB_PIXELSIZE;
+  }
+  /* If image width is odd, do the last output column separately */
+  if (cinfo->output_width & 1) {
+    cb = GETJSAMPLE(*inptr1);
+    cr = GETJSAMPLE(*inptr2);
+    cred = Crrtab[cr];
+    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+    cblue = Cbbtab[cb];
+    y  = GETJSAMPLE(*inptr0);
+    outptr[RGB_RED] =   range_limit[y + cred];
+    outptr[RGB_GREEN] = range_limit[y + cgreen];
+    outptr[RGB_BLUE] =  range_limit[y + cblue];
+  }
+}
+
+
+/*
+ * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
+ */
+
+INLINE
+LOCAL(void)
+h2v2_merged_upsample_internal (j_decompress_ptr cinfo,
+                               JSAMPIMAGE input_buf,
+                               JDIMENSION in_row_group_ctr,
+                               JSAMPARRAY output_buf)
+{
+  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+  register int y, cred, cgreen, cblue;
+  int cb, cr;
+  register JSAMPROW outptr0, outptr1;
+  JSAMPROW inptr00, inptr01, inptr1, inptr2;
+  JDIMENSION col;
+  /* copy these pointers into registers if possible */
+  register JSAMPLE * range_limit = cinfo->sample_range_limit;
+  int * Crrtab = upsample->Cr_r_tab;
+  int * Cbbtab = upsample->Cb_b_tab;
+  INT32 * Crgtab = upsample->Cr_g_tab;
+  INT32 * Cbgtab = upsample->Cb_g_tab;
+  SHIFT_TEMPS
+
+  inptr00 = input_buf[0][in_row_group_ctr*2];
+  inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
+  inptr1 = input_buf[1][in_row_group_ctr];
+  inptr2 = input_buf[2][in_row_group_ctr];
+  outptr0 = output_buf[0];
+  outptr1 = output_buf[1];
+  /* Loop for each group of output pixels */
+  for (col = cinfo->output_width >> 1; col > 0; col--) {
+    /* Do the chroma part of the calculation */
+    cb = GETJSAMPLE(*inptr1++);
+    cr = GETJSAMPLE(*inptr2++);
+    cred = Crrtab[cr];
+    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+    cblue = Cbbtab[cb];
+    /* Fetch 4 Y values and emit 4 pixels */
+    y  = GETJSAMPLE(*inptr00++);
+    outptr0[RGB_RED] =   range_limit[y + cred];
+    outptr0[RGB_GREEN] = range_limit[y + cgreen];
+    outptr0[RGB_BLUE] =  range_limit[y + cblue];
+    outptr0 += RGB_PIXELSIZE;
+    y  = GETJSAMPLE(*inptr00++);
+    outptr0[RGB_RED] =   range_limit[y + cred];
+    outptr0[RGB_GREEN] = range_limit[y + cgreen];
+    outptr0[RGB_BLUE] =  range_limit[y + cblue];
+    outptr0 += RGB_PIXELSIZE;
+    y  = GETJSAMPLE(*inptr01++);
+    outptr1[RGB_RED] =   range_limit[y + cred];
+    outptr1[RGB_GREEN] = range_limit[y + cgreen];
+    outptr1[RGB_BLUE] =  range_limit[y + cblue];
+    outptr1 += RGB_PIXELSIZE;
+    y  = GETJSAMPLE(*inptr01++);
+    outptr1[RGB_RED] =   range_limit[y + cred];
+    outptr1[RGB_GREEN] = range_limit[y + cgreen];
+    outptr1[RGB_BLUE] =  range_limit[y + cblue];
+    outptr1 += RGB_PIXELSIZE;
+  }
+  /* If image width is odd, do the last output column separately */
+  if (cinfo->output_width & 1) {
+    cb = GETJSAMPLE(*inptr1);
+    cr = GETJSAMPLE(*inptr2);
+    cred = Crrtab[cr];
+    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+    cblue = Cbbtab[cb];
+    y  = GETJSAMPLE(*inptr00);
+    outptr0[RGB_RED] =   range_limit[y + cred];
+    outptr0[RGB_GREEN] = range_limit[y + cgreen];
+    outptr0[RGB_BLUE] =  range_limit[y + cblue];
+    y  = GETJSAMPLE(*inptr01);
+    outptr1[RGB_RED] =   range_limit[y + cred];
+    outptr1[RGB_GREEN] = range_limit[y + cgreen];
+    outptr1[RGB_BLUE] =  range_limit[y + cblue];
+  }
+}

=== added file 'src/libjpeg-turbo/jdphuff.c'
--- src/libjpeg-turbo/jdphuff.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdphuff.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,668 @@ 
+/*
+ * jdphuff.c
+ *
+ * Copyright (C) 1995-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains Huffman entropy decoding routines for progressive JPEG.
+ *
+ * Much of the complexity here has to do with supporting input suspension.
+ * If the data source module demands suspension, we want to be able to back
+ * up to the start of the current MCU.  To do this, we copy state variables
+ * into local working storage, and update them back to the permanent
+ * storage only upon successful completion of an MCU.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdhuff.h"		/* Declarations shared with jdhuff.c */
+
+
+#ifdef D_PROGRESSIVE_SUPPORTED
+
+/*
+ * Expanded entropy decoder object for progressive Huffman decoding.
+ *
+ * The savable_state subrecord contains fields that change within an MCU,
+ * but must not be updated permanently until we complete the MCU.
+ */
+
+typedef struct {
+  unsigned int EOBRUN;			/* remaining EOBs in EOBRUN */
+  int last_dc_val[MAX_COMPS_IN_SCAN];	/* last DC coef for each component */
+} savable_state;
+
+/* This macro is to work around compilers with missing or broken
+ * structure assignment.  You'll need to fix this code if you have
+ * such a compiler and you change MAX_COMPS_IN_SCAN.
+ */
+
+#ifndef NO_STRUCT_ASSIGN
+#define ASSIGN_STATE(dest,src)  ((dest) = (src))
+#else
+#if MAX_COMPS_IN_SCAN == 4
+#define ASSIGN_STATE(dest,src)  \
+	((dest).EOBRUN = (src).EOBRUN, \
+	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
+	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
+	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
+	 (dest).last_dc_val[3] = (src).last_dc_val[3])
+#endif
+#endif
+
+
+typedef struct {
+  struct jpeg_entropy_decoder pub; /* public fields */
+
+  /* These fields are loaded into local variables at start of each MCU.
+   * In case of suspension, we exit WITHOUT updating them.
+   */
+  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
+  savable_state saved;		/* Other state at start of MCU */
+
+  /* These fields are NOT loaded into local working state. */
+  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
+
+  /* Pointers to derived tables (these workspaces have image lifespan) */
+  d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
+
+  d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
+} phuff_entropy_decoder;
+
+typedef phuff_entropy_decoder * phuff_entropy_ptr;
+
+/* Forward declarations */
+METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo,
+					    JBLOCKROW *MCU_data));
+METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo,
+					    JBLOCKROW *MCU_data));
+METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo,
+					     JBLOCKROW *MCU_data));
+METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo,
+					     JBLOCKROW *MCU_data));
+
+
+/*
+ * Initialize for a Huffman-compressed scan.
+ */
+
+METHODDEF(void)
+start_pass_phuff_decoder (j_decompress_ptr cinfo)
+{
+  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+  boolean is_DC_band, bad;
+  int ci, coefi, tbl;
+  int *coef_bit_ptr;
+  jpeg_component_info * compptr;
+
+  is_DC_band = (cinfo->Ss == 0);
+
+  /* Validate scan parameters */
+  bad = FALSE;
+  if (is_DC_band) {
+    if (cinfo->Se != 0)
+      bad = TRUE;
+  } else {
+    /* need not check Ss/Se < 0 since they came from unsigned bytes */
+    if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
+      bad = TRUE;
+    /* AC scans may have only one component */
+    if (cinfo->comps_in_scan != 1)
+      bad = TRUE;
+  }
+  if (cinfo->Ah != 0) {
+    /* Successive approximation refinement scan: must have Al = Ah-1. */
+    if (cinfo->Al != cinfo->Ah-1)
+      bad = TRUE;
+  }
+  if (cinfo->Al > 13)		/* need not check for < 0 */
+    bad = TRUE;
+  /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
+   * but the spec doesn't say so, and we try to be liberal about what we
+   * accept.  Note: large Al values could result in out-of-range DC
+   * coefficients during early scans, leading to bizarre displays due to
+   * overflows in the IDCT math.  But we won't crash.
+   */
+  if (bad)
+    ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
+	     cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
+  /* Update progression status, and verify that scan order is legal.
+   * Note that inter-scan inconsistencies are treated as warnings
+   * not fatal errors ... not clear if this is right way to behave.
+   */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    int cindex = cinfo->cur_comp_info[ci]->component_index;
+    coef_bit_ptr = & cinfo->coef_bits[cindex][0];
+    if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
+      WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
+    for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
+      int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
+      if (cinfo->Ah != expected)
+	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
+      coef_bit_ptr[coefi] = cinfo->Al;
+    }
+  }
+
+  /* Select MCU decoding routine */
+  if (cinfo->Ah == 0) {
+    if (is_DC_band)
+      entropy->pub.decode_mcu = decode_mcu_DC_first;
+    else
+      entropy->pub.decode_mcu = decode_mcu_AC_first;
+  } else {
+    if (is_DC_band)
+      entropy->pub.decode_mcu = decode_mcu_DC_refine;
+    else
+      entropy->pub.decode_mcu = decode_mcu_AC_refine;
+  }
+
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    /* Make sure requested tables are present, and compute derived tables.
+     * We may build same derived table more than once, but it's not expensive.
+     */
+    if (is_DC_band) {
+      if (cinfo->Ah == 0) {	/* DC refinement needs no table */
+	tbl = compptr->dc_tbl_no;
+	jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
+				& entropy->derived_tbls[tbl]);
+      }
+    } else {
+      tbl = compptr->ac_tbl_no;
+      jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
+			      & entropy->derived_tbls[tbl]);
+      /* remember the single active table */
+      entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
+    }
+    /* Initialize DC predictions to 0 */
+    entropy->saved.last_dc_val[ci] = 0;
+  }
+
+  /* Initialize bitread state variables */
+  entropy->bitstate.bits_left = 0;
+  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
+  entropy->pub.insufficient_data = FALSE;
+
+  /* Initialize private state variables */
+  entropy->saved.EOBRUN = 0;
+
+  /* Initialize restart counter */
+  entropy->restarts_to_go = cinfo->restart_interval;
+}
+
+
+/*
+ * Figure F.12: extend sign bit.
+ * On some machines, a shift and add will be faster than a table lookup.
+ */
+
+#ifdef AVOID_TABLES
+
+#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
+
+#else
+
+#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
+
+static const int extend_test[16] =   /* entry n is 2**(n-1) */
+  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
+    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
+
+static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
+  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
+    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
+    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
+    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
+
+#endif /* AVOID_TABLES */
+
+
+/*
+ * Check for a restart marker & resynchronize decoder.
+ * Returns FALSE if must suspend.
+ */
+
+LOCAL(boolean)
+process_restart (j_decompress_ptr cinfo)
+{
+  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+  int ci;
+
+  /* Throw away any unused bits remaining in bit buffer; */
+  /* include any full bytes in next_marker's count of discarded bytes */
+  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
+  entropy->bitstate.bits_left = 0;
+
+  /* Advance past the RSTn marker */
+  if (! (*cinfo->marker->read_restart_marker) (cinfo))
+    return FALSE;
+
+  /* Re-initialize DC predictions to 0 */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
+    entropy->saved.last_dc_val[ci] = 0;
+  /* Re-init EOB run count, too */
+  entropy->saved.EOBRUN = 0;
+
+  /* Reset restart counter */
+  entropy->restarts_to_go = cinfo->restart_interval;
+
+  /* Reset out-of-data flag, unless read_restart_marker left us smack up
+   * against a marker.  In that case we will end up treating the next data
+   * segment as empty, and we can avoid producing bogus output pixels by
+   * leaving the flag set.
+   */
+  if (cinfo->unread_marker == 0)
+    entropy->pub.insufficient_data = FALSE;
+
+  return TRUE;
+}
+
+
+/*
+ * Huffman MCU decoding.
+ * Each of these routines decodes and returns one MCU's worth of
+ * Huffman-compressed coefficients. 
+ * The coefficients are reordered from zigzag order into natural array order,
+ * but are not dequantized.
+ *
+ * The i'th block of the MCU is stored into the block pointed to by
+ * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
+ *
+ * We return FALSE if data source requested suspension.  In that case no
+ * changes have been made to permanent state.  (Exception: some output
+ * coefficients may already have been assigned.  This is harmless for
+ * spectral selection, since we'll just re-assign them on the next call.
+ * Successive approximation AC refinement has to be more careful, however.)
+ */
+
+/*
+ * MCU decoding for DC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{   
+  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+  int Al = cinfo->Al;
+  register int s, r;
+  int blkn, ci;
+  JBLOCKROW block;
+  BITREAD_STATE_VARS;
+  savable_state state;
+  d_derived_tbl * tbl;
+  jpeg_component_info * compptr;
+
+  /* Process restart marker if needed; may have to suspend */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      if (! process_restart(cinfo))
+	return FALSE;
+  }
+
+  /* If we've run out of data, just leave the MCU set to zeroes.
+   * This way, we return uniform gray for the remainder of the segment.
+   */
+  if (! entropy->pub.insufficient_data) {
+
+    /* Load up working state */
+    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+    ASSIGN_STATE(state, entropy->saved);
+
+    /* Outer loop handles each block in the MCU */
+
+    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+      block = MCU_data[blkn];
+      ci = cinfo->MCU_membership[blkn];
+      compptr = cinfo->cur_comp_info[ci];
+      tbl = entropy->derived_tbls[compptr->dc_tbl_no];
+
+      /* Decode a single block's worth of coefficients */
+
+      /* Section F.2.2.1: decode the DC coefficient difference */
+      HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
+      if (s) {
+	CHECK_BIT_BUFFER(br_state, s, return FALSE);
+	r = GET_BITS(s);
+	s = HUFF_EXTEND(r, s);
+      }
+
+      /* Convert DC difference to actual value, update last_dc_val */
+      s += state.last_dc_val[ci];
+      state.last_dc_val[ci] = s;
+      /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
+      (*block)[0] = (JCOEF) (s << Al);
+    }
+
+    /* Completed MCU, so update state */
+    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+    ASSIGN_STATE(entropy->saved, state);
+  }
+
+  /* Account for restart interval (no-op if not using restarts) */
+  entropy->restarts_to_go--;
+
+  return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{   
+  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+  int Se = cinfo->Se;
+  int Al = cinfo->Al;
+  register int s, k, r;
+  unsigned int EOBRUN;
+  JBLOCKROW block;
+  BITREAD_STATE_VARS;
+  d_derived_tbl * tbl;
+
+  /* Process restart marker if needed; may have to suspend */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      if (! process_restart(cinfo))
+	return FALSE;
+  }
+
+  /* If we've run out of data, just leave the MCU set to zeroes.
+   * This way, we return uniform gray for the remainder of the segment.
+   */
+  if (! entropy->pub.insufficient_data) {
+
+    /* Load up working state.
+     * We can avoid loading/saving bitread state if in an EOB run.
+     */
+    EOBRUN = entropy->saved.EOBRUN;	/* only part of saved state we need */
+
+    /* There is always only one block per MCU */
+
+    if (EOBRUN > 0)		/* if it's a band of zeroes... */
+      EOBRUN--;			/* ...process it now (we do nothing) */
+    else {
+      BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+      block = MCU_data[0];
+      tbl = entropy->ac_derived_tbl;
+
+      for (k = cinfo->Ss; k <= Se; k++) {
+	HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
+	r = s >> 4;
+	s &= 15;
+	if (s) {
+	  k += r;
+	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
+	  r = GET_BITS(s);
+	  s = HUFF_EXTEND(r, s);
+	  /* Scale and output coefficient in natural (dezigzagged) order */
+	  (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
+	} else {
+	  if (r == 15) {	/* ZRL */
+	    k += 15;		/* skip 15 zeroes in band */
+	  } else {		/* EOBr, run length is 2^r + appended bits */
+	    EOBRUN = 1 << r;
+	    if (r) {		/* EOBr, r > 0 */
+	      CHECK_BIT_BUFFER(br_state, r, return FALSE);
+	      r = GET_BITS(r);
+	      EOBRUN += r;
+	    }
+	    EOBRUN--;		/* this band is processed at this moment */
+	    break;		/* force end-of-band */
+	  }
+	}
+      }
+
+      BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+    }
+
+    /* Completed MCU, so update state */
+    entropy->saved.EOBRUN = EOBRUN;	/* only part of saved state we need */
+  }
+
+  /* Account for restart interval (no-op if not using restarts) */
+  entropy->restarts_to_go--;
+
+  return TRUE;
+}
+
+
+/*
+ * MCU decoding for DC successive approximation refinement scan.
+ * Note: we assume such scans can be multi-component, although the spec
+ * is not very clear on the point.
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{   
+  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
+  int blkn;
+  JBLOCKROW block;
+  BITREAD_STATE_VARS;
+
+  /* Process restart marker if needed; may have to suspend */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      if (! process_restart(cinfo))
+	return FALSE;
+  }
+
+  /* Not worth the cycles to check insufficient_data here,
+   * since we will not change the data anyway if we read zeroes.
+   */
+
+  /* Load up working state */
+  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+
+  /* Outer loop handles each block in the MCU */
+
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    block = MCU_data[blkn];
+
+    /* Encoded data is simply the next bit of the two's-complement DC value */
+    CHECK_BIT_BUFFER(br_state, 1, return FALSE);
+    if (GET_BITS(1))
+      (*block)[0] |= p1;
+    /* Note: since we use |=, repeating the assignment later is safe */
+  }
+
+  /* Completed MCU, so update state */
+  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+
+  /* Account for restart interval (no-op if not using restarts) */
+  entropy->restarts_to_go--;
+
+  return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{   
+  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+  int Se = cinfo->Se;
+  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
+  int m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
+  register int s, k, r;
+  unsigned int EOBRUN;
+  JBLOCKROW block;
+  JCOEFPTR thiscoef;
+  BITREAD_STATE_VARS;
+  d_derived_tbl * tbl;
+  int num_newnz;
+  int newnz_pos[DCTSIZE2];
+
+  /* Process restart marker if needed; may have to suspend */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      if (! process_restart(cinfo))
+	return FALSE;
+  }
+
+  /* If we've run out of data, don't modify the MCU.
+   */
+  if (! entropy->pub.insufficient_data) {
+
+    /* Load up working state */
+    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+    EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
+
+    /* There is always only one block per MCU */
+    block = MCU_data[0];
+    tbl = entropy->ac_derived_tbl;
+
+    /* If we are forced to suspend, we must undo the assignments to any newly
+     * nonzero coefficients in the block, because otherwise we'd get confused
+     * next time about which coefficients were already nonzero.
+     * But we need not undo addition of bits to already-nonzero coefficients;
+     * instead, we can test the current bit to see if we already did it.
+     */
+    num_newnz = 0;
+
+    /* initialize coefficient loop counter to start of band */
+    k = cinfo->Ss;
+
+    if (EOBRUN == 0) {
+      for (; k <= Se; k++) {
+	HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
+	r = s >> 4;
+	s &= 15;
+	if (s) {
+	  if (s != 1)		/* size of new coef should always be 1 */
+	    WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
+	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+	  if (GET_BITS(1))
+	    s = p1;		/* newly nonzero coef is positive */
+	  else
+	    s = m1;		/* newly nonzero coef is negative */
+	} else {
+	  if (r != 15) {
+	    EOBRUN = 1 << r;	/* EOBr, run length is 2^r + appended bits */
+	    if (r) {
+	      CHECK_BIT_BUFFER(br_state, r, goto undoit);
+	      r = GET_BITS(r);
+	      EOBRUN += r;
+	    }
+	    break;		/* rest of block is handled by EOB logic */
+	  }
+	  /* note s = 0 for processing ZRL */
+	}
+	/* Advance over already-nonzero coefs and r still-zero coefs,
+	 * appending correction bits to the nonzeroes.  A correction bit is 1
+	 * if the absolute value of the coefficient must be increased.
+	 */
+	do {
+	  thiscoef = *block + jpeg_natural_order[k];
+	  if (*thiscoef != 0) {
+	    CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+	    if (GET_BITS(1)) {
+	      if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
+		if (*thiscoef >= 0)
+		  *thiscoef += p1;
+		else
+		  *thiscoef += m1;
+	      }
+	    }
+	  } else {
+	    if (--r < 0)
+	      break;		/* reached target zero coefficient */
+	  }
+	  k++;
+	} while (k <= Se);
+	if (s) {
+	  int pos = jpeg_natural_order[k];
+	  /* Output newly nonzero coefficient */
+	  (*block)[pos] = (JCOEF) s;
+	  /* Remember its position in case we have to suspend */
+	  newnz_pos[num_newnz++] = pos;
+	}
+      }
+    }
+
+    if (EOBRUN > 0) {
+      /* Scan any remaining coefficient positions after the end-of-band
+       * (the last newly nonzero coefficient, if any).  Append a correction
+       * bit to each already-nonzero coefficient.  A correction bit is 1
+       * if the absolute value of the coefficient must be increased.
+       */
+      for (; k <= Se; k++) {
+	thiscoef = *block + jpeg_natural_order[k];
+	if (*thiscoef != 0) {
+	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+	  if (GET_BITS(1)) {
+	    if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
+	      if (*thiscoef >= 0)
+		*thiscoef += p1;
+	      else
+		*thiscoef += m1;
+	    }
+	  }
+	}
+      }
+      /* Count one block completed in EOB run */
+      EOBRUN--;
+    }
+
+    /* Completed MCU, so update state */
+    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+    entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
+  }
+
+  /* Account for restart interval (no-op if not using restarts) */
+  entropy->restarts_to_go--;
+
+  return TRUE;
+
+undoit:
+  /* Re-zero any output coefficients that we made newly nonzero */
+  while (num_newnz > 0)
+    (*block)[newnz_pos[--num_newnz]] = 0;
+
+  return FALSE;
+}
+
+
+/*
+ * Module initialization routine for progressive Huffman entropy decoding.
+ */
+
+GLOBAL(void)
+jinit_phuff_decoder (j_decompress_ptr cinfo)
+{
+  phuff_entropy_ptr entropy;
+  int *coef_bit_ptr;
+  int ci, i;
+
+  entropy = (phuff_entropy_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(phuff_entropy_decoder));
+  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
+  entropy->pub.start_pass = start_pass_phuff_decoder;
+
+  /* Mark derived tables unallocated */
+  for (i = 0; i < NUM_HUFF_TBLS; i++) {
+    entropy->derived_tbls[i] = NULL;
+  }
+
+  /* Create progression status table */
+  cinfo->coef_bits = (int (*)[DCTSIZE2])
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				cinfo->num_components*DCTSIZE2*SIZEOF(int));
+  coef_bit_ptr = & cinfo->coef_bits[0][0];
+  for (ci = 0; ci < cinfo->num_components; ci++) 
+    for (i = 0; i < DCTSIZE2; i++)
+      *coef_bit_ptr++ = -1;
+}
+
+#endif /* D_PROGRESSIVE_SUPPORTED */

=== added file 'src/libjpeg-turbo/jdpostct.c'
--- src/libjpeg-turbo/jdpostct.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdpostct.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,290 @@ 
+/*
+ * jdpostct.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the decompression postprocessing controller.
+ * This controller manages the upsampling, color conversion, and color
+ * quantization/reduction steps; specifically, it controls the buffering
+ * between upsample/color conversion and color quantization/reduction.
+ *
+ * If no color quantization/reduction is required, then this module has no
+ * work to do, and it just hands off to the upsample/color conversion code.
+ * An integrated upsample/convert/quantize process would replace this module
+ * entirely.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private buffer controller object */
+
+typedef struct {
+  struct jpeg_d_post_controller pub; /* public fields */
+
+  /* Color quantization source buffer: this holds output data from
+   * the upsample/color conversion step to be passed to the quantizer.
+   * For two-pass color quantization, we need a full-image buffer;
+   * for one-pass operation, a strip buffer is sufficient.
+   */
+  jvirt_sarray_ptr whole_image;	/* virtual array, or NULL if one-pass */
+  JSAMPARRAY buffer;		/* strip buffer, or current strip of virtual */
+  JDIMENSION strip_height;	/* buffer size in rows */
+  /* for two-pass mode only: */
+  JDIMENSION starting_row;	/* row # of first row in current strip */
+  JDIMENSION next_row;		/* index of next row to fill/empty in strip */
+} my_post_controller;
+
+typedef my_post_controller * my_post_ptr;
+
+
+/* Forward declarations */
+METHODDEF(void) post_process_1pass
+	JPP((j_decompress_ptr cinfo,
+	     JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+	     JDIMENSION in_row_groups_avail,
+	     JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+	     JDIMENSION out_rows_avail));
+#ifdef QUANT_2PASS_SUPPORTED
+METHODDEF(void) post_process_prepass
+	JPP((j_decompress_ptr cinfo,
+	     JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+	     JDIMENSION in_row_groups_avail,
+	     JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+	     JDIMENSION out_rows_avail));
+METHODDEF(void) post_process_2pass
+	JPP((j_decompress_ptr cinfo,
+	     JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+	     JDIMENSION in_row_groups_avail,
+	     JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+	     JDIMENSION out_rows_avail));
+#endif
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF(void)
+start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+  my_post_ptr post = (my_post_ptr) cinfo->post;
+
+  switch (pass_mode) {
+  case JBUF_PASS_THRU:
+    if (cinfo->quantize_colors) {
+      /* Single-pass processing with color quantization. */
+      post->pub.post_process_data = post_process_1pass;
+      /* We could be doing buffered-image output before starting a 2-pass
+       * color quantization; in that case, jinit_d_post_controller did not
+       * allocate a strip buffer.  Use the virtual-array buffer as workspace.
+       */
+      if (post->buffer == NULL) {
+	post->buffer = (*cinfo->mem->access_virt_sarray)
+	  ((j_common_ptr) cinfo, post->whole_image,
+	   (JDIMENSION) 0, post->strip_height, TRUE);
+      }
+    } else {
+      /* For single-pass processing without color quantization,
+       * I have no work to do; just call the upsampler directly.
+       */
+      post->pub.post_process_data = cinfo->upsample->upsample;
+    }
+    break;
+#ifdef QUANT_2PASS_SUPPORTED
+  case JBUF_SAVE_AND_PASS:
+    /* First pass of 2-pass quantization */
+    if (post->whole_image == NULL)
+      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+    post->pub.post_process_data = post_process_prepass;
+    break;
+  case JBUF_CRANK_DEST:
+    /* Second pass of 2-pass quantization */
+    if (post->whole_image == NULL)
+      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+    post->pub.post_process_data = post_process_2pass;
+    break;
+#endif /* QUANT_2PASS_SUPPORTED */
+  default:
+    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+    break;
+  }
+  post->starting_row = post->next_row = 0;
+}
+
+
+/*
+ * Process some data in the one-pass (strip buffer) case.
+ * This is used for color precision reduction as well as one-pass quantization.
+ */
+
+METHODDEF(void)
+post_process_1pass (j_decompress_ptr cinfo,
+		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+		    JDIMENSION in_row_groups_avail,
+		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+		    JDIMENSION out_rows_avail)
+{
+  my_post_ptr post = (my_post_ptr) cinfo->post;
+  JDIMENSION num_rows, max_rows;
+
+  /* Fill the buffer, but not more than what we can dump out in one go. */
+  /* Note we rely on the upsampler to detect bottom of image. */
+  max_rows = out_rows_avail - *out_row_ctr;
+  if (max_rows > post->strip_height)
+    max_rows = post->strip_height;
+  num_rows = 0;
+  (*cinfo->upsample->upsample) (cinfo,
+		input_buf, in_row_group_ctr, in_row_groups_avail,
+		post->buffer, &num_rows, max_rows);
+  /* Quantize and emit data. */
+  (*cinfo->cquantize->color_quantize) (cinfo,
+		post->buffer, output_buf + *out_row_ctr, (int) num_rows);
+  *out_row_ctr += num_rows;
+}
+
+
+#ifdef QUANT_2PASS_SUPPORTED
+
+/*
+ * Process some data in the first pass of 2-pass quantization.
+ */
+
+METHODDEF(void)
+post_process_prepass (j_decompress_ptr cinfo,
+		      JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+		      JDIMENSION in_row_groups_avail,
+		      JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+		      JDIMENSION out_rows_avail)
+{
+  my_post_ptr post = (my_post_ptr) cinfo->post;
+  JDIMENSION old_next_row, num_rows;
+
+  /* Reposition virtual buffer if at start of strip. */
+  if (post->next_row == 0) {
+    post->buffer = (*cinfo->mem->access_virt_sarray)
+	((j_common_ptr) cinfo, post->whole_image,
+	 post->starting_row, post->strip_height, TRUE);
+  }
+
+  /* Upsample some data (up to a strip height's worth). */
+  old_next_row = post->next_row;
+  (*cinfo->upsample->upsample) (cinfo,
+		input_buf, in_row_group_ctr, in_row_groups_avail,
+		post->buffer, &post->next_row, post->strip_height);
+
+  /* Allow quantizer to scan new data.  No data is emitted, */
+  /* but we advance out_row_ctr so outer loop can tell when we're done. */
+  if (post->next_row > old_next_row) {
+    num_rows = post->next_row - old_next_row;
+    (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
+					 (JSAMPARRAY) NULL, (int) num_rows);
+    *out_row_ctr += num_rows;
+  }
+
+  /* Advance if we filled the strip. */
+  if (post->next_row >= post->strip_height) {
+    post->starting_row += post->strip_height;
+    post->next_row = 0;
+  }
+}
+
+
+/*
+ * Process some data in the second pass of 2-pass quantization.
+ */
+
+METHODDEF(void)
+post_process_2pass (j_decompress_ptr cinfo,
+		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+		    JDIMENSION in_row_groups_avail,
+		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+		    JDIMENSION out_rows_avail)
+{
+  my_post_ptr post = (my_post_ptr) cinfo->post;
+  JDIMENSION num_rows, max_rows;
+
+  /* Reposition virtual buffer if at start of strip. */
+  if (post->next_row == 0) {
+    post->buffer = (*cinfo->mem->access_virt_sarray)
+	((j_common_ptr) cinfo, post->whole_image,
+	 post->starting_row, post->strip_height, FALSE);
+  }
+
+  /* Determine number of rows to emit. */
+  num_rows = post->strip_height - post->next_row; /* available in strip */
+  max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
+  if (num_rows > max_rows)
+    num_rows = max_rows;
+  /* We have to check bottom of image here, can't depend on upsampler. */
+  max_rows = cinfo->output_height - post->starting_row;
+  if (num_rows > max_rows)
+    num_rows = max_rows;
+
+  /* Quantize and emit data. */
+  (*cinfo->cquantize->color_quantize) (cinfo,
+		post->buffer + post->next_row, output_buf + *out_row_ctr,
+		(int) num_rows);
+  *out_row_ctr += num_rows;
+
+  /* Advance if we filled the strip. */
+  post->next_row += num_rows;
+  if (post->next_row >= post->strip_height) {
+    post->starting_row += post->strip_height;
+    post->next_row = 0;
+  }
+}
+
+#endif /* QUANT_2PASS_SUPPORTED */
+
+
+/*
+ * Initialize postprocessing controller.
+ */
+
+GLOBAL(void)
+jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
+{
+  my_post_ptr post;
+
+  post = (my_post_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_post_controller));
+  cinfo->post = (struct jpeg_d_post_controller *) post;
+  post->pub.start_pass = start_pass_dpost;
+  post->whole_image = NULL;	/* flag for no virtual arrays */
+  post->buffer = NULL;		/* flag for no strip buffer */
+
+  /* Create the quantization buffer, if needed */
+  if (cinfo->quantize_colors) {
+    /* The buffer strip height is max_v_samp_factor, which is typically
+     * an efficient number of rows for upsampling to return.
+     * (In the presence of output rescaling, we might want to be smarter?)
+     */
+    post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
+    if (need_full_buffer) {
+      /* Two-pass color quantization: need full-image storage. */
+      /* We round up the number of rows to a multiple of the strip height. */
+#ifdef QUANT_2PASS_SUPPORTED
+      post->whole_image = (*cinfo->mem->request_virt_sarray)
+	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+	 cinfo->output_width * cinfo->out_color_components,
+	 (JDIMENSION) jround_up((long) cinfo->output_height,
+				(long) post->strip_height),
+	 post->strip_height);
+#else
+      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+#endif /* QUANT_2PASS_SUPPORTED */
+    } else {
+      /* One-pass color quantization: just make a strip buffer. */
+      post->buffer = (*cinfo->mem->alloc_sarray)
+	((j_common_ptr) cinfo, JPOOL_IMAGE,
+	 cinfo->output_width * cinfo->out_color_components,
+	 post->strip_height);
+    }
+  }
+}

=== added file 'src/libjpeg-turbo/jdsample.c'
--- src/libjpeg-turbo/jdsample.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdsample.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,496 @@ 
+/*
+ * jdsample.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
+ * Copyright (C) 2010, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains upsampling routines.
+ *
+ * Upsampling input data is counted in "row groups".  A row group
+ * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
+ * sample rows of each component.  Upsampling will normally produce
+ * max_v_samp_factor pixel rows from each row group (but this could vary
+ * if the upsampler is applying a scale factor of its own).
+ *
+ * An excellent reference for image resampling is
+ *   Digital Image Warping, George Wolberg, 1990.
+ *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jsimd.h"
+#include "jpegcomp.h"
+
+
+/* Pointer to routine to upsample a single component */
+typedef JMETHOD(void, upsample1_ptr,
+		(j_decompress_ptr cinfo, jpeg_component_info * compptr,
+		 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+
+/* Private subobject */
+
+typedef struct {
+  struct jpeg_upsampler pub;	/* public fields */
+
+  /* Color conversion buffer.  When using separate upsampling and color
+   * conversion steps, this buffer holds one upsampled row group until it
+   * has been color converted and output.
+   * Note: we do not allocate any storage for component(s) which are full-size,
+   * ie do not need rescaling.  The corresponding entry of color_buf[] is
+   * simply set to point to the input data array, thereby avoiding copying.
+   */
+  JSAMPARRAY color_buf[MAX_COMPONENTS];
+
+  /* Per-component upsampling method pointers */
+  upsample1_ptr methods[MAX_COMPONENTS];
+
+  int next_row_out;		/* counts rows emitted from color_buf */
+  JDIMENSION rows_to_go;	/* counts rows remaining in image */
+
+  /* Height of an input row group for each component. */
+  int rowgroup_height[MAX_COMPONENTS];
+
+  /* These arrays save pixel expansion factors so that int_expand need not
+   * recompute them each time.  They are unused for other upsampling methods.
+   */
+  UINT8 h_expand[MAX_COMPONENTS];
+  UINT8 v_expand[MAX_COMPONENTS];
+} my_upsampler;
+
+typedef my_upsampler * my_upsample_ptr;
+
+
+/*
+ * Initialize for an upsampling pass.
+ */
+
+METHODDEF(void)
+start_pass_upsample (j_decompress_ptr cinfo)
+{
+  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+
+  /* Mark the conversion buffer empty */
+  upsample->next_row_out = cinfo->max_v_samp_factor;
+  /* Initialize total-height counter for detecting bottom of image */
+  upsample->rows_to_go = cinfo->output_height;
+}
+
+
+/*
+ * Control routine to do upsampling (and color conversion).
+ *
+ * In this version we upsample each component independently.
+ * We upsample one row group into the conversion buffer, then apply
+ * color conversion a row at a time.
+ */
+
+METHODDEF(void)
+sep_upsample (j_decompress_ptr cinfo,
+	      JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+	      JDIMENSION in_row_groups_avail,
+	      JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+	      JDIMENSION out_rows_avail)
+{
+  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+  int ci;
+  jpeg_component_info * compptr;
+  JDIMENSION num_rows;
+
+  /* Fill the conversion buffer, if it's empty */
+  if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
+    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+	 ci++, compptr++) {
+      /* Invoke per-component upsample method.  Notice we pass a POINTER
+       * to color_buf[ci], so that fullsize_upsample can change it.
+       */
+      (*upsample->methods[ci]) (cinfo, compptr,
+	input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
+	upsample->color_buf + ci);
+    }
+    upsample->next_row_out = 0;
+  }
+
+  /* Color-convert and emit rows */
+
+  /* How many we have in the buffer: */
+  num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
+  /* Not more than the distance to the end of the image.  Need this test
+   * in case the image height is not a multiple of max_v_samp_factor:
+   */
+  if (num_rows > upsample->rows_to_go) 
+    num_rows = upsample->rows_to_go;
+  /* And not more than what the client can accept: */
+  out_rows_avail -= *out_row_ctr;
+  if (num_rows > out_rows_avail)
+    num_rows = out_rows_avail;
+
+  (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
+				     (JDIMENSION) upsample->next_row_out,
+				     output_buf + *out_row_ctr,
+				     (int) num_rows);
+
+  /* Adjust counts */
+  *out_row_ctr += num_rows;
+  upsample->rows_to_go -= num_rows;
+  upsample->next_row_out += num_rows;
+  /* When the buffer is emptied, declare this input row group consumed */
+  if (upsample->next_row_out >= cinfo->max_v_samp_factor)
+    (*in_row_group_ctr)++;
+}
+
+
+/*
+ * These are the routines invoked by sep_upsample to upsample pixel values
+ * of a single component.  One row group is processed per call.
+ */
+
+
+/*
+ * For full-size components, we just make color_buf[ci] point at the
+ * input buffer, and thus avoid copying any data.  Note that this is
+ * safe only because sep_upsample doesn't declare the input row group
+ * "consumed" until we are done color converting and emitting it.
+ */
+
+METHODDEF(void)
+fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+		   JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+  *output_data_ptr = input_data;
+}
+
+
+/*
+ * This is a no-op version used for "uninteresting" components.
+ * These components will not be referenced by color conversion.
+ */
+
+METHODDEF(void)
+noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+	       JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+  *output_data_ptr = NULL;	/* safety check */
+}
+
+
+/*
+ * This version handles any integral sampling ratios.
+ * This is not used for typical JPEG files, so it need not be fast.
+ * Nor, for that matter, is it particularly accurate: the algorithm is
+ * simple replication of the input pixel onto the corresponding output
+ * pixels.  The hi-falutin sampling literature refers to this as a
+ * "box filter".  A box filter tends to introduce visible artifacts,
+ * so if you are actually going to use 3:1 or 4:1 sampling ratios
+ * you would be well advised to improve this code.
+ */
+
+METHODDEF(void)
+int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+	      JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+  JSAMPARRAY output_data = *output_data_ptr;
+  register JSAMPROW inptr, outptr;
+  register JSAMPLE invalue;
+  register int h;
+  JSAMPROW outend;
+  int h_expand, v_expand;
+  int inrow, outrow;
+
+  h_expand = upsample->h_expand[compptr->component_index];
+  v_expand = upsample->v_expand[compptr->component_index];
+
+  inrow = outrow = 0;
+  while (outrow < cinfo->max_v_samp_factor) {
+    /* Generate one output row with proper horizontal expansion */
+    inptr = input_data[inrow];
+    outptr = output_data[outrow];
+    outend = outptr + cinfo->output_width;
+    while (outptr < outend) {
+      invalue = *inptr++;	/* don't need GETJSAMPLE() here */
+      for (h = h_expand; h > 0; h--) {
+	*outptr++ = invalue;
+      }
+    }
+    /* Generate any additional output rows by duplicating the first one */
+    if (v_expand > 1) {
+      jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
+			v_expand-1, cinfo->output_width);
+    }
+    inrow++;
+    outrow += v_expand;
+  }
+}
+
+
+/*
+ * Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
+ * It's still a box filter.
+ */
+
+METHODDEF(void)
+h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+	       JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+  JSAMPARRAY output_data = *output_data_ptr;
+  register JSAMPROW inptr, outptr;
+  register JSAMPLE invalue;
+  JSAMPROW outend;
+  int inrow;
+
+  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
+    inptr = input_data[inrow];
+    outptr = output_data[inrow];
+    outend = outptr + cinfo->output_width;
+    while (outptr < outend) {
+      invalue = *inptr++;	/* don't need GETJSAMPLE() here */
+      *outptr++ = invalue;
+      *outptr++ = invalue;
+    }
+  }
+}
+
+
+/*
+ * Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
+ * It's still a box filter.
+ */
+
+METHODDEF(void)
+h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+	       JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+  JSAMPARRAY output_data = *output_data_ptr;
+  register JSAMPROW inptr, outptr;
+  register JSAMPLE invalue;
+  JSAMPROW outend;
+  int inrow, outrow;
+
+  inrow = outrow = 0;
+  while (outrow < cinfo->max_v_samp_factor) {
+    inptr = input_data[inrow];
+    outptr = output_data[outrow];
+    outend = outptr + cinfo->output_width;
+    while (outptr < outend) {
+      invalue = *inptr++;	/* don't need GETJSAMPLE() here */
+      *outptr++ = invalue;
+      *outptr++ = invalue;
+    }
+    jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
+		      1, cinfo->output_width);
+    inrow++;
+    outrow += 2;
+  }
+}
+
+
+/*
+ * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
+ *
+ * The upsampling algorithm is linear interpolation between pixel centers,
+ * also known as a "triangle filter".  This is a good compromise between
+ * speed and visual quality.  The centers of the output pixels are 1/4 and 3/4
+ * of the way between input pixel centers.
+ *
+ * A note about the "bias" calculations: when rounding fractional values to
+ * integer, we do not want to always round 0.5 up to the next integer.
+ * If we did that, we'd introduce a noticeable bias towards larger values.
+ * Instead, this code is arranged so that 0.5 will be rounded up or down at
+ * alternate pixel locations (a simple ordered dither pattern).
+ */
+
+METHODDEF(void)
+h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+		     JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+  JSAMPARRAY output_data = *output_data_ptr;
+  register JSAMPROW inptr, outptr;
+  register int invalue;
+  register JDIMENSION colctr;
+  int inrow;
+
+  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
+    inptr = input_data[inrow];
+    outptr = output_data[inrow];
+    /* Special case for first column */
+    invalue = GETJSAMPLE(*inptr++);
+    *outptr++ = (JSAMPLE) invalue;
+    *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);
+
+    for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
+      /* General case: 3/4 * nearer pixel + 1/4 * further pixel */
+      invalue = GETJSAMPLE(*inptr++) * 3;
+      *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
+      *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
+    }
+
+    /* Special case for last column */
+    invalue = GETJSAMPLE(*inptr);
+    *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
+    *outptr++ = (JSAMPLE) invalue;
+  }
+}
+
+
+/*
+ * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
+ * Again a triangle filter; see comments for h2v1 case, above.
+ *
+ * It is OK for us to reference the adjacent input rows because we demanded
+ * context from the main buffer controller (see initialization code).
+ */
+
+METHODDEF(void)
+h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+		     JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+  JSAMPARRAY output_data = *output_data_ptr;
+  register JSAMPROW inptr0, inptr1, outptr;
+#if BITS_IN_JSAMPLE == 8
+  register int thiscolsum, lastcolsum, nextcolsum;
+#else
+  register INT32 thiscolsum, lastcolsum, nextcolsum;
+#endif
+  register JDIMENSION colctr;
+  int inrow, outrow, v;
+
+  inrow = outrow = 0;
+  while (outrow < cinfo->max_v_samp_factor) {
+    for (v = 0; v < 2; v++) {
+      /* inptr0 points to nearest input row, inptr1 points to next nearest */
+      inptr0 = input_data[inrow];
+      if (v == 0)		/* next nearest is row above */
+	inptr1 = input_data[inrow-1];
+      else			/* next nearest is row below */
+	inptr1 = input_data[inrow+1];
+      outptr = output_data[outrow++];
+
+      /* Special case for first column */
+      thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
+      nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
+      *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
+      *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
+      lastcolsum = thiscolsum; thiscolsum = nextcolsum;
+
+      for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
+	/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
+	/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
+	nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
+	*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
+	*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
+	lastcolsum = thiscolsum; thiscolsum = nextcolsum;
+      }
+
+      /* Special case for last column */
+      *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
+      *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
+    }
+    inrow++;
+  }
+}
+
+
+/*
+ * Module initialization routine for upsampling.
+ */
+
+GLOBAL(void)
+jinit_upsampler (j_decompress_ptr cinfo)
+{
+  my_upsample_ptr upsample;
+  int ci;
+  jpeg_component_info * compptr;
+  boolean need_buffer, do_fancy;
+  int h_in_group, v_in_group, h_out_group, v_out_group;
+
+  upsample = (my_upsample_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_upsampler));
+  cinfo->upsample = (struct jpeg_upsampler *) upsample;
+  upsample->pub.start_pass = start_pass_upsample;
+  upsample->pub.upsample = sep_upsample;
+  upsample->pub.need_context_rows = FALSE; /* until we find out differently */
+
+  if (cinfo->CCIR601_sampling)	/* this isn't supported */
+    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
+
+  /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
+   * so don't ask for it.
+   */
+  do_fancy = cinfo->do_fancy_upsampling && cinfo->_min_DCT_scaled_size > 1;
+
+  /* Verify we can handle the sampling factors, select per-component methods,
+   * and create storage as needed.
+   */
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    /* Compute size of an "input group" after IDCT scaling.  This many samples
+     * are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
+     */
+    h_in_group = (compptr->h_samp_factor * compptr->_DCT_scaled_size) /
+		 cinfo->_min_DCT_scaled_size;
+    v_in_group = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
+		 cinfo->_min_DCT_scaled_size;
+    h_out_group = cinfo->max_h_samp_factor;
+    v_out_group = cinfo->max_v_samp_factor;
+    upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
+    need_buffer = TRUE;
+    if (! compptr->component_needed) {
+      /* Don't bother to upsample an uninteresting component. */
+      upsample->methods[ci] = noop_upsample;
+      need_buffer = FALSE;
+    } else if (h_in_group == h_out_group && v_in_group == v_out_group) {
+      /* Fullsize components can be processed without any work. */
+      upsample->methods[ci] = fullsize_upsample;
+      need_buffer = FALSE;
+    } else if (h_in_group * 2 == h_out_group &&
+	       v_in_group == v_out_group) {
+      /* Special cases for 2h1v upsampling */
+      if (do_fancy && compptr->downsampled_width > 2) {
+	if (jsimd_can_h2v1_fancy_upsample())
+	  upsample->methods[ci] = jsimd_h2v1_fancy_upsample;
+	else
+	  upsample->methods[ci] = h2v1_fancy_upsample;
+      } else {
+	if (jsimd_can_h2v1_upsample())
+	  upsample->methods[ci] = jsimd_h2v1_upsample;
+	else
+	  upsample->methods[ci] = h2v1_upsample;
+      }
+    } else if (h_in_group * 2 == h_out_group &&
+	       v_in_group * 2 == v_out_group) {
+      /* Special cases for 2h2v upsampling */
+      if (do_fancy && compptr->downsampled_width > 2) {
+	if (jsimd_can_h2v2_fancy_upsample())
+	  upsample->methods[ci] = jsimd_h2v2_fancy_upsample;
+	else
+	  upsample->methods[ci] = h2v2_fancy_upsample;
+	upsample->pub.need_context_rows = TRUE;
+      } else {
+	if (jsimd_can_h2v2_upsample())
+	  upsample->methods[ci] = jsimd_h2v2_upsample;
+	else
+	  upsample->methods[ci] = h2v2_upsample;
+      }
+    } else if ((h_out_group % h_in_group) == 0 &&
+	       (v_out_group % v_in_group) == 0) {
+      /* Generic integral-factors upsampling method */
+      upsample->methods[ci] = int_upsample;
+      upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
+      upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
+    } else
+      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
+    if (need_buffer) {
+      upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
+	((j_common_ptr) cinfo, JPOOL_IMAGE,
+	 (JDIMENSION) jround_up((long) cinfo->output_width,
+				(long) cinfo->max_h_samp_factor),
+	 (JDIMENSION) cinfo->max_v_samp_factor);
+    }
+  }
+}

=== added file 'src/libjpeg-turbo/jdtrans.c'
--- src/libjpeg-turbo/jdtrans.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jdtrans.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,152 @@ 
+/*
+ * jdtrans.c
+ *
+ * Copyright (C) 1995-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains library routines for transcoding decompression,
+ * that is, reading raw DCT coefficient arrays from an input JPEG file.
+ * The routines in jdapimin.c will also be needed by a transcoder.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Forward declarations */
+LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo));
+
+
+/*
+ * Read the coefficient arrays from a JPEG file.
+ * jpeg_read_header must be completed before calling this.
+ *
+ * The entire image is read into a set of virtual coefficient-block arrays,
+ * one per component.  The return value is a pointer to the array of
+ * virtual-array descriptors.  These can be manipulated directly via the
+ * JPEG memory manager, or handed off to jpeg_write_coefficients().
+ * To release the memory occupied by the virtual arrays, call
+ * jpeg_finish_decompress() when done with the data.
+ *
+ * An alternative usage is to simply obtain access to the coefficient arrays
+ * during a buffered-image-mode decompression operation.  This is allowed
+ * after any jpeg_finish_output() call.  The arrays can be accessed until
+ * jpeg_finish_decompress() is called.  (Note that any call to the library
+ * may reposition the arrays, so don't rely on access_virt_barray() results
+ * to stay valid across library calls.)
+ *
+ * Returns NULL if suspended.  This case need be checked only if
+ * a suspending data source is used.
+ */
+
+GLOBAL(jvirt_barray_ptr *)
+jpeg_read_coefficients (j_decompress_ptr cinfo)
+{
+  if (cinfo->global_state == DSTATE_READY) {
+    /* First call: initialize active modules */
+    transdecode_master_selection(cinfo);
+    cinfo->global_state = DSTATE_RDCOEFS;
+  }
+  if (cinfo->global_state == DSTATE_RDCOEFS) {
+    /* Absorb whole file into the coef buffer */
+    for (;;) {
+      int retcode;
+      /* Call progress monitor hook if present */
+      if (cinfo->progress != NULL)
+	(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+      /* Absorb some more input */
+      retcode = (*cinfo->inputctl->consume_input) (cinfo);
+      if (retcode == JPEG_SUSPENDED)
+	return NULL;
+      if (retcode == JPEG_REACHED_EOI)
+	break;
+      /* Advance progress counter if appropriate */
+      if (cinfo->progress != NULL &&
+	  (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
+	if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
+	  /* startup underestimated number of scans; ratchet up one scan */
+	  cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
+	}
+      }
+    }
+    /* Set state so that jpeg_finish_decompress does the right thing */
+    cinfo->global_state = DSTATE_STOPPING;
+  }
+  /* At this point we should be in state DSTATE_STOPPING if being used
+   * standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
+   * to the coefficients during a full buffered-image-mode decompression.
+   */
+  if ((cinfo->global_state == DSTATE_STOPPING ||
+       cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
+    return cinfo->coef->coef_arrays;
+  }
+  /* Oops, improper usage */
+  ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+  return NULL;			/* keep compiler happy */
+}
+
+
+/*
+ * Master selection of decompression modules for transcoding.
+ * This substitutes for jdmaster.c's initialization of the full decompressor.
+ */
+
+LOCAL(void)
+transdecode_master_selection (j_decompress_ptr cinfo)
+{
+  /* This is effectively a buffered-image operation. */
+  cinfo->buffered_image = TRUE;
+
+#if JPEG_LIB_VERSION >= 80
+  /* Compute output image dimensions and related values. */
+  jpeg_core_output_dimensions(cinfo);
+#endif
+
+  /* Entropy decoding: either Huffman or arithmetic coding. */
+  if (cinfo->arith_code) {
+#ifdef D_ARITH_CODING_SUPPORTED
+    jinit_arith_decoder(cinfo);
+#else
+    ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
+#endif
+  } else {
+    if (cinfo->progressive_mode) {
+#ifdef D_PROGRESSIVE_SUPPORTED
+      jinit_phuff_decoder(cinfo);
+#else
+      ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+    } else
+      jinit_huff_decoder(cinfo);
+  }
+
+  /* Always get a full-image coefficient buffer. */
+  jinit_d_coef_controller(cinfo, TRUE);
+
+  /* We can now tell the memory manager to allocate virtual arrays. */
+  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+
+  /* Initialize input side of decompressor to consume first scan. */
+  (*cinfo->inputctl->start_input_pass) (cinfo);
+
+  /* Initialize progress monitoring. */
+  if (cinfo->progress != NULL) {
+    int nscans;
+    /* Estimate number of scans to set pass_limit. */
+    if (cinfo->progressive_mode) {
+      /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
+      nscans = 2 + 3 * cinfo->num_components;
+    } else if (cinfo->inputctl->has_multiple_scans) {
+      /* For a nonprogressive multiscan file, estimate 1 scan per component. */
+      nscans = cinfo->num_components;
+    } else {
+      nscans = 1;
+    }
+    cinfo->progress->pass_counter = 0L;
+    cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
+    cinfo->progress->completed_passes = 0;
+    cinfo->progress->total_passes = 1;
+  }
+}

=== added file 'src/libjpeg-turbo/jerror.c'
--- src/libjpeg-turbo/jerror.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jerror.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,252 @@ 
+/*
+ * jerror.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains simple error-reporting and trace-message routines.
+ * These are suitable for Unix-like systems and others where writing to
+ * stderr is the right thing to do.  Many applications will want to replace
+ * some or all of these routines.
+ *
+ * If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,
+ * you get a Windows-specific hack to display error messages in a dialog box.
+ * It ain't much, but it beats dropping error messages into the bit bucket,
+ * which is what happens to output to stderr under most Windows C compilers.
+ *
+ * These routines are used by both the compression and decompression code.
+ */
+
+/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jversion.h"
+#include "jerror.h"
+
+#ifdef USE_WINDOWS_MESSAGEBOX
+#include <windows.h>
+#endif
+
+#ifndef EXIT_FAILURE		/* define exit() codes if not provided */
+#define EXIT_FAILURE  1
+#endif
+
+
+/*
+ * Create the message string table.
+ * We do this from the master message list in jerror.h by re-reading
+ * jerror.h with a suitable definition for macro JMESSAGE.
+ * The message table is made an external symbol just in case any applications
+ * want to refer to it directly.
+ */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_std_message_table	jMsgTable
+#endif
+
+#define JMESSAGE(code,string)	string ,
+
+const char * const jpeg_std_message_table[] = {
+#include "jerror.h"
+  NULL
+};
+
+
+/*
+ * Error exit handler: must not return to caller.
+ *
+ * Applications may override this if they want to get control back after
+ * an error.  Typically one would longjmp somewhere instead of exiting.
+ * The setjmp buffer can be made a private field within an expanded error
+ * handler object.  Note that the info needed to generate an error message
+ * is stored in the error object, so you can generate the message now or
+ * later, at your convenience.
+ * You should make sure that the JPEG object is cleaned up (with jpeg_abort
+ * or jpeg_destroy) at some point.
+ */
+
+METHODDEF(void)
+error_exit (j_common_ptr cinfo)
+{
+  /* Always display the message */
+  (*cinfo->err->output_message) (cinfo);
+
+  /* Let the memory manager delete any temp files before we die */
+  jpeg_destroy(cinfo);
+
+  exit(EXIT_FAILURE);
+}
+
+
+/*
+ * Actual output of an error or trace message.
+ * Applications may override this method to send JPEG messages somewhere
+ * other than stderr.
+ *
+ * On Windows, printing to stderr is generally completely useless,
+ * so we provide optional code to produce an error-dialog popup.
+ * Most Windows applications will still prefer to override this routine,
+ * but if they don't, it'll do something at least marginally useful.
+ *
+ * NOTE: to use the library in an environment that doesn't support the
+ * C stdio library, you may have to delete the call to fprintf() entirely,
+ * not just not use this routine.
+ */
+
+METHODDEF(void)
+output_message (j_common_ptr cinfo)
+{
+  char buffer[JMSG_LENGTH_MAX];
+
+  /* Create the message */
+  (*cinfo->err->format_message) (cinfo, buffer);
+
+#ifdef USE_WINDOWS_MESSAGEBOX
+  /* Display it in a message dialog box */
+  MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",
+	     MB_OK | MB_ICONERROR);
+#else
+  /* Send it to stderr, adding a newline */
+  fprintf(stderr, "%s\n", buffer);
+#endif
+}
+
+
+/*
+ * Decide whether to emit a trace or warning message.
+ * msg_level is one of:
+ *   -1: recoverable corrupt-data warning, may want to abort.
+ *    0: important advisory messages (always display to user).
+ *    1: first level of tracing detail.
+ *    2,3,...: successively more detailed tracing messages.
+ * An application might override this method if it wanted to abort on warnings
+ * or change the policy about which messages to display.
+ */
+
+METHODDEF(void)
+emit_message (j_common_ptr cinfo, int msg_level)
+{
+  struct jpeg_error_mgr * err = cinfo->err;
+
+  if (msg_level < 0) {
+    /* It's a warning message.  Since corrupt files may generate many warnings,
+     * the policy implemented here is to show only the first warning,
+     * unless trace_level >= 3.
+     */
+    if (err->num_warnings == 0 || err->trace_level >= 3)
+      (*err->output_message) (cinfo);
+    /* Always count warnings in num_warnings. */
+    err->num_warnings++;
+  } else {
+    /* It's a trace message.  Show it if trace_level >= msg_level. */
+    if (err->trace_level >= msg_level)
+      (*err->output_message) (cinfo);
+  }
+}
+
+
+/*
+ * Format a message string for the most recent JPEG error or message.
+ * The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
+ * characters.  Note that no '\n' character is added to the string.
+ * Few applications should need to override this method.
+ */
+
+METHODDEF(void)
+format_message (j_common_ptr cinfo, char * buffer)
+{
+  struct jpeg_error_mgr * err = cinfo->err;
+  int msg_code = err->msg_code;
+  const char * msgtext = NULL;
+  const char * msgptr;
+  char ch;
+  boolean isstring;
+
+  /* Look up message string in proper table */
+  if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
+    msgtext = err->jpeg_message_table[msg_code];
+  } else if (err->addon_message_table != NULL &&
+	     msg_code >= err->first_addon_message &&
+	     msg_code <= err->last_addon_message) {
+    msgtext = err->addon_message_table[msg_code - err->first_addon_message];
+  }
+
+  /* Defend against bogus message number */
+  if (msgtext == NULL) {
+    err->msg_parm.i[0] = msg_code;
+    msgtext = err->jpeg_message_table[0];
+  }
+
+  /* Check for string parameter, as indicated by %s in the message text */
+  isstring = FALSE;
+  msgptr = msgtext;
+  while ((ch = *msgptr++) != '\0') {
+    if (ch == '%') {
+      if (*msgptr == 's') isstring = TRUE;
+      break;
+    }
+  }
+
+  /* Format the message into the passed buffer */
+  if (isstring)
+    sprintf(buffer, msgtext, err->msg_parm.s);
+  else
+    sprintf(buffer, msgtext,
+	    err->msg_parm.i[0], err->msg_parm.i[1],
+	    err->msg_parm.i[2], err->msg_parm.i[3],
+	    err->msg_parm.i[4], err->msg_parm.i[5],
+	    err->msg_parm.i[6], err->msg_parm.i[7]);
+}
+
+
+/*
+ * Reset error state variables at start of a new image.
+ * This is called during compression startup to reset trace/error
+ * processing to default state, without losing any application-specific
+ * method pointers.  An application might possibly want to override
+ * this method if it has additional error processing state.
+ */
+
+METHODDEF(void)
+reset_error_mgr (j_common_ptr cinfo)
+{
+  cinfo->err->num_warnings = 0;
+  /* trace_level is not reset since it is an application-supplied parameter */
+  cinfo->err->msg_code = 0;	/* may be useful as a flag for "no error" */
+}
+
+
+/*
+ * Fill in the standard error-handling methods in a jpeg_error_mgr object.
+ * Typical call is:
+ *	struct jpeg_compress_struct cinfo;
+ *	struct jpeg_error_mgr err;
+ *
+ *	cinfo.err = jpeg_std_error(&err);
+ * after which the application may override some of the methods.
+ */
+
+GLOBAL(struct jpeg_error_mgr *)
+jpeg_std_error (struct jpeg_error_mgr * err)
+{
+  err->error_exit = error_exit;
+  err->emit_message = emit_message;
+  err->output_message = output_message;
+  err->format_message = format_message;
+  err->reset_error_mgr = reset_error_mgr;
+
+  err->trace_level = 0;		/* default = no tracing */
+  err->num_warnings = 0;	/* no warnings emitted yet */
+  err->msg_code = 0;		/* may be useful as a flag for "no error" */
+
+  /* Initialize message table pointers */
+  err->jpeg_message_table = jpeg_std_message_table;
+  err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
+
+  err->addon_message_table = NULL;
+  err->first_addon_message = 0;	/* for safety */
+  err->last_addon_message = 0;
+
+  return err;
+}

=== added file 'src/libjpeg-turbo/jerror.h'
--- src/libjpeg-turbo/jerror.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jerror.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,314 @@ 
+/*
+ * jerror.h
+ *
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * Modified 1997-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file defines the error and message codes for the JPEG library.
+ * Edit this file to add new codes, or to translate the message strings to
+ * some other language.
+ * A set of error-reporting macros are defined too.  Some applications using
+ * the JPEG library may wish to include this file to get the error codes
+ * and/or the macros.
+ */
+
+/*
+ * To define the enum list of message codes, include this file without
+ * defining macro JMESSAGE.  To create a message string table, include it
+ * again with a suitable JMESSAGE definition (see jerror.c for an example).
+ */
+#ifndef JMESSAGE
+#ifndef JERROR_H
+/* First time through, define the enum list */
+#define JMAKE_ENUM_LIST
+#else
+/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
+#define JMESSAGE(code,string)
+#endif /* JERROR_H */
+#endif /* JMESSAGE */
+
+#ifdef JMAKE_ENUM_LIST
+
+typedef enum {
+
+#define JMESSAGE(code,string)	code ,
+
+#endif /* JMAKE_ENUM_LIST */
+
+JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
+
+/* For maintenance convenience, list is alphabetical by message code name */
+#if JPEG_LIB_VERSION < 70
+JMESSAGE(JERR_ARITH_NOTIMPL,
+	 "Sorry, arithmetic coding is not implemented")
+#endif
+JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
+JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
+JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
+JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
+#if JPEG_LIB_VERSION >= 70
+JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request")
+#endif
+JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range")
+JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported")
+#if JPEG_LIB_VERSION >= 70
+JMESSAGE(JERR_BAD_DROP_SAMPLING,
+	 "Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c")
+#endif
+JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
+JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
+JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
+JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
+JMESSAGE(JERR_BAD_LIB_VERSION,
+	 "Wrong JPEG library version: library is %d, caller expects %d")
+JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
+JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
+JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
+JMESSAGE(JERR_BAD_PROGRESSION,
+	 "Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
+JMESSAGE(JERR_BAD_PROG_SCRIPT,
+	 "Invalid progressive parameters at scan script entry %d")
+JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
+JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
+JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
+JMESSAGE(JERR_BAD_STRUCT_SIZE,
+	 "JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
+JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
+JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
+JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
+JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
+JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
+JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
+JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
+JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
+JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
+JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
+JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
+JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
+JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
+JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
+JMESSAGE(JERR_FILE_READ, "Input file read error")
+JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
+JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
+JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
+JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
+JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
+JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
+JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
+JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
+	 "Cannot transcode due to multiple use of quantization table %d")
+JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
+JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
+JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
+JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
+#if JPEG_LIB_VERSION >= 70
+JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined")
+#endif
+JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
+JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
+JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
+JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
+JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
+JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
+JMESSAGE(JERR_QUANT_COMPONENTS,
+	 "Cannot quantize more than %d color components")
+JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
+JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
+JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
+JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
+JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
+JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
+JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
+JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
+JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
+JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
+JMESSAGE(JERR_TFILE_WRITE,
+	 "Write failed on temporary file --- out of disk space?")
+JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
+JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
+JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
+JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
+JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
+JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
+JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
+JMESSAGE(JMSG_VERSION, JVERSION)
+JMESSAGE(JTRC_16BIT_TABLES,
+	 "Caution: quantization tables are too coarse for baseline JPEG")
+JMESSAGE(JTRC_ADOBE,
+	 "Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
+JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
+JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
+JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
+JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
+JMESSAGE(JTRC_DQT, "Define Quantization Table %d  precision %d")
+JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
+JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
+JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
+JMESSAGE(JTRC_EOI, "End Of Image")
+JMESSAGE(JTRC_HUFFBITS, "        %3d %3d %3d %3d %3d %3d %3d %3d")
+JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d  %d")
+JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
+	 "Warning: thumbnail image size does not match data length %u")
+JMESSAGE(JTRC_JFIF_EXTENSION,
+	 "JFIF extension marker: type 0x%02x, length %u")
+JMESSAGE(JTRC_JFIF_THUMBNAIL, "    with %d x %d thumbnail image")
+JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
+JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
+JMESSAGE(JTRC_QUANTVALS, "        %4u %4u %4u %4u %4u %4u %4u %4u")
+JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
+JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
+JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
+JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
+JMESSAGE(JTRC_RST, "RST%d")
+JMESSAGE(JTRC_SMOOTH_NOTIMPL,
+	 "Smoothing not supported with nonstandard sampling ratios")
+JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
+JMESSAGE(JTRC_SOF_COMPONENT, "    Component %d: %dhx%dv q=%d")
+JMESSAGE(JTRC_SOI, "Start of Image")
+JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
+JMESSAGE(JTRC_SOS_COMPONENT, "    Component %d: dc=%d ac=%d")
+JMESSAGE(JTRC_SOS_PARAMS, "  Ss=%d, Se=%d, Ah=%d, Al=%d")
+JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
+JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
+JMESSAGE(JTRC_THUMB_JPEG,
+	 "JFIF extension marker: JPEG-compressed thumbnail image, length %u")
+JMESSAGE(JTRC_THUMB_PALETTE,
+	 "JFIF extension marker: palette thumbnail image, length %u")
+JMESSAGE(JTRC_THUMB_RGB,
+	 "JFIF extension marker: RGB thumbnail image, length %u")
+JMESSAGE(JTRC_UNKNOWN_IDS,
+	 "Unrecognized component IDs %d %d %d, assuming YCbCr")
+JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
+JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
+JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
+#if JPEG_LIB_VERSION >= 70
+JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code")
+#endif
+JMESSAGE(JWRN_BOGUS_PROGRESSION,
+	 "Inconsistent progression sequence for component %d coefficient %d")
+JMESSAGE(JWRN_EXTRANEOUS_DATA,
+	 "Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
+JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
+JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
+JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
+JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
+JMESSAGE(JWRN_MUST_RESYNC,
+	 "Corrupt JPEG data: found marker 0x%02x instead of RST%d")
+JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
+JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
+#if JPEG_LIB_VERSION < 70
+JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request")
+#if defined(C_ARITH_CODING_SUPPORTED) || defined(D_ARITH_CODING_SUPPORTED)
+JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined")
+JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code")
+#endif
+#endif
+
+#ifdef JMAKE_ENUM_LIST
+
+  JMSG_LASTMSGCODE
+} J_MESSAGE_CODE;
+
+#undef JMAKE_ENUM_LIST
+#endif /* JMAKE_ENUM_LIST */
+
+/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
+#undef JMESSAGE
+
+
+#ifndef JERROR_H
+#define JERROR_H
+
+/* Macros to simplify using the error and trace message stuff */
+/* The first parameter is either type of cinfo pointer */
+
+/* Fatal errors (print message and exit) */
+#define ERREXIT(cinfo,code)  \
+  ((cinfo)->err->msg_code = (code), \
+   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT1(cinfo,code,p1)  \
+  ((cinfo)->err->msg_code = (code), \
+   (cinfo)->err->msg_parm.i[0] = (p1), \
+   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT2(cinfo,code,p1,p2)  \
+  ((cinfo)->err->msg_code = (code), \
+   (cinfo)->err->msg_parm.i[0] = (p1), \
+   (cinfo)->err->msg_parm.i[1] = (p2), \
+   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT3(cinfo,code,p1,p2,p3)  \
+  ((cinfo)->err->msg_code = (code), \
+   (cinfo)->err->msg_parm.i[0] = (p1), \
+   (cinfo)->err->msg_parm.i[1] = (p2), \
+   (cinfo)->err->msg_parm.i[2] = (p3), \
+   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT4(cinfo,code,p1,p2,p3,p4)  \
+  ((cinfo)->err->msg_code = (code), \
+   (cinfo)->err->msg_parm.i[0] = (p1), \
+   (cinfo)->err->msg_parm.i[1] = (p2), \
+   (cinfo)->err->msg_parm.i[2] = (p3), \
+   (cinfo)->err->msg_parm.i[3] = (p4), \
+   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXITS(cinfo,code,str)  \
+  ((cinfo)->err->msg_code = (code), \
+   strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
+   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+
+#define MAKESTMT(stuff)		do { stuff } while (0)
+
+/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
+#define WARNMS(cinfo,code)  \
+  ((cinfo)->err->msg_code = (code), \
+   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
+#define WARNMS1(cinfo,code,p1)  \
+  ((cinfo)->err->msg_code = (code), \
+   (cinfo)->err->msg_parm.i[0] = (p1), \
+   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
+#define WARNMS2(cinfo,code,p1,p2)  \
+  ((cinfo)->err->msg_code = (code), \
+   (cinfo)->err->msg_parm.i[0] = (p1), \
+   (cinfo)->err->msg_parm.i[1] = (p2), \
+   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
+
+/* Informational/debugging messages */
+#define TRACEMS(cinfo,lvl,code)  \
+  ((cinfo)->err->msg_code = (code), \
+   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+#define TRACEMS1(cinfo,lvl,code,p1)  \
+  ((cinfo)->err->msg_code = (code), \
+   (cinfo)->err->msg_parm.i[0] = (p1), \
+   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+#define TRACEMS2(cinfo,lvl,code,p1,p2)  \
+  ((cinfo)->err->msg_code = (code), \
+   (cinfo)->err->msg_parm.i[0] = (p1), \
+   (cinfo)->err->msg_parm.i[1] = (p2), \
+   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+#define TRACEMS3(cinfo,lvl,code,p1,p2,p3)  \
+  MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+	   _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
+	   (cinfo)->err->msg_code = (code); \
+	   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4)  \
+  MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+	   _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
+	   (cinfo)->err->msg_code = (code); \
+	   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5)  \
+  MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+	   _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
+	   _mp[4] = (p5); \
+	   (cinfo)->err->msg_code = (code); \
+	   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8)  \
+  MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+	   _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
+	   _mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
+	   (cinfo)->err->msg_code = (code); \
+	   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+#define TRACEMSS(cinfo,lvl,code,str)  \
+  ((cinfo)->err->msg_code = (code), \
+   strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
+   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+
+#endif /* JERROR_H */

=== added file 'src/libjpeg-turbo/jfdctflt.c'
--- src/libjpeg-turbo/jfdctflt.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jfdctflt.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,168 @@ 
+/*
+ * jfdctflt.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a floating-point implementation of the
+ * forward DCT (Discrete Cosine Transform).
+ *
+ * This implementation should be more accurate than either of the integer
+ * DCT implementations.  However, it may not give the same results on all
+ * machines because of differences in roundoff behavior.  Speed will depend
+ * on the hardware's floating point capacity.
+ *
+ * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+ * on each column.  Direct algorithms are also available, but they are
+ * much more complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README).  The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs.  These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with a fixed-point
+ * implementation, accuracy is lost due to imprecise representation of the
+ * scaled quantization values.  However, that problem does not arise if
+ * we use floating point arithmetic.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h"		/* Private declarations for DCT subsystem */
+
+#ifdef DCT_FLOAT_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/*
+ * Perform the forward DCT on one block of samples.
+ */
+
+GLOBAL(void)
+jpeg_fdct_float (FAST_FLOAT * data)
+{
+  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
+  FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
+  FAST_FLOAT *dataptr;
+  int ctr;
+
+  /* Pass 1: process rows. */
+
+  dataptr = data;
+  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+    tmp0 = dataptr[0] + dataptr[7];
+    tmp7 = dataptr[0] - dataptr[7];
+    tmp1 = dataptr[1] + dataptr[6];
+    tmp6 = dataptr[1] - dataptr[6];
+    tmp2 = dataptr[2] + dataptr[5];
+    tmp5 = dataptr[2] - dataptr[5];
+    tmp3 = dataptr[3] + dataptr[4];
+    tmp4 = dataptr[3] - dataptr[4];
+    
+    /* Even part */
+    
+    tmp10 = tmp0 + tmp3;	/* phase 2 */
+    tmp13 = tmp0 - tmp3;
+    tmp11 = tmp1 + tmp2;
+    tmp12 = tmp1 - tmp2;
+    
+    dataptr[0] = tmp10 + tmp11; /* phase 3 */
+    dataptr[4] = tmp10 - tmp11;
+    
+    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
+    dataptr[2] = tmp13 + z1;	/* phase 5 */
+    dataptr[6] = tmp13 - z1;
+    
+    /* Odd part */
+
+    tmp10 = tmp4 + tmp5;	/* phase 2 */
+    tmp11 = tmp5 + tmp6;
+    tmp12 = tmp6 + tmp7;
+
+    /* The rotator is modified from fig 4-8 to avoid extra negations. */
+    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
+    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
+    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
+    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
+
+    z11 = tmp7 + z3;		/* phase 5 */
+    z13 = tmp7 - z3;
+
+    dataptr[5] = z13 + z2;	/* phase 6 */
+    dataptr[3] = z13 - z2;
+    dataptr[1] = z11 + z4;
+    dataptr[7] = z11 - z4;
+
+    dataptr += DCTSIZE;		/* advance pointer to next row */
+  }
+
+  /* Pass 2: process columns. */
+
+  dataptr = data;
+  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+    
+    /* Even part */
+    
+    tmp10 = tmp0 + tmp3;	/* phase 2 */
+    tmp13 = tmp0 - tmp3;
+    tmp11 = tmp1 + tmp2;
+    tmp12 = tmp1 - tmp2;
+    
+    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
+    dataptr[DCTSIZE*4] = tmp10 - tmp11;
+    
+    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
+    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
+    dataptr[DCTSIZE*6] = tmp13 - z1;
+    
+    /* Odd part */
+
+    tmp10 = tmp4 + tmp5;	/* phase 2 */
+    tmp11 = tmp5 + tmp6;
+    tmp12 = tmp6 + tmp7;
+
+    /* The rotator is modified from fig 4-8 to avoid extra negations. */
+    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
+    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
+    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
+    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
+
+    z11 = tmp7 + z3;		/* phase 5 */
+    z13 = tmp7 - z3;
+
+    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
+    dataptr[DCTSIZE*3] = z13 - z2;
+    dataptr[DCTSIZE*1] = z11 + z4;
+    dataptr[DCTSIZE*7] = z11 - z4;
+
+    dataptr++;			/* advance pointer to next column */
+  }
+}
+
+#endif /* DCT_FLOAT_SUPPORTED */

=== added file 'src/libjpeg-turbo/jfdctfst.c'
--- src/libjpeg-turbo/jfdctfst.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jfdctfst.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,224 @@ 
+/*
+ * jfdctfst.c
+ *
+ * Copyright (C) 1994-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a fast, not so accurate integer implementation of the
+ * forward DCT (Discrete Cosine Transform).
+ *
+ * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+ * on each column.  Direct algorithms are also available, but they are
+ * much more complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README).  The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs.  These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with fixed-point math,
+ * accuracy is lost due to imprecise representation of the scaled
+ * quantization values.  The smaller the quantization table entry, the less
+ * precise the scaled value, so this implementation does worse with high-
+ * quality-setting files than with low-quality ones.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h"		/* Private declarations for DCT subsystem */
+
+#ifdef DCT_IFAST_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/* Scaling decisions are generally the same as in the LL&M algorithm;
+ * see jfdctint.c for more details.  However, we choose to descale
+ * (right shift) multiplication products as soon as they are formed,
+ * rather than carrying additional fractional bits into subsequent additions.
+ * This compromises accuracy slightly, but it lets us save a few shifts.
+ * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
+ * everywhere except in the multiplications proper; this saves a good deal
+ * of work on 16-bit-int machines.
+ *
+ * Again to save a few shifts, the intermediate results between pass 1 and
+ * pass 2 are not upscaled, but are represented only to integral precision.
+ *
+ * A final compromise is to represent the multiplicative constants to only
+ * 8 fractional bits, rather than 13.  This saves some shifting work on some
+ * machines, and may also reduce the cost of multiplication (since there
+ * are fewer one-bits in the constants).
+ */
+
+#define CONST_BITS  8
+
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 8
+#define FIX_0_382683433  ((INT32)   98)		/* FIX(0.382683433) */
+#define FIX_0_541196100  ((INT32)  139)		/* FIX(0.541196100) */
+#define FIX_0_707106781  ((INT32)  181)		/* FIX(0.707106781) */
+#define FIX_1_306562965  ((INT32)  334)		/* FIX(1.306562965) */
+#else
+#define FIX_0_382683433  FIX(0.382683433)
+#define FIX_0_541196100  FIX(0.541196100)
+#define FIX_0_707106781  FIX(0.707106781)
+#define FIX_1_306562965  FIX(1.306562965)
+#endif
+
+
+/* We can gain a little more speed, with a further compromise in accuracy,
+ * by omitting the addition in a descaling shift.  This yields an incorrectly
+ * rounded result half the time...
+ */
+
+#ifndef USE_ACCURATE_ROUNDING
+#undef DESCALE
+#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
+#endif
+
+
+/* Multiply a DCTELEM variable by an INT32 constant, and immediately
+ * descale to yield a DCTELEM result.
+ */
+
+#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
+
+
+/*
+ * Perform the forward DCT on one block of samples.
+ */
+
+GLOBAL(void)
+jpeg_fdct_ifast (DCTELEM * data)
+{
+  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+  DCTELEM tmp10, tmp11, tmp12, tmp13;
+  DCTELEM z1, z2, z3, z4, z5, z11, z13;
+  DCTELEM *dataptr;
+  int ctr;
+  SHIFT_TEMPS
+
+  /* Pass 1: process rows. */
+
+  dataptr = data;
+  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+    tmp0 = dataptr[0] + dataptr[7];
+    tmp7 = dataptr[0] - dataptr[7];
+    tmp1 = dataptr[1] + dataptr[6];
+    tmp6 = dataptr[1] - dataptr[6];
+    tmp2 = dataptr[2] + dataptr[5];
+    tmp5 = dataptr[2] - dataptr[5];
+    tmp3 = dataptr[3] + dataptr[4];
+    tmp4 = dataptr[3] - dataptr[4];
+    
+    /* Even part */
+    
+    tmp10 = tmp0 + tmp3;	/* phase 2 */
+    tmp13 = tmp0 - tmp3;
+    tmp11 = tmp1 + tmp2;
+    tmp12 = tmp1 - tmp2;
+    
+    dataptr[0] = tmp10 + tmp11; /* phase 3 */
+    dataptr[4] = tmp10 - tmp11;
+    
+    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
+    dataptr[2] = tmp13 + z1;	/* phase 5 */
+    dataptr[6] = tmp13 - z1;
+    
+    /* Odd part */
+
+    tmp10 = tmp4 + tmp5;	/* phase 2 */
+    tmp11 = tmp5 + tmp6;
+    tmp12 = tmp6 + tmp7;
+
+    /* The rotator is modified from fig 4-8 to avoid extra negations. */
+    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
+    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
+    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
+    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
+
+    z11 = tmp7 + z3;		/* phase 5 */
+    z13 = tmp7 - z3;
+
+    dataptr[5] = z13 + z2;	/* phase 6 */
+    dataptr[3] = z13 - z2;
+    dataptr[1] = z11 + z4;
+    dataptr[7] = z11 - z4;
+
+    dataptr += DCTSIZE;		/* advance pointer to next row */
+  }
+
+  /* Pass 2: process columns. */
+
+  dataptr = data;
+  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+    
+    /* Even part */
+    
+    tmp10 = tmp0 + tmp3;	/* phase 2 */
+    tmp13 = tmp0 - tmp3;
+    tmp11 = tmp1 + tmp2;
+    tmp12 = tmp1 - tmp2;
+    
+    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
+    dataptr[DCTSIZE*4] = tmp10 - tmp11;
+    
+    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
+    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
+    dataptr[DCTSIZE*6] = tmp13 - z1;
+    
+    /* Odd part */
+
+    tmp10 = tmp4 + tmp5;	/* phase 2 */
+    tmp11 = tmp5 + tmp6;
+    tmp12 = tmp6 + tmp7;
+
+    /* The rotator is modified from fig 4-8 to avoid extra negations. */
+    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
+    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
+    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
+    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
+
+    z11 = tmp7 + z3;		/* phase 5 */
+    z13 = tmp7 - z3;
+
+    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
+    dataptr[DCTSIZE*3] = z13 - z2;
+    dataptr[DCTSIZE*1] = z11 + z4;
+    dataptr[DCTSIZE*7] = z11 - z4;
+
+    dataptr++;			/* advance pointer to next column */
+  }
+}
+
+#endif /* DCT_IFAST_SUPPORTED */

=== added file 'src/libjpeg-turbo/jfdctint.c'
--- src/libjpeg-turbo/jfdctint.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jfdctint.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,283 @@ 
+/*
+ * jfdctint.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a slow-but-accurate integer implementation of the
+ * forward DCT (Discrete Cosine Transform).
+ *
+ * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+ * on each column.  Direct algorithms are also available, but they are
+ * much more complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on an algorithm described in
+ *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
+ *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
+ *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
+ * The primary algorithm described there uses 11 multiplies and 29 adds.
+ * We use their alternate method with 12 multiplies and 32 adds.
+ * The advantage of this method is that no data path contains more than one
+ * multiplication; this allows a very simple and accurate implementation in
+ * scaled fixed-point arithmetic, with a minimal number of shifts.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h"		/* Private declarations for DCT subsystem */
+
+#ifdef DCT_ISLOW_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/*
+ * The poop on this scaling stuff is as follows:
+ *
+ * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
+ * larger than the true DCT outputs.  The final outputs are therefore
+ * a factor of N larger than desired; since N=8 this can be cured by
+ * a simple right shift at the end of the algorithm.  The advantage of
+ * this arrangement is that we save two multiplications per 1-D DCT,
+ * because the y0 and y4 outputs need not be divided by sqrt(N).
+ * In the IJG code, this factor of 8 is removed by the quantization step
+ * (in jcdctmgr.c), NOT in this module.
+ *
+ * We have to do addition and subtraction of the integer inputs, which
+ * is no problem, and multiplication by fractional constants, which is
+ * a problem to do in integer arithmetic.  We multiply all the constants
+ * by CONST_SCALE and convert them to integer constants (thus retaining
+ * CONST_BITS bits of precision in the constants).  After doing a
+ * multiplication we have to divide the product by CONST_SCALE, with proper
+ * rounding, to produce the correct output.  This division can be done
+ * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
+ * as long as possible so that partial sums can be added together with
+ * full fractional precision.
+ *
+ * The outputs of the first pass are scaled up by PASS1_BITS bits so that
+ * they are represented to better-than-integral precision.  These outputs
+ * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
+ * with the recommended scaling.  (For 12-bit sample data, the intermediate
+ * array is INT32 anyway.)
+ *
+ * To avoid overflow of the 32-bit intermediate results in pass 2, we must
+ * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
+ * shows that the values given below are the most effective.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define CONST_BITS  13
+#define PASS1_BITS  2
+#else
+#define CONST_BITS  13
+#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
+#endif
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 13
+#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
+#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
+#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
+#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
+#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
+#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
+#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
+#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
+#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
+#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
+#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
+#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
+#else
+#define FIX_0_298631336  FIX(0.298631336)
+#define FIX_0_390180644  FIX(0.390180644)
+#define FIX_0_541196100  FIX(0.541196100)
+#define FIX_0_765366865  FIX(0.765366865)
+#define FIX_0_899976223  FIX(0.899976223)
+#define FIX_1_175875602  FIX(1.175875602)
+#define FIX_1_501321110  FIX(1.501321110)
+#define FIX_1_847759065  FIX(1.847759065)
+#define FIX_1_961570560  FIX(1.961570560)
+#define FIX_2_053119869  FIX(2.053119869)
+#define FIX_2_562915447  FIX(2.562915447)
+#define FIX_3_072711026  FIX(3.072711026)
+#endif
+
+
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+ * For 8-bit samples with the recommended scaling, all the variable
+ * and constant values involved are no more than 16 bits wide, so a
+ * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
+ * For 12-bit samples, a full 32-bit multiplication will be needed.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
+#else
+#define MULTIPLY(var,const)  ((var) * (const))
+#endif
+
+
+/*
+ * Perform the forward DCT on one block of samples.
+ */
+
+GLOBAL(void)
+jpeg_fdct_islow (DCTELEM * data)
+{
+  INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+  INT32 tmp10, tmp11, tmp12, tmp13;
+  INT32 z1, z2, z3, z4, z5;
+  DCTELEM *dataptr;
+  int ctr;
+  SHIFT_TEMPS
+
+  /* Pass 1: process rows. */
+  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+  /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+  dataptr = data;
+  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+    tmp0 = dataptr[0] + dataptr[7];
+    tmp7 = dataptr[0] - dataptr[7];
+    tmp1 = dataptr[1] + dataptr[6];
+    tmp6 = dataptr[1] - dataptr[6];
+    tmp2 = dataptr[2] + dataptr[5];
+    tmp5 = dataptr[2] - dataptr[5];
+    tmp3 = dataptr[3] + dataptr[4];
+    tmp4 = dataptr[3] - dataptr[4];
+    
+    /* Even part per LL&M figure 1 --- note that published figure is faulty;
+     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+     */
+    
+    tmp10 = tmp0 + tmp3;
+    tmp13 = tmp0 - tmp3;
+    tmp11 = tmp1 + tmp2;
+    tmp12 = tmp1 - tmp2;
+    
+    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
+    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
+    
+    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
+				   CONST_BITS-PASS1_BITS);
+    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
+				   CONST_BITS-PASS1_BITS);
+    
+    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+     * cK represents cos(K*pi/16).
+     * i0..i3 in the paper are tmp4..tmp7 here.
+     */
+    
+    z1 = tmp4 + tmp7;
+    z2 = tmp5 + tmp6;
+    z3 = tmp4 + tmp6;
+    z4 = tmp5 + tmp7;
+    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
+    
+    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+    
+    z3 += z5;
+    z4 += z5;
+    
+    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
+    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
+    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
+    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
+    
+    dataptr += DCTSIZE;		/* advance pointer to next row */
+  }
+
+  /* Pass 2: process columns.
+   * We remove the PASS1_BITS scaling, but leave the results scaled up
+   * by an overall factor of 8.
+   */
+
+  dataptr = data;
+  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+    
+    /* Even part per LL&M figure 1 --- note that published figure is faulty;
+     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+     */
+    
+    tmp10 = tmp0 + tmp3;
+    tmp13 = tmp0 - tmp3;
+    tmp11 = tmp1 + tmp2;
+    tmp12 = tmp1 - tmp2;
+    
+    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
+    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
+    
+    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
+					   CONST_BITS+PASS1_BITS);
+    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
+					   CONST_BITS+PASS1_BITS);
+    
+    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+     * cK represents cos(K*pi/16).
+     * i0..i3 in the paper are tmp4..tmp7 here.
+     */
+    
+    z1 = tmp4 + tmp7;
+    z2 = tmp5 + tmp6;
+    z3 = tmp4 + tmp6;
+    z4 = tmp5 + tmp7;
+    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
+    
+    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+    
+    z3 += z5;
+    z4 += z5;
+    
+    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
+					   CONST_BITS+PASS1_BITS);
+    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
+					   CONST_BITS+PASS1_BITS);
+    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
+					   CONST_BITS+PASS1_BITS);
+    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
+					   CONST_BITS+PASS1_BITS);
+    
+    dataptr++;			/* advance pointer to next column */
+  }
+}
+
+#endif /* DCT_ISLOW_SUPPORTED */

=== added file 'src/libjpeg-turbo/jidctflt.c'
--- src/libjpeg-turbo/jidctflt.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jidctflt.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,242 @@ 
+/*
+ * jidctflt.c
+ *
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a floating-point implementation of the
+ * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
+ * must also perform dequantization of the input coefficients.
+ *
+ * This implementation should be more accurate than either of the integer
+ * IDCT implementations.  However, it may not give the same results on all
+ * machines because of differences in roundoff behavior.  Speed will depend
+ * on the hardware's floating point capacity.
+ *
+ * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
+ * on each row (or vice versa, but it's more convenient to emit a row at
+ * a time).  Direct algorithms are also available, but they are much more
+ * complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README).  The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs.  These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with a fixed-point
+ * implementation, accuracy is lost due to imprecise representation of the
+ * scaled quantization values.  However, that problem does not arise if
+ * we use floating point arithmetic.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h"		/* Private declarations for DCT subsystem */
+
+#ifdef DCT_FLOAT_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/* Dequantize a coefficient by multiplying it by the multiplier-table
+ * entry; produce a float result.
+ */
+
+#define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients.
+ */
+
+GLOBAL(void)
+jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+		 JCOEFPTR coef_block,
+		 JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
+  FAST_FLOAT z5, z10, z11, z12, z13;
+  JCOEFPTR inptr;
+  FLOAT_MULT_TYPE * quantptr;
+  FAST_FLOAT * wsptr;
+  JSAMPROW outptr;
+  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+  int ctr;
+  FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
+  SHIFT_TEMPS
+
+  /* Pass 1: process columns from input, store into work array. */
+
+  inptr = coef_block;
+  quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
+  wsptr = workspace;
+  for (ctr = DCTSIZE; ctr > 0; ctr--) {
+    /* Due to quantization, we will usually find that many of the input
+     * coefficients are zero, especially the AC terms.  We can exploit this
+     * by short-circuiting the IDCT calculation for any column in which all
+     * the AC terms are zero.  In that case each output is equal to the
+     * DC coefficient (with scale factor as needed).
+     * With typical images and quantization tables, half or more of the
+     * column DCT calculations can be simplified this way.
+     */
+    
+    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+	inptr[DCTSIZE*7] == 0) {
+      /* AC terms all zero */
+      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+      
+      wsptr[DCTSIZE*0] = dcval;
+      wsptr[DCTSIZE*1] = dcval;
+      wsptr[DCTSIZE*2] = dcval;
+      wsptr[DCTSIZE*3] = dcval;
+      wsptr[DCTSIZE*4] = dcval;
+      wsptr[DCTSIZE*5] = dcval;
+      wsptr[DCTSIZE*6] = dcval;
+      wsptr[DCTSIZE*7] = dcval;
+      
+      inptr++;			/* advance pointers to next column */
+      quantptr++;
+      wsptr++;
+      continue;
+    }
+    
+    /* Even part */
+
+    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+    tmp10 = tmp0 + tmp2;	/* phase 3 */
+    tmp11 = tmp0 - tmp2;
+
+    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
+    tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
+
+    tmp0 = tmp10 + tmp13;	/* phase 2 */
+    tmp3 = tmp10 - tmp13;
+    tmp1 = tmp11 + tmp12;
+    tmp2 = tmp11 - tmp12;
+    
+    /* Odd part */
+
+    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+    z13 = tmp6 + tmp5;		/* phase 6 */
+    z10 = tmp6 - tmp5;
+    z11 = tmp4 + tmp7;
+    z12 = tmp4 - tmp7;
+
+    tmp7 = z11 + z13;		/* phase 5 */
+    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
+
+    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
+    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
+    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
+
+    tmp6 = tmp12 - tmp7;	/* phase 2 */
+    tmp5 = tmp11 - tmp6;
+    tmp4 = tmp10 + tmp5;
+
+    wsptr[DCTSIZE*0] = tmp0 + tmp7;
+    wsptr[DCTSIZE*7] = tmp0 - tmp7;
+    wsptr[DCTSIZE*1] = tmp1 + tmp6;
+    wsptr[DCTSIZE*6] = tmp1 - tmp6;
+    wsptr[DCTSIZE*2] = tmp2 + tmp5;
+    wsptr[DCTSIZE*5] = tmp2 - tmp5;
+    wsptr[DCTSIZE*4] = tmp3 + tmp4;
+    wsptr[DCTSIZE*3] = tmp3 - tmp4;
+
+    inptr++;			/* advance pointers to next column */
+    quantptr++;
+    wsptr++;
+  }
+  
+  /* Pass 2: process rows from work array, store into output array. */
+  /* Note that we must descale the results by a factor of 8 == 2**3. */
+
+  wsptr = workspace;
+  for (ctr = 0; ctr < DCTSIZE; ctr++) {
+    outptr = output_buf[ctr] + output_col;
+    /* Rows of zeroes can be exploited in the same way as we did with columns.
+     * However, the column calculation has created many nonzero AC terms, so
+     * the simplification applies less often (typically 5% to 10% of the time).
+     * And testing floats for zero is relatively expensive, so we don't bother.
+     */
+    
+    /* Even part */
+
+    tmp10 = wsptr[0] + wsptr[4];
+    tmp11 = wsptr[0] - wsptr[4];
+
+    tmp13 = wsptr[2] + wsptr[6];
+    tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
+
+    tmp0 = tmp10 + tmp13;
+    tmp3 = tmp10 - tmp13;
+    tmp1 = tmp11 + tmp12;
+    tmp2 = tmp11 - tmp12;
+
+    /* Odd part */
+
+    z13 = wsptr[5] + wsptr[3];
+    z10 = wsptr[5] - wsptr[3];
+    z11 = wsptr[1] + wsptr[7];
+    z12 = wsptr[1] - wsptr[7];
+
+    tmp7 = z11 + z13;
+    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
+
+    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
+    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
+    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
+
+    tmp6 = tmp12 - tmp7;
+    tmp5 = tmp11 - tmp6;
+    tmp4 = tmp10 + tmp5;
+
+    /* Final output stage: scale down by a factor of 8 and range-limit */
+
+    outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
+			    & RANGE_MASK];
+    outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
+			    & RANGE_MASK];
+    outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
+			    & RANGE_MASK];
+    outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
+			    & RANGE_MASK];
+    outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
+			    & RANGE_MASK];
+    outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
+			    & RANGE_MASK];
+    outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
+			    & RANGE_MASK];
+    outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
+			    & RANGE_MASK];
+    
+    wsptr += DCTSIZE;		/* advance pointer to next row */
+  }
+}
+
+#endif /* DCT_FLOAT_SUPPORTED */

=== added file 'src/libjpeg-turbo/jidctfst.c'
--- src/libjpeg-turbo/jidctfst.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jidctfst.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,368 @@ 
+/*
+ * jidctfst.c
+ *
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a fast, not so accurate integer implementation of the
+ * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
+ * must also perform dequantization of the input coefficients.
+ *
+ * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
+ * on each row (or vice versa, but it's more convenient to emit a row at
+ * a time).  Direct algorithms are also available, but they are much more
+ * complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README).  The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs.  These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with fixed-point math,
+ * accuracy is lost due to imprecise representation of the scaled
+ * quantization values.  The smaller the quantization table entry, the less
+ * precise the scaled value, so this implementation does worse with high-
+ * quality-setting files than with low-quality ones.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h"		/* Private declarations for DCT subsystem */
+
+#ifdef DCT_IFAST_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/* Scaling decisions are generally the same as in the LL&M algorithm;
+ * see jidctint.c for more details.  However, we choose to descale
+ * (right shift) multiplication products as soon as they are formed,
+ * rather than carrying additional fractional bits into subsequent additions.
+ * This compromises accuracy slightly, but it lets us save a few shifts.
+ * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
+ * everywhere except in the multiplications proper; this saves a good deal
+ * of work on 16-bit-int machines.
+ *
+ * The dequantized coefficients are not integers because the AA&N scaling
+ * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
+ * so that the first and second IDCT rounds have the same input scaling.
+ * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
+ * avoid a descaling shift; this compromises accuracy rather drastically
+ * for small quantization table entries, but it saves a lot of shifts.
+ * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
+ * so we use a much larger scaling factor to preserve accuracy.
+ *
+ * A final compromise is to represent the multiplicative constants to only
+ * 8 fractional bits, rather than 13.  This saves some shifting work on some
+ * machines, and may also reduce the cost of multiplication (since there
+ * are fewer one-bits in the constants).
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define CONST_BITS  8
+#define PASS1_BITS  2
+#else
+#define CONST_BITS  8
+#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
+#endif
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 8
+#define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */
+#define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */
+#define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */
+#define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */
+#else
+#define FIX_1_082392200  FIX(1.082392200)
+#define FIX_1_414213562  FIX(1.414213562)
+#define FIX_1_847759065  FIX(1.847759065)
+#define FIX_2_613125930  FIX(2.613125930)
+#endif
+
+
+/* We can gain a little more speed, with a further compromise in accuracy,
+ * by omitting the addition in a descaling shift.  This yields an incorrectly
+ * rounded result half the time...
+ */
+
+#ifndef USE_ACCURATE_ROUNDING
+#undef DESCALE
+#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
+#endif
+
+
+/* Multiply a DCTELEM variable by an INT32 constant, and immediately
+ * descale to yield a DCTELEM result.
+ */
+
+#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
+
+
+/* Dequantize a coefficient by multiplying it by the multiplier-table
+ * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
+ * multiplication will do.  For 12-bit data, the multiplier table is
+ * declared INT32, so a 32-bit multiply will be used.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
+#else
+#define DEQUANTIZE(coef,quantval)  \
+	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
+#endif
+
+
+/* Like DESCALE, but applies to a DCTELEM and produces an int.
+ * We assume that int right shift is unsigned if INT32 right shift is.
+ */
+
+#ifdef RIGHT_SHIFT_IS_UNSIGNED
+#define ISHIFT_TEMPS	DCTELEM ishift_temp;
+#if BITS_IN_JSAMPLE == 8
+#define DCTELEMBITS  16		/* DCTELEM may be 16 or 32 bits */
+#else
+#define DCTELEMBITS  32		/* DCTELEM must be 32 bits */
+#endif
+#define IRIGHT_SHIFT(x,shft)  \
+    ((ishift_temp = (x)) < 0 ? \
+     (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
+     (ishift_temp >> (shft)))
+#else
+#define ISHIFT_TEMPS
+#define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
+#endif
+
+#ifdef USE_ACCURATE_ROUNDING
+#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
+#else
+#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
+#endif
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients.
+ */
+
+GLOBAL(void)
+jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+		 JCOEFPTR coef_block,
+		 JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+  DCTELEM tmp10, tmp11, tmp12, tmp13;
+  DCTELEM z5, z10, z11, z12, z13;
+  JCOEFPTR inptr;
+  IFAST_MULT_TYPE * quantptr;
+  int * wsptr;
+  JSAMPROW outptr;
+  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+  int ctr;
+  int workspace[DCTSIZE2];	/* buffers data between passes */
+  SHIFT_TEMPS			/* for DESCALE */
+  ISHIFT_TEMPS			/* for IDESCALE */
+
+  /* Pass 1: process columns from input, store into work array. */
+
+  inptr = coef_block;
+  quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
+  wsptr = workspace;
+  for (ctr = DCTSIZE; ctr > 0; ctr--) {
+    /* Due to quantization, we will usually find that many of the input
+     * coefficients are zero, especially the AC terms.  We can exploit this
+     * by short-circuiting the IDCT calculation for any column in which all
+     * the AC terms are zero.  In that case each output is equal to the
+     * DC coefficient (with scale factor as needed).
+     * With typical images and quantization tables, half or more of the
+     * column DCT calculations can be simplified this way.
+     */
+    
+    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+	inptr[DCTSIZE*7] == 0) {
+      /* AC terms all zero */
+      int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+
+      wsptr[DCTSIZE*0] = dcval;
+      wsptr[DCTSIZE*1] = dcval;
+      wsptr[DCTSIZE*2] = dcval;
+      wsptr[DCTSIZE*3] = dcval;
+      wsptr[DCTSIZE*4] = dcval;
+      wsptr[DCTSIZE*5] = dcval;
+      wsptr[DCTSIZE*6] = dcval;
+      wsptr[DCTSIZE*7] = dcval;
+      
+      inptr++;			/* advance pointers to next column */
+      quantptr++;
+      wsptr++;
+      continue;
+    }
+    
+    /* Even part */
+
+    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+    tmp10 = tmp0 + tmp2;	/* phase 3 */
+    tmp11 = tmp0 - tmp2;
+
+    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
+    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
+
+    tmp0 = tmp10 + tmp13;	/* phase 2 */
+    tmp3 = tmp10 - tmp13;
+    tmp1 = tmp11 + tmp12;
+    tmp2 = tmp11 - tmp12;
+    
+    /* Odd part */
+
+    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+    z13 = tmp6 + tmp5;		/* phase 6 */
+    z10 = tmp6 - tmp5;
+    z11 = tmp4 + tmp7;
+    z12 = tmp4 - tmp7;
+
+    tmp7 = z11 + z13;		/* phase 5 */
+    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
+
+    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
+    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
+    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
+
+    tmp6 = tmp12 - tmp7;	/* phase 2 */
+    tmp5 = tmp11 - tmp6;
+    tmp4 = tmp10 + tmp5;
+
+    wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
+    wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
+    wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
+    wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
+    wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
+    wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
+    wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
+    wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
+
+    inptr++;			/* advance pointers to next column */
+    quantptr++;
+    wsptr++;
+  }
+  
+  /* Pass 2: process rows from work array, store into output array. */
+  /* Note that we must descale the results by a factor of 8 == 2**3, */
+  /* and also undo the PASS1_BITS scaling. */
+
+  wsptr = workspace;
+  for (ctr = 0; ctr < DCTSIZE; ctr++) {
+    outptr = output_buf[ctr] + output_col;
+    /* Rows of zeroes can be exploited in the same way as we did with columns.
+     * However, the column calculation has created many nonzero AC terms, so
+     * the simplification applies less often (typically 5% to 10% of the time).
+     * On machines with very fast multiplication, it's possible that the
+     * test takes more time than it's worth.  In that case this section
+     * may be commented out.
+     */
+    
+#ifndef NO_ZERO_ROW_TEST
+    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
+	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
+      /* AC terms all zero */
+      JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
+				  & RANGE_MASK];
+      
+      outptr[0] = dcval;
+      outptr[1] = dcval;
+      outptr[2] = dcval;
+      outptr[3] = dcval;
+      outptr[4] = dcval;
+      outptr[5] = dcval;
+      outptr[6] = dcval;
+      outptr[7] = dcval;
+
+      wsptr += DCTSIZE;		/* advance pointer to next row */
+      continue;
+    }
+#endif
+    
+    /* Even part */
+
+    tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
+    tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
+
+    tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
+    tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
+	    - tmp13;
+
+    tmp0 = tmp10 + tmp13;
+    tmp3 = tmp10 - tmp13;
+    tmp1 = tmp11 + tmp12;
+    tmp2 = tmp11 - tmp12;
+
+    /* Odd part */
+
+    z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
+    z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
+    z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
+    z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
+
+    tmp7 = z11 + z13;		/* phase 5 */
+    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
+
+    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
+    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
+    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
+
+    tmp6 = tmp12 - tmp7;	/* phase 2 */
+    tmp5 = tmp11 - tmp6;
+    tmp4 = tmp10 + tmp5;
+
+    /* Final output stage: scale down by a factor of 8 and range-limit */
+
+    outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
+			    & RANGE_MASK];
+    outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
+			    & RANGE_MASK];
+    outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
+			    & RANGE_MASK];
+    outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
+			    & RANGE_MASK];
+    outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
+			    & RANGE_MASK];
+    outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
+			    & RANGE_MASK];
+    outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
+			    & RANGE_MASK];
+    outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
+			    & RANGE_MASK];
+
+    wsptr += DCTSIZE;		/* advance pointer to next row */
+  }
+}
+
+#endif /* DCT_IFAST_SUPPORTED */

=== added file 'src/libjpeg-turbo/jidctint.c'
--- src/libjpeg-turbo/jidctint.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jidctint.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,389 @@ 
+/*
+ * jidctint.c
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a slow-but-accurate integer implementation of the
+ * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
+ * must also perform dequantization of the input coefficients.
+ *
+ * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
+ * on each row (or vice versa, but it's more convenient to emit a row at
+ * a time).  Direct algorithms are also available, but they are much more
+ * complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on an algorithm described in
+ *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
+ *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
+ *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
+ * The primary algorithm described there uses 11 multiplies and 29 adds.
+ * We use their alternate method with 12 multiplies and 32 adds.
+ * The advantage of this method is that no data path contains more than one
+ * multiplication; this allows a very simple and accurate implementation in
+ * scaled fixed-point arithmetic, with a minimal number of shifts.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h"		/* Private declarations for DCT subsystem */
+
+#ifdef DCT_ISLOW_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/*
+ * The poop on this scaling stuff is as follows:
+ *
+ * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
+ * larger than the true IDCT outputs.  The final outputs are therefore
+ * a factor of N larger than desired; since N=8 this can be cured by
+ * a simple right shift at the end of the algorithm.  The advantage of
+ * this arrangement is that we save two multiplications per 1-D IDCT,
+ * because the y0 and y4 inputs need not be divided by sqrt(N).
+ *
+ * We have to do addition and subtraction of the integer inputs, which
+ * is no problem, and multiplication by fractional constants, which is
+ * a problem to do in integer arithmetic.  We multiply all the constants
+ * by CONST_SCALE and convert them to integer constants (thus retaining
+ * CONST_BITS bits of precision in the constants).  After doing a
+ * multiplication we have to divide the product by CONST_SCALE, with proper
+ * rounding, to produce the correct output.  This division can be done
+ * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
+ * as long as possible so that partial sums can be added together with
+ * full fractional precision.
+ *
+ * The outputs of the first pass are scaled up by PASS1_BITS bits so that
+ * they are represented to better-than-integral precision.  These outputs
+ * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
+ * with the recommended scaling.  (To scale up 12-bit sample data further, an
+ * intermediate INT32 array would be needed.)
+ *
+ * To avoid overflow of the 32-bit intermediate results in pass 2, we must
+ * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
+ * shows that the values given below are the most effective.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define CONST_BITS  13
+#define PASS1_BITS  2
+#else
+#define CONST_BITS  13
+#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
+#endif
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 13
+#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
+#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
+#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
+#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
+#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
+#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
+#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
+#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
+#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
+#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
+#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
+#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
+#else
+#define FIX_0_298631336  FIX(0.298631336)
+#define FIX_0_390180644  FIX(0.390180644)
+#define FIX_0_541196100  FIX(0.541196100)
+#define FIX_0_765366865  FIX(0.765366865)
+#define FIX_0_899976223  FIX(0.899976223)
+#define FIX_1_175875602  FIX(1.175875602)
+#define FIX_1_501321110  FIX(1.501321110)
+#define FIX_1_847759065  FIX(1.847759065)
+#define FIX_1_961570560  FIX(1.961570560)
+#define FIX_2_053119869  FIX(2.053119869)
+#define FIX_2_562915447  FIX(2.562915447)
+#define FIX_3_072711026  FIX(3.072711026)
+#endif
+
+
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+ * For 8-bit samples with the recommended scaling, all the variable
+ * and constant values involved are no more than 16 bits wide, so a
+ * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
+ * For 12-bit samples, a full 32-bit multiplication will be needed.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
+#else
+#define MULTIPLY(var,const)  ((var) * (const))
+#endif
+
+
+/* Dequantize a coefficient by multiplying it by the multiplier-table
+ * entry; produce an int result.  In this module, both inputs and result
+ * are 16 bits or less, so either int or short multiply will work.
+ */
+
+#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients.
+ */
+
+GLOBAL(void)
+jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+		 JCOEFPTR coef_block,
+		 JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+  INT32 tmp0, tmp1, tmp2, tmp3;
+  INT32 tmp10, tmp11, tmp12, tmp13;
+  INT32 z1, z2, z3, z4, z5;
+  JCOEFPTR inptr;
+  ISLOW_MULT_TYPE * quantptr;
+  int * wsptr;
+  JSAMPROW outptr;
+  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+  int ctr;
+  int workspace[DCTSIZE2];	/* buffers data between passes */
+  SHIFT_TEMPS
+
+  /* Pass 1: process columns from input, store into work array. */
+  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
+  /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+  inptr = coef_block;
+  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+  wsptr = workspace;
+  for (ctr = DCTSIZE; ctr > 0; ctr--) {
+    /* Due to quantization, we will usually find that many of the input
+     * coefficients are zero, especially the AC terms.  We can exploit this
+     * by short-circuiting the IDCT calculation for any column in which all
+     * the AC terms are zero.  In that case each output is equal to the
+     * DC coefficient (with scale factor as needed).
+     * With typical images and quantization tables, half or more of the
+     * column DCT calculations can be simplified this way.
+     */
+    
+    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+	inptr[DCTSIZE*7] == 0) {
+      /* AC terms all zero */
+      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+      
+      wsptr[DCTSIZE*0] = dcval;
+      wsptr[DCTSIZE*1] = dcval;
+      wsptr[DCTSIZE*2] = dcval;
+      wsptr[DCTSIZE*3] = dcval;
+      wsptr[DCTSIZE*4] = dcval;
+      wsptr[DCTSIZE*5] = dcval;
+      wsptr[DCTSIZE*6] = dcval;
+      wsptr[DCTSIZE*7] = dcval;
+      
+      inptr++;			/* advance pointers to next column */
+      quantptr++;
+      wsptr++;
+      continue;
+    }
+    
+    /* Even part: reverse the even part of the forward DCT. */
+    /* The rotator is sqrt(2)*c(-6). */
+    
+    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+    
+    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
+    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
+    
+    z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+    z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+
+    tmp0 = (z2 + z3) << CONST_BITS;
+    tmp1 = (z2 - z3) << CONST_BITS;
+    
+    tmp10 = tmp0 + tmp3;
+    tmp13 = tmp0 - tmp3;
+    tmp11 = tmp1 + tmp2;
+    tmp12 = tmp1 - tmp2;
+    
+    /* Odd part per figure 8; the matrix is unitary and hence its
+     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
+     */
+    
+    tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+    tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+    tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+    tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+    
+    z1 = tmp0 + tmp3;
+    z2 = tmp1 + tmp2;
+    z3 = tmp0 + tmp2;
+    z4 = tmp1 + tmp3;
+    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
+    
+    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+    
+    z3 += z5;
+    z4 += z5;
+    
+    tmp0 += z1 + z3;
+    tmp1 += z2 + z4;
+    tmp2 += z2 + z3;
+    tmp3 += z1 + z4;
+    
+    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+    
+    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
+    wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
+    wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
+    wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
+    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
+    wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
+    wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
+    wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
+    
+    inptr++;			/* advance pointers to next column */
+    quantptr++;
+    wsptr++;
+  }
+  
+  /* Pass 2: process rows from work array, store into output array. */
+  /* Note that we must descale the results by a factor of 8 == 2**3, */
+  /* and also undo the PASS1_BITS scaling. */
+
+  wsptr = workspace;
+  for (ctr = 0; ctr < DCTSIZE; ctr++) {
+    outptr = output_buf[ctr] + output_col;
+    /* Rows of zeroes can be exploited in the same way as we did with columns.
+     * However, the column calculation has created many nonzero AC terms, so
+     * the simplification applies less often (typically 5% to 10% of the time).
+     * On machines with very fast multiplication, it's possible that the
+     * test takes more time than it's worth.  In that case this section
+     * may be commented out.
+     */
+    
+#ifndef NO_ZERO_ROW_TEST
+    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
+	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
+      /* AC terms all zero */
+      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
+				  & RANGE_MASK];
+      
+      outptr[0] = dcval;
+      outptr[1] = dcval;
+      outptr[2] = dcval;
+      outptr[3] = dcval;
+      outptr[4] = dcval;
+      outptr[5] = dcval;
+      outptr[6] = dcval;
+      outptr[7] = dcval;
+
+      wsptr += DCTSIZE;		/* advance pointer to next row */
+      continue;
+    }
+#endif
+    
+    /* Even part: reverse the even part of the forward DCT. */
+    /* The rotator is sqrt(2)*c(-6). */
+    
+    z2 = (INT32) wsptr[2];
+    z3 = (INT32) wsptr[6];
+    
+    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
+    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
+    
+    tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
+    tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
+    
+    tmp10 = tmp0 + tmp3;
+    tmp13 = tmp0 - tmp3;
+    tmp11 = tmp1 + tmp2;
+    tmp12 = tmp1 - tmp2;
+    
+    /* Odd part per figure 8; the matrix is unitary and hence its
+     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
+     */
+    
+    tmp0 = (INT32) wsptr[7];
+    tmp1 = (INT32) wsptr[5];
+    tmp2 = (INT32) wsptr[3];
+    tmp3 = (INT32) wsptr[1];
+    
+    z1 = tmp0 + tmp3;
+    z2 = tmp1 + tmp2;
+    z3 = tmp0 + tmp2;
+    z4 = tmp1 + tmp3;
+    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
+    
+    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+    
+    z3 += z5;
+    z4 += z5;
+    
+    tmp0 += z1 + z3;
+    tmp1 += z2 + z4;
+    tmp2 += z2 + z3;
+    tmp3 += z1 + z4;
+    
+    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+    
+    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
+					  CONST_BITS+PASS1_BITS+3)
+			    & RANGE_MASK];
+    outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
+					  CONST_BITS+PASS1_BITS+3)
+			    & RANGE_MASK];
+    outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
+					  CONST_BITS+PASS1_BITS+3)
+			    & RANGE_MASK];
+    outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
+					  CONST_BITS+PASS1_BITS+3)
+			    & RANGE_MASK];
+    outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
+					  CONST_BITS+PASS1_BITS+3)
+			    & RANGE_MASK];
+    outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
+					  CONST_BITS+PASS1_BITS+3)
+			    & RANGE_MASK];
+    outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
+					  CONST_BITS+PASS1_BITS+3)
+			    & RANGE_MASK];
+    outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
+					  CONST_BITS+PASS1_BITS+3)
+			    & RANGE_MASK];
+    
+    wsptr += DCTSIZE;		/* advance pointer to next row */
+  }
+}
+
+#endif /* DCT_ISLOW_SUPPORTED */

=== added file 'src/libjpeg-turbo/jidctred.c'
--- src/libjpeg-turbo/jidctred.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jidctred.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,398 @@ 
+/*
+ * jidctred.c
+ *
+ * Copyright (C) 1994-1998, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains inverse-DCT routines that produce reduced-size output:
+ * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
+ *
+ * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
+ * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
+ * with an 8-to-4 step that produces the four averages of two adjacent outputs
+ * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
+ * These steps were derived by computing the corresponding values at the end
+ * of the normal LL&M code, then simplifying as much as possible.
+ *
+ * 1x1 is trivial: just take the DC coefficient divided by 8.
+ *
+ * See jidctint.c for additional comments.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h"		/* Private declarations for DCT subsystem */
+
+#ifdef IDCT_SCALING_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/* Scaling is the same as in jidctint.c. */
+
+#if BITS_IN_JSAMPLE == 8
+#define CONST_BITS  13
+#define PASS1_BITS  2
+#else
+#define CONST_BITS  13
+#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
+#endif
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 13
+#define FIX_0_211164243  ((INT32)  1730)	/* FIX(0.211164243) */
+#define FIX_0_509795579  ((INT32)  4176)	/* FIX(0.509795579) */
+#define FIX_0_601344887  ((INT32)  4926)	/* FIX(0.601344887) */
+#define FIX_0_720959822  ((INT32)  5906)	/* FIX(0.720959822) */
+#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
+#define FIX_0_850430095  ((INT32)  6967)	/* FIX(0.850430095) */
+#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
+#define FIX_1_061594337  ((INT32)  8697)	/* FIX(1.061594337) */
+#define FIX_1_272758580  ((INT32)  10426)	/* FIX(1.272758580) */
+#define FIX_1_451774981  ((INT32)  11893)	/* FIX(1.451774981) */
+#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
+#define FIX_2_172734803  ((INT32)  17799)	/* FIX(2.172734803) */
+#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
+#define FIX_3_624509785  ((INT32)  29692)	/* FIX(3.624509785) */
+#else
+#define FIX_0_211164243  FIX(0.211164243)
+#define FIX_0_509795579  FIX(0.509795579)
+#define FIX_0_601344887  FIX(0.601344887)
+#define FIX_0_720959822  FIX(0.720959822)
+#define FIX_0_765366865  FIX(0.765366865)
+#define FIX_0_850430095  FIX(0.850430095)
+#define FIX_0_899976223  FIX(0.899976223)
+#define FIX_1_061594337  FIX(1.061594337)
+#define FIX_1_272758580  FIX(1.272758580)
+#define FIX_1_451774981  FIX(1.451774981)
+#define FIX_1_847759065  FIX(1.847759065)
+#define FIX_2_172734803  FIX(2.172734803)
+#define FIX_2_562915447  FIX(2.562915447)
+#define FIX_3_624509785  FIX(3.624509785)
+#endif
+
+
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+ * For 8-bit samples with the recommended scaling, all the variable
+ * and constant values involved are no more than 16 bits wide, so a
+ * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
+ * For 12-bit samples, a full 32-bit multiplication will be needed.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
+#else
+#define MULTIPLY(var,const)  ((var) * (const))
+#endif
+
+
+/* Dequantize a coefficient by multiplying it by the multiplier-table
+ * entry; produce an int result.  In this module, both inputs and result
+ * are 16 bits or less, so either int or short multiply will work.
+ */
+
+#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 4x4 output block.
+ */
+
+GLOBAL(void)
+jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+	       JCOEFPTR coef_block,
+	       JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+  INT32 tmp0, tmp2, tmp10, tmp12;
+  INT32 z1, z2, z3, z4;
+  JCOEFPTR inptr;
+  ISLOW_MULT_TYPE * quantptr;
+  int * wsptr;
+  JSAMPROW outptr;
+  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+  int ctr;
+  int workspace[DCTSIZE*4];	/* buffers data between passes */
+  SHIFT_TEMPS
+
+  /* Pass 1: process columns from input, store into work array. */
+
+  inptr = coef_block;
+  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+  wsptr = workspace;
+  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
+    /* Don't bother to process column 4, because second pass won't use it */
+    if (ctr == DCTSIZE-4)
+      continue;
+    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
+	inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
+      /* AC terms all zero; we need not examine term 4 for 4x4 output */
+      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+      
+      wsptr[DCTSIZE*0] = dcval;
+      wsptr[DCTSIZE*1] = dcval;
+      wsptr[DCTSIZE*2] = dcval;
+      wsptr[DCTSIZE*3] = dcval;
+      
+      continue;
+    }
+    
+    /* Even part */
+    
+    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+    tmp0 <<= (CONST_BITS+1);
+    
+    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
+    
+    tmp10 = tmp0 + tmp2;
+    tmp12 = tmp0 - tmp2;
+    
+    /* Odd part */
+    
+    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+    z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+    z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+    z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+    
+    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
+	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
+	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
+	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
+    
+    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
+	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
+	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
+	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
+
+    /* Final output stage */
+    
+    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
+    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
+    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
+    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
+  }
+  
+  /* Pass 2: process 4 rows from work array, store into output array. */
+
+  wsptr = workspace;
+  for (ctr = 0; ctr < 4; ctr++) {
+    outptr = output_buf[ctr] + output_col;
+    /* It's not clear whether a zero row test is worthwhile here ... */
+
+#ifndef NO_ZERO_ROW_TEST
+    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
+	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
+      /* AC terms all zero */
+      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
+				  & RANGE_MASK];
+      
+      outptr[0] = dcval;
+      outptr[1] = dcval;
+      outptr[2] = dcval;
+      outptr[3] = dcval;
+      
+      wsptr += DCTSIZE;		/* advance pointer to next row */
+      continue;
+    }
+#endif
+    
+    /* Even part */
+    
+    tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
+    
+    tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
+	 + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
+    
+    tmp10 = tmp0 + tmp2;
+    tmp12 = tmp0 - tmp2;
+    
+    /* Odd part */
+    
+    z1 = (INT32) wsptr[7];
+    z2 = (INT32) wsptr[5];
+    z3 = (INT32) wsptr[3];
+    z4 = (INT32) wsptr[1];
+    
+    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
+	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
+	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
+	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
+    
+    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
+	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
+	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
+	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
+
+    /* Final output stage */
+    
+    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
+					  CONST_BITS+PASS1_BITS+3+1)
+			    & RANGE_MASK];
+    outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
+					  CONST_BITS+PASS1_BITS+3+1)
+			    & RANGE_MASK];
+    outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
+					  CONST_BITS+PASS1_BITS+3+1)
+			    & RANGE_MASK];
+    outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
+					  CONST_BITS+PASS1_BITS+3+1)
+			    & RANGE_MASK];
+    
+    wsptr += DCTSIZE;		/* advance pointer to next row */
+  }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 2x2 output block.
+ */
+
+GLOBAL(void)
+jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+	       JCOEFPTR coef_block,
+	       JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+  INT32 tmp0, tmp10, z1;
+  JCOEFPTR inptr;
+  ISLOW_MULT_TYPE * quantptr;
+  int * wsptr;
+  JSAMPROW outptr;
+  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+  int ctr;
+  int workspace[DCTSIZE*2];	/* buffers data between passes */
+  SHIFT_TEMPS
+
+  /* Pass 1: process columns from input, store into work array. */
+
+  inptr = coef_block;
+  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+  wsptr = workspace;
+  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
+    /* Don't bother to process columns 2,4,6 */
+    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
+      continue;
+    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
+	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
+      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
+      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+      
+      wsptr[DCTSIZE*0] = dcval;
+      wsptr[DCTSIZE*1] = dcval;
+      
+      continue;
+    }
+    
+    /* Even part */
+    
+    z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+    tmp10 = z1 << (CONST_BITS+2);
+    
+    /* Odd part */
+
+    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
+    z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
+    z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
+    z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
+
+    /* Final output stage */
+    
+    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
+    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
+  }
+  
+  /* Pass 2: process 2 rows from work array, store into output array. */
+
+  wsptr = workspace;
+  for (ctr = 0; ctr < 2; ctr++) {
+    outptr = output_buf[ctr] + output_col;
+    /* It's not clear whether a zero row test is worthwhile here ... */
+
+#ifndef NO_ZERO_ROW_TEST
+    if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
+      /* AC terms all zero */
+      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
+				  & RANGE_MASK];
+      
+      outptr[0] = dcval;
+      outptr[1] = dcval;
+      
+      wsptr += DCTSIZE;		/* advance pointer to next row */
+      continue;
+    }
+#endif
+    
+    /* Even part */
+    
+    tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
+    
+    /* Odd part */
+
+    tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
+	 + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
+	 + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
+	 + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
+
+    /* Final output stage */
+    
+    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
+					  CONST_BITS+PASS1_BITS+3+2)
+			    & RANGE_MASK];
+    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
+					  CONST_BITS+PASS1_BITS+3+2)
+			    & RANGE_MASK];
+    
+    wsptr += DCTSIZE;		/* advance pointer to next row */
+  }
+}
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients,
+ * producing a reduced-size 1x1 output block.
+ */
+
+GLOBAL(void)
+jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+	       JCOEFPTR coef_block,
+	       JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+  int dcval;
+  ISLOW_MULT_TYPE * quantptr;
+  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+  SHIFT_TEMPS
+
+  /* We hardly need an inverse DCT routine for this: just take the
+   * average pixel value, which is one-eighth of the DC coefficient.
+   */
+  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+  dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
+  dcval = (int) DESCALE((INT32) dcval, 3);
+
+  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
+}
+
+#endif /* IDCT_SCALING_SUPPORTED */

=== added file 'src/libjpeg-turbo/jinclude.h'
--- src/libjpeg-turbo/jinclude.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jinclude.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,91 @@ 
+/*
+ * jinclude.h
+ *
+ * Copyright (C) 1991-1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file exists to provide a single place to fix any problems with
+ * including the wrong system include files.  (Common problems are taken
+ * care of by the standard jconfig symbols, but on really weird systems
+ * you may have to edit this file.)
+ *
+ * NOTE: this file is NOT intended to be included by applications using the
+ * JPEG library.  Most applications need only include jpeglib.h.
+ */
+
+
+/* Include auto-config file to find out which system include files we need. */
+
+#include "jconfig.h"		/* auto configuration options */
+#define JCONFIG_INCLUDED	/* so that jpeglib.h doesn't do it again */
+
+/*
+ * We need the NULL macro and size_t typedef.
+ * On an ANSI-conforming system it is sufficient to include <stddef.h>.
+ * Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
+ * pull in <sys/types.h> as well.
+ * Note that the core JPEG library does not require <stdio.h>;
+ * only the default error handler and data source/destination modules do.
+ * But we must pull it in because of the references to FILE in jpeglib.h.
+ * You can remove those references if you want to compile without <stdio.h>.
+ */
+
+#ifdef HAVE_STDDEF_H
+#include <stddef.h>
+#endif
+
+#ifdef HAVE_STDLIB_H
+#include <stdlib.h>
+#endif
+
+#ifdef NEED_SYS_TYPES_H
+#include <sys/types.h>
+#endif
+
+#include <stdio.h>
+
+/*
+ * We need memory copying and zeroing functions, plus strncpy().
+ * ANSI and System V implementations declare these in <string.h>.
+ * BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
+ * Some systems may declare memset and memcpy in <memory.h>.
+ *
+ * NOTE: we assume the size parameters to these functions are of type size_t.
+ * Change the casts in these macros if not!
+ */
+
+#ifdef NEED_BSD_STRINGS
+
+#include <strings.h>
+#define MEMZERO(target,size)	bzero((void *)(target), (size_t)(size))
+#define MEMCOPY(dest,src,size)	bcopy((const void *)(src), (void *)(dest), (size_t)(size))
+
+#else /* not BSD, assume ANSI/SysV string lib */
+
+#include <string.h>
+#define MEMZERO(target,size)	memset((void *)(target), 0, (size_t)(size))
+#define MEMCOPY(dest,src,size)	memcpy((void *)(dest), (const void *)(src), (size_t)(size))
+
+#endif
+
+/*
+ * In ANSI C, and indeed any rational implementation, size_t is also the
+ * type returned by sizeof().  However, it seems there are some irrational
+ * implementations out there, in which sizeof() returns an int even though
+ * size_t is defined as long or unsigned long.  To ensure consistent results
+ * we always use this SIZEOF() macro in place of using sizeof() directly.
+ */
+
+#define SIZEOF(object)	((size_t) sizeof(object))
+
+/*
+ * The modules that use fread() and fwrite() always invoke them through
+ * these macros.  On some systems you may need to twiddle the argument casts.
+ * CAUTION: argument order is different from underlying functions!
+ */
+
+#define JFREAD(file,buf,sizeofbuf)  \
+  ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
+#define JFWRITE(file,buf,sizeofbuf)  \
+  ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))

=== added file 'src/libjpeg-turbo/jmemmgr.c'
--- src/libjpeg-turbo/jmemmgr.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jmemmgr.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,1151 @@ 
+/*
+ * jmemmgr.c
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the JPEG system-independent memory management
+ * routines.  This code is usable across a wide variety of machines; most
+ * of the system dependencies have been isolated in a separate file.
+ * The major functions provided here are:
+ *   * pool-based allocation and freeing of memory;
+ *   * policy decisions about how to divide available memory among the
+ *     virtual arrays;
+ *   * control logic for swapping virtual arrays between main memory and
+ *     backing storage.
+ * The separate system-dependent file provides the actual backing-storage
+ * access code, and it contains the policy decision about how much total
+ * main memory to use.
+ * This file is system-dependent in the sense that some of its functions
+ * are unnecessary in some systems.  For example, if there is enough virtual
+ * memory so that backing storage will never be used, much of the virtual
+ * array control logic could be removed.  (Of course, if you have that much
+ * memory then you shouldn't care about a little bit of unused code...)
+ */
+
+#define JPEG_INTERNALS
+#define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h"		/* import the system-dependent declarations */
+
+#ifndef NO_GETENV
+#ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
+extern char * getenv JPP((const char * name));
+#endif
+#endif
+
+
+LOCAL(size_t)
+round_up_pow2 (size_t a, size_t b)
+/* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
+/* Assumes a >= 0, b > 0, and b is a power of 2 */
+{
+  return ((a + b - 1) & (~(b - 1)));
+}
+
+
+/*
+ * Some important notes:
+ *   The allocation routines provided here must never return NULL.
+ *   They should exit to error_exit if unsuccessful.
+ *
+ *   It's not a good idea to try to merge the sarray and barray routines,
+ *   even though they are textually almost the same, because samples are
+ *   usually stored as bytes while coefficients are shorts or ints.  Thus,
+ *   in machines where byte pointers have a different representation from
+ *   word pointers, the resulting machine code could not be the same.
+ */
+
+
+/*
+ * Many machines require storage alignment: longs must start on 4-byte
+ * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
+ * always returns pointers that are multiples of the worst-case alignment
+ * requirement, and we had better do so too.
+ * There isn't any really portable way to determine the worst-case alignment
+ * requirement.  This module assumes that the alignment requirement is
+ * multiples of ALIGN_SIZE.
+ * By default, we define ALIGN_SIZE as sizeof(double).  This is necessary on some
+ * workstations (where doubles really do need 8-byte alignment) and will work
+ * fine on nearly everything.  If your machine has lesser alignment needs,
+ * you can save a few bytes by making ALIGN_SIZE smaller.
+ * The only place I know of where this will NOT work is certain Macintosh
+ * 680x0 compilers that define double as a 10-byte IEEE extended float.
+ * Doing 10-byte alignment is counterproductive because longwords won't be
+ * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have
+ * such a compiler.
+ */
+
+#ifndef ALIGN_SIZE		/* so can override from jconfig.h */
+#ifndef WITH_SIMD
+#define ALIGN_SIZE  SIZEOF(double)
+#else
+#define ALIGN_SIZE  16 /* Most SIMD implementations require this */
+#endif
+#endif
+
+/*
+ * We allocate objects from "pools", where each pool is gotten with a single
+ * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
+ * overhead within a pool, except for alignment padding.  Each pool has a
+ * header with a link to the next pool of the same class.
+ * Small and large pool headers are identical except that the latter's
+ * link pointer must be FAR on 80x86 machines.
+ */
+
+typedef struct small_pool_struct * small_pool_ptr;
+
+typedef struct small_pool_struct {
+  small_pool_ptr next;	/* next in list of pools */
+  size_t bytes_used;		/* how many bytes already used within pool */
+  size_t bytes_left;		/* bytes still available in this pool */
+} small_pool_hdr;
+
+typedef struct large_pool_struct FAR * large_pool_ptr;
+
+typedef struct large_pool_struct {
+  large_pool_ptr next;	/* next in list of pools */
+  size_t bytes_used;		/* how many bytes already used within pool */
+  size_t bytes_left;		/* bytes still available in this pool */
+} large_pool_hdr;
+
+/*
+ * Here is the full definition of a memory manager object.
+ */
+
+typedef struct {
+  struct jpeg_memory_mgr pub;	/* public fields */
+
+  /* Each pool identifier (lifetime class) names a linked list of pools. */
+  small_pool_ptr small_list[JPOOL_NUMPOOLS];
+  large_pool_ptr large_list[JPOOL_NUMPOOLS];
+
+  /* Since we only have one lifetime class of virtual arrays, only one
+   * linked list is necessary (for each datatype).  Note that the virtual
+   * array control blocks being linked together are actually stored somewhere
+   * in the small-pool list.
+   */
+  jvirt_sarray_ptr virt_sarray_list;
+  jvirt_barray_ptr virt_barray_list;
+
+  /* This counts total space obtained from jpeg_get_small/large */
+  size_t total_space_allocated;
+
+  /* alloc_sarray and alloc_barray set this value for use by virtual
+   * array routines.
+   */
+  JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
+} my_memory_mgr;
+
+typedef my_memory_mgr * my_mem_ptr;
+
+
+/*
+ * The control blocks for virtual arrays.
+ * Note that these blocks are allocated in the "small" pool area.
+ * System-dependent info for the associated backing store (if any) is hidden
+ * inside the backing_store_info struct.
+ */
+
+struct jvirt_sarray_control {
+  JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
+  JDIMENSION rows_in_array;	/* total virtual array height */
+  JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
+  JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
+  JDIMENSION rows_in_mem;	/* height of memory buffer */
+  JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
+  JDIMENSION cur_start_row;	/* first logical row # in the buffer */
+  JDIMENSION first_undef_row;	/* row # of first uninitialized row */
+  boolean pre_zero;		/* pre-zero mode requested? */
+  boolean dirty;		/* do current buffer contents need written? */
+  boolean b_s_open;		/* is backing-store data valid? */
+  jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
+  backing_store_info b_s_info;	/* System-dependent control info */
+};
+
+struct jvirt_barray_control {
+  JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
+  JDIMENSION rows_in_array;	/* total virtual array height */
+  JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
+  JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
+  JDIMENSION rows_in_mem;	/* height of memory buffer */
+  JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
+  JDIMENSION cur_start_row;	/* first logical row # in the buffer */
+  JDIMENSION first_undef_row;	/* row # of first uninitialized row */
+  boolean pre_zero;		/* pre-zero mode requested? */
+  boolean dirty;		/* do current buffer contents need written? */
+  boolean b_s_open;		/* is backing-store data valid? */
+  jvirt_barray_ptr next;	/* link to next virtual barray control block */
+  backing_store_info b_s_info;	/* System-dependent control info */
+};
+
+
+#ifdef MEM_STATS		/* optional extra stuff for statistics */
+
+LOCAL(void)
+print_mem_stats (j_common_ptr cinfo, int pool_id)
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  small_pool_ptr shdr_ptr;
+  large_pool_ptr lhdr_ptr;
+
+  /* Since this is only a debugging stub, we can cheat a little by using
+   * fprintf directly rather than going through the trace message code.
+   * This is helpful because message parm array can't handle longs.
+   */
+  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
+	  pool_id, mem->total_space_allocated);
+
+  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
+       lhdr_ptr = lhdr_ptr->next) {
+    fprintf(stderr, "  Large chunk used %ld\n",
+	    (long) lhdr_ptr->bytes_used);
+  }
+
+  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
+       shdr_ptr = shdr_ptr->next) {
+    fprintf(stderr, "  Small chunk used %ld free %ld\n",
+	    (long) shdr_ptr->bytes_used,
+	    (long) shdr_ptr->bytes_left);
+  }
+}
+
+#endif /* MEM_STATS */
+
+
+LOCAL(void)
+out_of_memory (j_common_ptr cinfo, int which)
+/* Report an out-of-memory error and stop execution */
+/* If we compiled MEM_STATS support, report alloc requests before dying */
+{
+#ifdef MEM_STATS
+  cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
+#endif
+  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
+}
+
+
+/*
+ * Allocation of "small" objects.
+ *
+ * For these, we use pooled storage.  When a new pool must be created,
+ * we try to get enough space for the current request plus a "slop" factor,
+ * where the slop will be the amount of leftover space in the new pool.
+ * The speed vs. space tradeoff is largely determined by the slop values.
+ * A different slop value is provided for each pool class (lifetime),
+ * and we also distinguish the first pool of a class from later ones.
+ * NOTE: the values given work fairly well on both 16- and 32-bit-int
+ * machines, but may be too small if longs are 64 bits or more.
+ *
+ * Since we do not know what alignment malloc() gives us, we have to
+ * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
+ * adjustment.
+ */
+
+static const size_t first_pool_slop[JPOOL_NUMPOOLS] = 
+{
+	1600,			/* first PERMANENT pool */
+	16000			/* first IMAGE pool */
+};
+
+static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = 
+{
+	0,			/* additional PERMANENT pools */
+	5000			/* additional IMAGE pools */
+};
+
+#define MIN_SLOP  50		/* greater than 0 to avoid futile looping */
+
+
+METHODDEF(void *)
+alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
+/* Allocate a "small" object */
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  small_pool_ptr hdr_ptr, prev_hdr_ptr;
+  char * data_ptr;
+  size_t min_request, slop;
+
+  /*
+   * Round up the requested size to a multiple of ALIGN_SIZE in order
+   * to assure alignment for the next object allocated in the same pool
+   * and so that algorithms can straddle outside the proper area up
+   * to the next alignment.
+   */
+  sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
+
+  /* Check for unsatisfiable request (do now to ensure no overflow below) */
+  if ((SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
+    out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */
+
+  /* See if space is available in any existing pool */
+  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
+  prev_hdr_ptr = NULL;
+  hdr_ptr = mem->small_list[pool_id];
+  while (hdr_ptr != NULL) {
+    if (hdr_ptr->bytes_left >= sizeofobject)
+      break;			/* found pool with enough space */
+    prev_hdr_ptr = hdr_ptr;
+    hdr_ptr = hdr_ptr->next;
+  }
+
+  /* Time to make a new pool? */
+  if (hdr_ptr == NULL) {
+    /* min_request is what we need now, slop is what will be leftover */
+    min_request = SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
+    if (prev_hdr_ptr == NULL)	/* first pool in class? */
+      slop = first_pool_slop[pool_id];
+    else
+      slop = extra_pool_slop[pool_id];
+    /* Don't ask for more than MAX_ALLOC_CHUNK */
+    if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
+      slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
+    /* Try to get space, if fail reduce slop and try again */
+    for (;;) {
+      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
+      if (hdr_ptr != NULL)
+	break;
+      slop /= 2;
+      if (slop < MIN_SLOP)	/* give up when it gets real small */
+	out_of_memory(cinfo, 2); /* jpeg_get_small failed */
+    }
+    mem->total_space_allocated += min_request + slop;
+    /* Success, initialize the new pool header and add to end of list */
+    hdr_ptr->next = NULL;
+    hdr_ptr->bytes_used = 0;
+    hdr_ptr->bytes_left = sizeofobject + slop;
+    if (prev_hdr_ptr == NULL)	/* first pool in class? */
+      mem->small_list[pool_id] = hdr_ptr;
+    else
+      prev_hdr_ptr->next = hdr_ptr;
+  }
+
+  /* OK, allocate the object from the current pool */
+  data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
+  data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */
+  if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
+    data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
+  data_ptr += hdr_ptr->bytes_used; /* point to place for object */
+  hdr_ptr->bytes_used += sizeofobject;
+  hdr_ptr->bytes_left -= sizeofobject;
+
+  return (void *) data_ptr;
+}
+
+
+/*
+ * Allocation of "large" objects.
+ *
+ * The external semantics of these are the same as "small" objects,
+ * except that FAR pointers are used on 80x86.  However the pool
+ * management heuristics are quite different.  We assume that each
+ * request is large enough that it may as well be passed directly to
+ * jpeg_get_large; the pool management just links everything together
+ * so that we can free it all on demand.
+ * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
+ * structures.  The routines that create these structures (see below)
+ * deliberately bunch rows together to ensure a large request size.
+ */
+
+METHODDEF(void FAR *)
+alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
+/* Allocate a "large" object */
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  large_pool_ptr hdr_ptr;
+  char FAR * data_ptr;
+
+  /*
+   * Round up the requested size to a multiple of ALIGN_SIZE so that
+   * algorithms can straddle outside the proper area up to the next
+   * alignment.
+   */
+  sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
+
+  /* Check for unsatisfiable request (do now to ensure no overflow below) */
+  if ((SIZEOF(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
+    out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */
+
+  /* Always make a new pool */
+  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
+
+  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
+					    SIZEOF(large_pool_hdr) +
+					    ALIGN_SIZE - 1);
+  if (hdr_ptr == NULL)
+    out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
+  mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr) + ALIGN_SIZE - 1;
+
+  /* Success, initialize the new pool header and add to list */
+  hdr_ptr->next = mem->large_list[pool_id];
+  /* We maintain space counts in each pool header for statistical purposes,
+   * even though they are not needed for allocation.
+   */
+  hdr_ptr->bytes_used = sizeofobject;
+  hdr_ptr->bytes_left = 0;
+  mem->large_list[pool_id] = hdr_ptr;
+
+  data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
+  data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */
+  if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
+    data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
+
+  return (void FAR *) data_ptr;
+}
+
+
+/*
+ * Creation of 2-D sample arrays.
+ * The pointers are in near heap, the samples themselves in FAR heap.
+ *
+ * To minimize allocation overhead and to allow I/O of large contiguous
+ * blocks, we allocate the sample rows in groups of as many rows as possible
+ * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
+ * NB: the virtual array control routines, later in this file, know about
+ * this chunking of rows.  The rowsperchunk value is left in the mem manager
+ * object so that it can be saved away if this sarray is the workspace for
+ * a virtual array.
+ *
+ * Since we are often upsampling with a factor 2, we align the size (not
+ * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
+ * to be as careful about size.
+ */
+
+METHODDEF(JSAMPARRAY)
+alloc_sarray (j_common_ptr cinfo, int pool_id,
+	      JDIMENSION samplesperrow, JDIMENSION numrows)
+/* Allocate a 2-D sample array */
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  JSAMPARRAY result;
+  JSAMPROW workspace;
+  JDIMENSION rowsperchunk, currow, i;
+  long ltemp;
+
+  /* Make sure each row is properly aligned */
+  if ((ALIGN_SIZE % SIZEOF(JSAMPLE)) != 0)
+    out_of_memory(cinfo, 5);	/* safety check */
+  samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / SIZEOF(JSAMPLE));
+
+  /* Calculate max # of rows allowed in one allocation chunk */
+  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
+	  ((long) samplesperrow * SIZEOF(JSAMPLE));
+  if (ltemp <= 0)
+    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+  if (ltemp < (long) numrows)
+    rowsperchunk = (JDIMENSION) ltemp;
+  else
+    rowsperchunk = numrows;
+  mem->last_rowsperchunk = rowsperchunk;
+
+  /* Get space for row pointers (small object) */
+  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
+				    (size_t) (numrows * SIZEOF(JSAMPROW)));
+
+  /* Get the rows themselves (large objects) */
+  currow = 0;
+  while (currow < numrows) {
+    rowsperchunk = MIN(rowsperchunk, numrows - currow);
+    workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
+	(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
+		  * SIZEOF(JSAMPLE)));
+    for (i = rowsperchunk; i > 0; i--) {
+      result[currow++] = workspace;
+      workspace += samplesperrow;
+    }
+  }
+
+  return result;
+}
+
+
+/*
+ * Creation of 2-D coefficient-block arrays.
+ * This is essentially the same as the code for sample arrays, above.
+ */
+
+METHODDEF(JBLOCKARRAY)
+alloc_barray (j_common_ptr cinfo, int pool_id,
+	      JDIMENSION blocksperrow, JDIMENSION numrows)
+/* Allocate a 2-D coefficient-block array */
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  JBLOCKARRAY result;
+  JBLOCKROW workspace;
+  JDIMENSION rowsperchunk, currow, i;
+  long ltemp;
+
+  /* Make sure each row is properly aligned */
+  if ((SIZEOF(JBLOCK) % ALIGN_SIZE) != 0)
+    out_of_memory(cinfo, 6);	/* safety check */
+
+  /* Calculate max # of rows allowed in one allocation chunk */
+  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
+	  ((long) blocksperrow * SIZEOF(JBLOCK));
+  if (ltemp <= 0)
+    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+  if (ltemp < (long) numrows)
+    rowsperchunk = (JDIMENSION) ltemp;
+  else
+    rowsperchunk = numrows;
+  mem->last_rowsperchunk = rowsperchunk;
+
+  /* Get space for row pointers (small object) */
+  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
+				     (size_t) (numrows * SIZEOF(JBLOCKROW)));
+
+  /* Get the rows themselves (large objects) */
+  currow = 0;
+  while (currow < numrows) {
+    rowsperchunk = MIN(rowsperchunk, numrows - currow);
+    workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
+	(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
+		  * SIZEOF(JBLOCK)));
+    for (i = rowsperchunk; i > 0; i--) {
+      result[currow++] = workspace;
+      workspace += blocksperrow;
+    }
+  }
+
+  return result;
+}
+
+
+/*
+ * About virtual array management:
+ *
+ * The above "normal" array routines are only used to allocate strip buffers
+ * (as wide as the image, but just a few rows high).  Full-image-sized buffers
+ * are handled as "virtual" arrays.  The array is still accessed a strip at a
+ * time, but the memory manager must save the whole array for repeated
+ * accesses.  The intended implementation is that there is a strip buffer in
+ * memory (as high as is possible given the desired memory limit), plus a
+ * backing file that holds the rest of the array.
+ *
+ * The request_virt_array routines are told the total size of the image and
+ * the maximum number of rows that will be accessed at once.  The in-memory
+ * buffer must be at least as large as the maxaccess value.
+ *
+ * The request routines create control blocks but not the in-memory buffers.
+ * That is postponed until realize_virt_arrays is called.  At that time the
+ * total amount of space needed is known (approximately, anyway), so free
+ * memory can be divided up fairly.
+ *
+ * The access_virt_array routines are responsible for making a specific strip
+ * area accessible (after reading or writing the backing file, if necessary).
+ * Note that the access routines are told whether the caller intends to modify
+ * the accessed strip; during a read-only pass this saves having to rewrite
+ * data to disk.  The access routines are also responsible for pre-zeroing
+ * any newly accessed rows, if pre-zeroing was requested.
+ *
+ * In current usage, the access requests are usually for nonoverlapping
+ * strips; that is, successive access start_row numbers differ by exactly
+ * num_rows = maxaccess.  This means we can get good performance with simple
+ * buffer dump/reload logic, by making the in-memory buffer be a multiple
+ * of the access height; then there will never be accesses across bufferload
+ * boundaries.  The code will still work with overlapping access requests,
+ * but it doesn't handle bufferload overlaps very efficiently.
+ */
+
+
+METHODDEF(jvirt_sarray_ptr)
+request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
+		     JDIMENSION samplesperrow, JDIMENSION numrows,
+		     JDIMENSION maxaccess)
+/* Request a virtual 2-D sample array */
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  jvirt_sarray_ptr result;
+
+  /* Only IMAGE-lifetime virtual arrays are currently supported */
+  if (pool_id != JPOOL_IMAGE)
+    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
+
+  /* get control block */
+  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
+					  SIZEOF(struct jvirt_sarray_control));
+
+  result->mem_buffer = NULL;	/* marks array not yet realized */
+  result->rows_in_array = numrows;
+  result->samplesperrow = samplesperrow;
+  result->maxaccess = maxaccess;
+  result->pre_zero = pre_zero;
+  result->b_s_open = FALSE;	/* no associated backing-store object */
+  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
+  mem->virt_sarray_list = result;
+
+  return result;
+}
+
+
+METHODDEF(jvirt_barray_ptr)
+request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
+		     JDIMENSION blocksperrow, JDIMENSION numrows,
+		     JDIMENSION maxaccess)
+/* Request a virtual 2-D coefficient-block array */
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  jvirt_barray_ptr result;
+
+  /* Only IMAGE-lifetime virtual arrays are currently supported */
+  if (pool_id != JPOOL_IMAGE)
+    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
+
+  /* get control block */
+  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
+					  SIZEOF(struct jvirt_barray_control));
+
+  result->mem_buffer = NULL;	/* marks array not yet realized */
+  result->rows_in_array = numrows;
+  result->blocksperrow = blocksperrow;
+  result->maxaccess = maxaccess;
+  result->pre_zero = pre_zero;
+  result->b_s_open = FALSE;	/* no associated backing-store object */
+  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
+  mem->virt_barray_list = result;
+
+  return result;
+}
+
+
+METHODDEF(void)
+realize_virt_arrays (j_common_ptr cinfo)
+/* Allocate the in-memory buffers for any unrealized virtual arrays */
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  size_t space_per_minheight, maximum_space, avail_mem;
+  size_t minheights, max_minheights;
+  jvirt_sarray_ptr sptr;
+  jvirt_barray_ptr bptr;
+
+  /* Compute the minimum space needed (maxaccess rows in each buffer)
+   * and the maximum space needed (full image height in each buffer).
+   * These may be of use to the system-dependent jpeg_mem_available routine.
+   */
+  space_per_minheight = 0;
+  maximum_space = 0;
+  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+    if (sptr->mem_buffer == NULL) { /* if not realized yet */
+      space_per_minheight += (long) sptr->maxaccess *
+			     (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
+      maximum_space += (long) sptr->rows_in_array *
+		       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
+    }
+  }
+  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+    if (bptr->mem_buffer == NULL) { /* if not realized yet */
+      space_per_minheight += (long) bptr->maxaccess *
+			     (long) bptr->blocksperrow * SIZEOF(JBLOCK);
+      maximum_space += (long) bptr->rows_in_array *
+		       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
+    }
+  }
+
+  if (space_per_minheight <= 0)
+    return;			/* no unrealized arrays, no work */
+
+  /* Determine amount of memory to actually use; this is system-dependent. */
+  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
+				 mem->total_space_allocated);
+
+  /* If the maximum space needed is available, make all the buffers full
+   * height; otherwise parcel it out with the same number of minheights
+   * in each buffer.
+   */
+  if (avail_mem >= maximum_space)
+    max_minheights = 1000000000L;
+  else {
+    max_minheights = avail_mem / space_per_minheight;
+    /* If there doesn't seem to be enough space, try to get the minimum
+     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
+     */
+    if (max_minheights <= 0)
+      max_minheights = 1;
+  }
+
+  /* Allocate the in-memory buffers and initialize backing store as needed. */
+
+  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+    if (sptr->mem_buffer == NULL) { /* if not realized yet */
+      minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
+      if (minheights <= max_minheights) {
+	/* This buffer fits in memory */
+	sptr->rows_in_mem = sptr->rows_in_array;
+      } else {
+	/* It doesn't fit in memory, create backing store. */
+	sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
+	jpeg_open_backing_store(cinfo, & sptr->b_s_info,
+				(long) sptr->rows_in_array *
+				(long) sptr->samplesperrow *
+				(long) SIZEOF(JSAMPLE));
+	sptr->b_s_open = TRUE;
+      }
+      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
+				      sptr->samplesperrow, sptr->rows_in_mem);
+      sptr->rowsperchunk = mem->last_rowsperchunk;
+      sptr->cur_start_row = 0;
+      sptr->first_undef_row = 0;
+      sptr->dirty = FALSE;
+    }
+  }
+
+  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+    if (bptr->mem_buffer == NULL) { /* if not realized yet */
+      minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
+      if (minheights <= max_minheights) {
+	/* This buffer fits in memory */
+	bptr->rows_in_mem = bptr->rows_in_array;
+      } else {
+	/* It doesn't fit in memory, create backing store. */
+	bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
+	jpeg_open_backing_store(cinfo, & bptr->b_s_info,
+				(long) bptr->rows_in_array *
+				(long) bptr->blocksperrow *
+				(long) SIZEOF(JBLOCK));
+	bptr->b_s_open = TRUE;
+      }
+      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
+				      bptr->blocksperrow, bptr->rows_in_mem);
+      bptr->rowsperchunk = mem->last_rowsperchunk;
+      bptr->cur_start_row = 0;
+      bptr->first_undef_row = 0;
+      bptr->dirty = FALSE;
+    }
+  }
+}
+
+
+LOCAL(void)
+do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
+/* Do backing store read or write of a virtual sample array */
+{
+  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
+
+  bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
+  file_offset = ptr->cur_start_row * bytesperrow;
+  /* Loop to read or write each allocation chunk in mem_buffer */
+  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
+    /* One chunk, but check for short chunk at end of buffer */
+    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
+    /* Transfer no more than is currently defined */
+    thisrow = (long) ptr->cur_start_row + i;
+    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
+    /* Transfer no more than fits in file */
+    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
+    if (rows <= 0)		/* this chunk might be past end of file! */
+      break;
+    byte_count = rows * bytesperrow;
+    if (writing)
+      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
+					    (void FAR *) ptr->mem_buffer[i],
+					    file_offset, byte_count);
+    else
+      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
+					   (void FAR *) ptr->mem_buffer[i],
+					   file_offset, byte_count);
+    file_offset += byte_count;
+  }
+}
+
+
+LOCAL(void)
+do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
+/* Do backing store read or write of a virtual coefficient-block array */
+{
+  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
+
+  bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
+  file_offset = ptr->cur_start_row * bytesperrow;
+  /* Loop to read or write each allocation chunk in mem_buffer */
+  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
+    /* One chunk, but check for short chunk at end of buffer */
+    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
+    /* Transfer no more than is currently defined */
+    thisrow = (long) ptr->cur_start_row + i;
+    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
+    /* Transfer no more than fits in file */
+    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
+    if (rows <= 0)		/* this chunk might be past end of file! */
+      break;
+    byte_count = rows * bytesperrow;
+    if (writing)
+      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
+					    (void FAR *) ptr->mem_buffer[i],
+					    file_offset, byte_count);
+    else
+      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
+					   (void FAR *) ptr->mem_buffer[i],
+					   file_offset, byte_count);
+    file_offset += byte_count;
+  }
+}
+
+
+METHODDEF(JSAMPARRAY)
+access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
+		    JDIMENSION start_row, JDIMENSION num_rows,
+		    boolean writable)
+/* Access the part of a virtual sample array starting at start_row */
+/* and extending for num_rows rows.  writable is true if  */
+/* caller intends to modify the accessed area. */
+{
+  JDIMENSION end_row = start_row + num_rows;
+  JDIMENSION undef_row;
+
+  /* debugging check */
+  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
+      ptr->mem_buffer == NULL)
+    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+
+  /* Make the desired part of the virtual array accessible */
+  if (start_row < ptr->cur_start_row ||
+      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
+    if (! ptr->b_s_open)
+      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
+    /* Flush old buffer contents if necessary */
+    if (ptr->dirty) {
+      do_sarray_io(cinfo, ptr, TRUE);
+      ptr->dirty = FALSE;
+    }
+    /* Decide what part of virtual array to access.
+     * Algorithm: if target address > current window, assume forward scan,
+     * load starting at target address.  If target address < current window,
+     * assume backward scan, load so that target area is top of window.
+     * Note that when switching from forward write to forward read, will have
+     * start_row = 0, so the limiting case applies and we load from 0 anyway.
+     */
+    if (start_row > ptr->cur_start_row) {
+      ptr->cur_start_row = start_row;
+    } else {
+      /* use long arithmetic here to avoid overflow & unsigned problems */
+      long ltemp;
+
+      ltemp = (long) end_row - (long) ptr->rows_in_mem;
+      if (ltemp < 0)
+	ltemp = 0;		/* don't fall off front end of file */
+      ptr->cur_start_row = (JDIMENSION) ltemp;
+    }
+    /* Read in the selected part of the array.
+     * During the initial write pass, we will do no actual read
+     * because the selected part is all undefined.
+     */
+    do_sarray_io(cinfo, ptr, FALSE);
+  }
+  /* Ensure the accessed part of the array is defined; prezero if needed.
+   * To improve locality of access, we only prezero the part of the array
+   * that the caller is about to access, not the entire in-memory array.
+   */
+  if (ptr->first_undef_row < end_row) {
+    if (ptr->first_undef_row < start_row) {
+      if (writable)		/* writer skipped over a section of array */
+	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+      undef_row = start_row;	/* but reader is allowed to read ahead */
+    } else {
+      undef_row = ptr->first_undef_row;
+    }
+    if (writable)
+      ptr->first_undef_row = end_row;
+    if (ptr->pre_zero) {
+      size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
+      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
+      end_row -= ptr->cur_start_row;
+      while (undef_row < end_row) {
+	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
+	undef_row++;
+      }
+    } else {
+      if (! writable)		/* reader looking at undefined data */
+	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+    }
+  }
+  /* Flag the buffer dirty if caller will write in it */
+  if (writable)
+    ptr->dirty = TRUE;
+  /* Return address of proper part of the buffer */
+  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
+}
+
+
+METHODDEF(JBLOCKARRAY)
+access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
+		    JDIMENSION start_row, JDIMENSION num_rows,
+		    boolean writable)
+/* Access the part of a virtual block array starting at start_row */
+/* and extending for num_rows rows.  writable is true if  */
+/* caller intends to modify the accessed area. */
+{
+  JDIMENSION end_row = start_row + num_rows;
+  JDIMENSION undef_row;
+
+  /* debugging check */
+  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
+      ptr->mem_buffer == NULL)
+    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+
+  /* Make the desired part of the virtual array accessible */
+  if (start_row < ptr->cur_start_row ||
+      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
+    if (! ptr->b_s_open)
+      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
+    /* Flush old buffer contents if necessary */
+    if (ptr->dirty) {
+      do_barray_io(cinfo, ptr, TRUE);
+      ptr->dirty = FALSE;
+    }
+    /* Decide what part of virtual array to access.
+     * Algorithm: if target address > current window, assume forward scan,
+     * load starting at target address.  If target address < current window,
+     * assume backward scan, load so that target area is top of window.
+     * Note that when switching from forward write to forward read, will have
+     * start_row = 0, so the limiting case applies and we load from 0 anyway.
+     */
+    if (start_row > ptr->cur_start_row) {
+      ptr->cur_start_row = start_row;
+    } else {
+      /* use long arithmetic here to avoid overflow & unsigned problems */
+      long ltemp;
+
+      ltemp = (long) end_row - (long) ptr->rows_in_mem;
+      if (ltemp < 0)
+	ltemp = 0;		/* don't fall off front end of file */
+      ptr->cur_start_row = (JDIMENSION) ltemp;
+    }
+    /* Read in the selected part of the array.
+     * During the initial write pass, we will do no actual read
+     * because the selected part is all undefined.
+     */
+    do_barray_io(cinfo, ptr, FALSE);
+  }
+  /* Ensure the accessed part of the array is defined; prezero if needed.
+   * To improve locality of access, we only prezero the part of the array
+   * that the caller is about to access, not the entire in-memory array.
+   */
+  if (ptr->first_undef_row < end_row) {
+    if (ptr->first_undef_row < start_row) {
+      if (writable)		/* writer skipped over a section of array */
+	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+      undef_row = start_row;	/* but reader is allowed to read ahead */
+    } else {
+      undef_row = ptr->first_undef_row;
+    }
+    if (writable)
+      ptr->first_undef_row = end_row;
+    if (ptr->pre_zero) {
+      size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
+      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
+      end_row -= ptr->cur_start_row;
+      while (undef_row < end_row) {
+	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
+	undef_row++;
+      }
+    } else {
+      if (! writable)		/* reader looking at undefined data */
+	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+    }
+  }
+  /* Flag the buffer dirty if caller will write in it */
+  if (writable)
+    ptr->dirty = TRUE;
+  /* Return address of proper part of the buffer */
+  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
+}
+
+
+/*
+ * Release all objects belonging to a specified pool.
+ */
+
+METHODDEF(void)
+free_pool (j_common_ptr cinfo, int pool_id)
+{
+  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+  small_pool_ptr shdr_ptr;
+  large_pool_ptr lhdr_ptr;
+  size_t space_freed;
+
+  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
+
+#ifdef MEM_STATS
+  if (cinfo->err->trace_level > 1)
+    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
+#endif
+
+  /* If freeing IMAGE pool, close any virtual arrays first */
+  if (pool_id == JPOOL_IMAGE) {
+    jvirt_sarray_ptr sptr;
+    jvirt_barray_ptr bptr;
+
+    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+      if (sptr->b_s_open) {	/* there may be no backing store */
+	sptr->b_s_open = FALSE;	/* prevent recursive close if error */
+	(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
+      }
+    }
+    mem->virt_sarray_list = NULL;
+    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+      if (bptr->b_s_open) {	/* there may be no backing store */
+	bptr->b_s_open = FALSE;	/* prevent recursive close if error */
+	(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
+      }
+    }
+    mem->virt_barray_list = NULL;
+  }
+
+  /* Release large objects */
+  lhdr_ptr = mem->large_list[pool_id];
+  mem->large_list[pool_id] = NULL;
+
+  while (lhdr_ptr != NULL) {
+    large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
+    space_freed = lhdr_ptr->bytes_used +
+		  lhdr_ptr->bytes_left +
+		  SIZEOF(large_pool_hdr);
+    jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
+    mem->total_space_allocated -= space_freed;
+    lhdr_ptr = next_lhdr_ptr;
+  }
+
+  /* Release small objects */
+  shdr_ptr = mem->small_list[pool_id];
+  mem->small_list[pool_id] = NULL;
+
+  while (shdr_ptr != NULL) {
+    small_pool_ptr next_shdr_ptr = shdr_ptr->next;
+    space_freed = shdr_ptr->bytes_used +
+		  shdr_ptr->bytes_left +
+		  SIZEOF(small_pool_hdr);
+    jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
+    mem->total_space_allocated -= space_freed;
+    shdr_ptr = next_shdr_ptr;
+  }
+}
+
+
+/*
+ * Close up shop entirely.
+ * Note that this cannot be called unless cinfo->mem is non-NULL.
+ */
+
+METHODDEF(void)
+self_destruct (j_common_ptr cinfo)
+{
+  int pool;
+
+  /* Close all backing store, release all memory.
+   * Releasing pools in reverse order might help avoid fragmentation
+   * with some (brain-damaged) malloc libraries.
+   */
+  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
+    free_pool(cinfo, pool);
+  }
+
+  /* Release the memory manager control block too. */
+  jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
+  cinfo->mem = NULL;		/* ensures I will be called only once */
+
+  jpeg_mem_term(cinfo);		/* system-dependent cleanup */
+}
+
+
+/*
+ * Memory manager initialization.
+ * When this is called, only the error manager pointer is valid in cinfo!
+ */
+
+GLOBAL(void)
+jinit_memory_mgr (j_common_ptr cinfo)
+{
+  my_mem_ptr mem;
+  long max_to_use;
+  int pool;
+  size_t test_mac;
+
+  cinfo->mem = NULL;		/* for safety if init fails */
+
+  /* Check for configuration errors.
+   * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
+   * doesn't reflect any real hardware alignment requirement.
+   * The test is a little tricky: for X>0, X and X-1 have no one-bits
+   * in common if and only if X is a power of 2, ie has only one one-bit.
+   * Some compilers may give an "unreachable code" warning here; ignore it.
+   */
+  if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0)
+    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
+  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
+   * a multiple of ALIGN_SIZE.
+   * Again, an "unreachable code" warning may be ignored here.
+   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
+   */
+  test_mac = (size_t) MAX_ALLOC_CHUNK;
+  if ((long) test_mac != MAX_ALLOC_CHUNK ||
+      (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
+    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
+
+  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
+
+  /* Attempt to allocate memory manager's control block */
+  mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
+
+  if (mem == NULL) {
+    jpeg_mem_term(cinfo);	/* system-dependent cleanup */
+    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
+  }
+
+  /* OK, fill in the method pointers */
+  mem->pub.alloc_small = alloc_small;
+  mem->pub.alloc_large = alloc_large;
+  mem->pub.alloc_sarray = alloc_sarray;
+  mem->pub.alloc_barray = alloc_barray;
+  mem->pub.request_virt_sarray = request_virt_sarray;
+  mem->pub.request_virt_barray = request_virt_barray;
+  mem->pub.realize_virt_arrays = realize_virt_arrays;
+  mem->pub.access_virt_sarray = access_virt_sarray;
+  mem->pub.access_virt_barray = access_virt_barray;
+  mem->pub.free_pool = free_pool;
+  mem->pub.self_destruct = self_destruct;
+
+  /* Make MAX_ALLOC_CHUNK accessible to other modules */
+  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
+
+  /* Initialize working state */
+  mem->pub.max_memory_to_use = max_to_use;
+
+  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
+    mem->small_list[pool] = NULL;
+    mem->large_list[pool] = NULL;
+  }
+  mem->virt_sarray_list = NULL;
+  mem->virt_barray_list = NULL;
+
+  mem->total_space_allocated = SIZEOF(my_memory_mgr);
+
+  /* Declare ourselves open for business */
+  cinfo->mem = & mem->pub;
+
+  /* Check for an environment variable JPEGMEM; if found, override the
+   * default max_memory setting from jpeg_mem_init.  Note that the
+   * surrounding application may again override this value.
+   * If your system doesn't support getenv(), define NO_GETENV to disable
+   * this feature.
+   */
+#ifndef NO_GETENV
+  { char * memenv;
+
+    if ((memenv = getenv("JPEGMEM")) != NULL) {
+      char ch = 'x';
+
+      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
+	if (ch == 'm' || ch == 'M')
+	  max_to_use *= 1000L;
+	mem->pub.max_memory_to_use = max_to_use * 1000L;
+      }
+    }
+  }
+#endif
+
+}

=== added file 'src/libjpeg-turbo/jmemnobs.c'
--- src/libjpeg-turbo/jmemnobs.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jmemnobs.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,109 @@ 
+/*
+ * jmemnobs.c
+ *
+ * Copyright (C) 1992-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides a really simple implementation of the system-
+ * dependent portion of the JPEG memory manager.  This implementation
+ * assumes that no backing-store files are needed: all required space
+ * can be obtained from malloc().
+ * This is very portable in the sense that it'll compile on almost anything,
+ * but you'd better have lots of main memory (or virtual memory) if you want
+ * to process big images.
+ * Note that the max_memory_to_use option is ignored by this implementation.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h"		/* import the system-dependent declarations */
+
+#ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare malloc(),free() */
+extern void * malloc JPP((size_t size));
+extern void free JPP((void *ptr));
+#endif
+
+
+/*
+ * Memory allocation and freeing are controlled by the regular library
+ * routines malloc() and free().
+ */
+
+GLOBAL(void *)
+jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
+{
+  return (void *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
+{
+  free(object);
+}
+
+
+/*
+ * "Large" objects are treated the same as "small" ones.
+ * NB: although we include FAR keywords in the routine declarations,
+ * this file won't actually work in 80x86 small/medium model; at least,
+ * you probably won't be able to process useful-size images in only 64KB.
+ */
+
+GLOBAL(void FAR *)
+jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
+{
+  return (void FAR *) malloc(sizeofobject);
+}
+
+GLOBAL(void)
+jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
+{
+  free(object);
+}
+
+
+/*
+ * This routine computes the total memory space available for allocation.
+ * Here we always say, "we got all you want bud!"
+ */
+
+GLOBAL(size_t)
+jpeg_mem_available (j_common_ptr cinfo, size_t min_bytes_needed,
+		    size_t max_bytes_needed, size_t already_allocated)
+{
+  return max_bytes_needed;
+}
+
+
+/*
+ * Backing store (temporary file) management.
+ * Since jpeg_mem_available always promised the moon,
+ * this should never be called and we can just error out.
+ */
+
+GLOBAL(void)
+jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+			 long total_bytes_needed)
+{
+  ERREXIT(cinfo, JERR_NO_BACKING_STORE);
+}
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required.  Here, there isn't any.
+ */
+
+GLOBAL(long)
+jpeg_mem_init (j_common_ptr cinfo)
+{
+  return 0;			/* just set max_memory_to_use to 0 */
+}
+
+GLOBAL(void)
+jpeg_mem_term (j_common_ptr cinfo)
+{
+  /* no work */
+}

=== added file 'src/libjpeg-turbo/jmemsys.h'
--- src/libjpeg-turbo/jmemsys.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jmemsys.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,198 @@ 
+/*
+ * jmemsys.h
+ *
+ * Copyright (C) 1992-1997, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This include file defines the interface between the system-independent
+ * and system-dependent portions of the JPEG memory manager.  No other
+ * modules need include it.  (The system-independent portion is jmemmgr.c;
+ * there are several different versions of the system-dependent portion.)
+ *
+ * This file works as-is for the system-dependent memory managers supplied
+ * in the IJG distribution.  You may need to modify it if you write a
+ * custom memory manager.  If system-dependent changes are needed in
+ * this file, the best method is to #ifdef them based on a configuration
+ * symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR
+ * and USE_MAC_MEMMGR.
+ */
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_get_small		jGetSmall
+#define jpeg_free_small		jFreeSmall
+#define jpeg_get_large		jGetLarge
+#define jpeg_free_large		jFreeLarge
+#define jpeg_mem_available	jMemAvail
+#define jpeg_open_backing_store	jOpenBackStore
+#define jpeg_mem_init		jMemInit
+#define jpeg_mem_term		jMemTerm
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/*
+ * These two functions are used to allocate and release small chunks of
+ * memory.  (Typically the total amount requested through jpeg_get_small is
+ * no more than 20K or so; this will be requested in chunks of a few K each.)
+ * Behavior should be the same as for the standard library functions malloc
+ * and free; in particular, jpeg_get_small must return NULL on failure.
+ * On most systems, these ARE malloc and free.  jpeg_free_small is passed the
+ * size of the object being freed, just in case it's needed.
+ * On an 80x86 machine using small-data memory model, these manage near heap.
+ */
+
+EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
+EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object,
+				  size_t sizeofobject));
+
+/*
+ * These two functions are used to allocate and release large chunks of
+ * memory (up to the total free space designated by jpeg_mem_available).
+ * The interface is the same as above, except that on an 80x86 machine,
+ * far pointers are used.  On most other machines these are identical to
+ * the jpeg_get/free_small routines; but we keep them separate anyway,
+ * in case a different allocation strategy is desirable for large chunks.
+ */
+
+EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo,
+				       size_t sizeofobject));
+EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
+				  size_t sizeofobject));
+
+/*
+ * The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
+ * be requested in a single call to jpeg_get_large (and jpeg_get_small for that
+ * matter, but that case should never come into play).  This macro is needed
+ * to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
+ * On those machines, we expect that jconfig.h will provide a proper value.
+ * On machines with 32-bit flat address spaces, any large constant may be used.
+ *
+ * NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
+ * size_t and will be a multiple of sizeof(align_type).
+ */
+
+#ifndef MAX_ALLOC_CHUNK		/* may be overridden in jconfig.h */
+#define MAX_ALLOC_CHUNK  1000000000L
+#endif
+
+/*
+ * This routine computes the total space still available for allocation by
+ * jpeg_get_large.  If more space than this is needed, backing store will be
+ * used.  NOTE: any memory already allocated must not be counted.
+ *
+ * There is a minimum space requirement, corresponding to the minimum
+ * feasible buffer sizes; jmemmgr.c will request that much space even if
+ * jpeg_mem_available returns zero.  The maximum space needed, enough to hold
+ * all working storage in memory, is also passed in case it is useful.
+ * Finally, the total space already allocated is passed.  If no better
+ * method is available, cinfo->mem->max_memory_to_use - already_allocated
+ * is often a suitable calculation.
+ *
+ * It is OK for jpeg_mem_available to underestimate the space available
+ * (that'll just lead to more backing-store access than is really necessary).
+ * However, an overestimate will lead to failure.  Hence it's wise to subtract
+ * a slop factor from the true available space.  5% should be enough.
+ *
+ * On machines with lots of virtual memory, any large constant may be returned.
+ * Conversely, zero may be returned to always use the minimum amount of memory.
+ */
+
+EXTERN(size_t) jpeg_mem_available JPP((j_common_ptr cinfo,
+				     size_t min_bytes_needed,
+				     size_t max_bytes_needed,
+				     size_t already_allocated));
+
+
+/*
+ * This structure holds whatever state is needed to access a single
+ * backing-store object.  The read/write/close method pointers are called
+ * by jmemmgr.c to manipulate the backing-store object; all other fields
+ * are private to the system-dependent backing store routines.
+ */
+
+#define TEMP_NAME_LENGTH   64	/* max length of a temporary file's name */
+
+
+#ifdef USE_MSDOS_MEMMGR		/* DOS-specific junk */
+
+typedef unsigned short XMSH;	/* type of extended-memory handles */
+typedef unsigned short EMSH;	/* type of expanded-memory handles */
+
+typedef union {
+  short file_handle;		/* DOS file handle if it's a temp file */
+  XMSH xms_handle;		/* handle if it's a chunk of XMS */
+  EMSH ems_handle;		/* handle if it's a chunk of EMS */
+} handle_union;
+
+#endif /* USE_MSDOS_MEMMGR */
+
+#ifdef USE_MAC_MEMMGR		/* Mac-specific junk */
+#include <Files.h>
+#endif /* USE_MAC_MEMMGR */
+
+
+typedef struct backing_store_struct * backing_store_ptr;
+
+typedef struct backing_store_struct {
+  /* Methods for reading/writing/closing this backing-store object */
+  JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
+				     backing_store_ptr info,
+				     void FAR * buffer_address,
+				     long file_offset, long byte_count));
+  JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
+				      backing_store_ptr info,
+				      void FAR * buffer_address,
+				      long file_offset, long byte_count));
+  JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
+				      backing_store_ptr info));
+
+  /* Private fields for system-dependent backing-store management */
+#ifdef USE_MSDOS_MEMMGR
+  /* For the MS-DOS manager (jmemdos.c), we need: */
+  handle_union handle;		/* reference to backing-store storage object */
+  char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
+#else
+#ifdef USE_MAC_MEMMGR
+  /* For the Mac manager (jmemmac.c), we need: */
+  short temp_file;		/* file reference number to temp file */
+  FSSpec tempSpec;		/* the FSSpec for the temp file */
+  char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
+#else
+  /* For a typical implementation with temp files, we need: */
+  FILE * temp_file;		/* stdio reference to temp file */
+  char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
+#endif
+#endif
+} backing_store_info;
+
+
+/*
+ * Initial opening of a backing-store object.  This must fill in the
+ * read/write/close pointers in the object.  The read/write routines
+ * may take an error exit if the specified maximum file size is exceeded.
+ * (If jpeg_mem_available always returns a large value, this routine can
+ * just take an error exit.)
+ */
+
+EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo,
+					  backing_store_ptr info,
+					  long total_bytes_needed));
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required.  jpeg_mem_init will be called before anything is
+ * allocated (and, therefore, nothing in cinfo is of use except the error
+ * manager pointer).  It should return a suitable default value for
+ * max_memory_to_use; this may subsequently be overridden by the surrounding
+ * application.  (Note that max_memory_to_use is only important if
+ * jpeg_mem_available chooses to consult it ... no one else will.)
+ * jpeg_mem_term may assume that all requested memory has been freed and that
+ * all opened backing-store objects have been closed.
+ */
+
+EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo));
+EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo));

=== added file 'src/libjpeg-turbo/jmorecfg.h'
--- src/libjpeg-turbo/jmorecfg.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jmorecfg.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,404 @@ 
+/*
+ * jmorecfg.h
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Copyright (C) 2009, 2011, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains additional configuration options that customize the
+ * JPEG software for special applications or support machine-dependent
+ * optimizations.  Most users will not need to touch this file.
+ */
+
+
+/*
+ * Define BITS_IN_JSAMPLE as either
+ *   8   for 8-bit sample values (the usual setting)
+ *   12  for 12-bit sample values
+ * Only 8 and 12 are legal data precisions for lossy JPEG according to the
+ * JPEG standard, and the IJG code does not support anything else!
+ * We do not support run-time selection of data precision, sorry.
+ */
+
+#define BITS_IN_JSAMPLE  8	/* use 8 or 12 */
+
+
+/*
+ * Maximum number of components (color channels) allowed in JPEG image.
+ * To meet the letter of the JPEG spec, set this to 255.  However, darn
+ * few applications need more than 4 channels (maybe 5 for CMYK + alpha
+ * mask).  We recommend 10 as a reasonable compromise; use 4 if you are
+ * really short on memory.  (Each allowed component costs a hundred or so
+ * bytes of storage, whether actually used in an image or not.)
+ */
+
+#define MAX_COMPONENTS  10	/* maximum number of image components */
+
+
+/*
+ * Basic data types.
+ * You may need to change these if you have a machine with unusual data
+ * type sizes; for example, "char" not 8 bits, "short" not 16 bits,
+ * or "long" not 32 bits.  We don't care whether "int" is 16 or 32 bits,
+ * but it had better be at least 16.
+ */
+
+/* Representation of a single sample (pixel element value).
+ * We frequently allocate large arrays of these, so it's important to keep
+ * them small.  But if you have memory to burn and access to char or short
+ * arrays is very slow on your hardware, you might want to change these.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+/* JSAMPLE should be the smallest type that will hold the values 0..255.
+ * You can use a signed char by having GETJSAMPLE mask it with 0xFF.
+ */
+
+#ifdef HAVE_UNSIGNED_CHAR
+
+typedef unsigned char JSAMPLE;
+#define GETJSAMPLE(value)  ((int) (value))
+
+#else /* not HAVE_UNSIGNED_CHAR */
+
+typedef char JSAMPLE;
+#ifdef __CHAR_UNSIGNED__
+#define GETJSAMPLE(value)  ((int) (value))
+#else
+#define GETJSAMPLE(value)  ((int) (value) & 0xFF)
+#endif /* __CHAR_UNSIGNED__ */
+
+#endif /* HAVE_UNSIGNED_CHAR */
+
+#define MAXJSAMPLE	255
+#define CENTERJSAMPLE	128
+
+#endif /* BITS_IN_JSAMPLE == 8 */
+
+
+#if BITS_IN_JSAMPLE == 12
+/* JSAMPLE should be the smallest type that will hold the values 0..4095.
+ * On nearly all machines "short" will do nicely.
+ */
+
+typedef short JSAMPLE;
+#define GETJSAMPLE(value)  ((int) (value))
+
+#define MAXJSAMPLE	4095
+#define CENTERJSAMPLE	2048
+
+#endif /* BITS_IN_JSAMPLE == 12 */
+
+
+/* Representation of a DCT frequency coefficient.
+ * This should be a signed value of at least 16 bits; "short" is usually OK.
+ * Again, we allocate large arrays of these, but you can change to int
+ * if you have memory to burn and "short" is really slow.
+ */
+
+typedef short JCOEF;
+
+
+/* Compressed datastreams are represented as arrays of JOCTET.
+ * These must be EXACTLY 8 bits wide, at least once they are written to
+ * external storage.  Note that when using the stdio data source/destination
+ * managers, this is also the data type passed to fread/fwrite.
+ */
+
+#ifdef HAVE_UNSIGNED_CHAR
+
+typedef unsigned char JOCTET;
+#define GETJOCTET(value)  (value)
+
+#else /* not HAVE_UNSIGNED_CHAR */
+
+typedef char JOCTET;
+#ifdef __CHAR_UNSIGNED__
+#define GETJOCTET(value)  (value)
+#else
+#define GETJOCTET(value)  ((value) & 0xFF)
+#endif /* __CHAR_UNSIGNED__ */
+
+#endif /* HAVE_UNSIGNED_CHAR */
+
+
+/* These typedefs are used for various table entries and so forth.
+ * They must be at least as wide as specified; but making them too big
+ * won't cost a huge amount of memory, so we don't provide special
+ * extraction code like we did for JSAMPLE.  (In other words, these
+ * typedefs live at a different point on the speed/space tradeoff curve.)
+ */
+
+/* UINT8 must hold at least the values 0..255. */
+
+#ifdef HAVE_UNSIGNED_CHAR
+typedef unsigned char UINT8;
+#else /* not HAVE_UNSIGNED_CHAR */
+#ifdef __CHAR_UNSIGNED__
+typedef char UINT8;
+#else /* not __CHAR_UNSIGNED__ */
+typedef short UINT8;
+#endif /* __CHAR_UNSIGNED__ */
+#endif /* HAVE_UNSIGNED_CHAR */
+
+/* UINT16 must hold at least the values 0..65535. */
+
+#ifdef HAVE_UNSIGNED_SHORT
+typedef unsigned short UINT16;
+#else /* not HAVE_UNSIGNED_SHORT */
+typedef unsigned int UINT16;
+#endif /* HAVE_UNSIGNED_SHORT */
+
+/* INT16 must hold at least the values -32768..32767. */
+
+#ifndef XMD_H			/* X11/xmd.h correctly defines INT16 */
+typedef short INT16;
+#endif
+
+/* INT32 must hold at least signed 32-bit values. */
+
+#ifndef XMD_H			/* X11/xmd.h correctly defines INT32 */
+typedef long INT32;
+#endif
+
+/* Datatype used for image dimensions.  The JPEG standard only supports
+ * images up to 64K*64K due to 16-bit fields in SOF markers.  Therefore
+ * "unsigned int" is sufficient on all machines.  However, if you need to
+ * handle larger images and you don't mind deviating from the spec, you
+ * can change this datatype.
+ */
+
+typedef unsigned int JDIMENSION;
+
+#define JPEG_MAX_DIMENSION  65500L  /* a tad under 64K to prevent overflows */
+
+
+/* These macros are used in all function definitions and extern declarations.
+ * You could modify them if you need to change function linkage conventions;
+ * in particular, you'll need to do that to make the library a Windows DLL.
+ * Another application is to make all functions global for use with debuggers
+ * or code profilers that require it.
+ */
+
+/* a function called through method pointers: */
+#define METHODDEF(type)		static type
+/* a function used only in its module: */
+#define LOCAL(type)		static type
+/* a function referenced thru EXTERNs: */
+#define GLOBAL(type)		type
+/* a reference to a GLOBAL function: */
+#define EXTERN(type)		extern type
+
+
+/* This macro is used to declare a "method", that is, a function pointer.
+ * We want to supply prototype parameters if the compiler can cope.
+ * Note that the arglist parameter must be parenthesized!
+ * Again, you can customize this if you need special linkage keywords.
+ */
+
+#ifdef HAVE_PROTOTYPES
+#define JMETHOD(type,methodname,arglist)  type (*methodname) arglist
+#else
+#define JMETHOD(type,methodname,arglist)  type (*methodname) ()
+#endif
+
+
+/* Here is the pseudo-keyword for declaring pointers that must be "far"
+ * on 80x86 machines.  Most of the specialized coding for 80x86 is handled
+ * by just saying "FAR *" where such a pointer is needed.  In a few places
+ * explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
+ */
+
+#ifdef NEED_FAR_POINTERS
+#define FAR  far
+#else
+#define FAR
+#endif
+
+
+/*
+ * On a few systems, type boolean and/or its values FALSE, TRUE may appear
+ * in standard header files.  Or you may have conflicts with application-
+ * specific header files that you want to include together with these files.
+ * Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
+ */
+
+#ifndef HAVE_BOOLEAN
+typedef int boolean;
+#endif
+#ifndef FALSE			/* in case these macros already exist */
+#define FALSE	0		/* values of boolean */
+#endif
+#ifndef TRUE
+#define TRUE	1
+#endif
+
+
+/*
+ * The remaining options affect code selection within the JPEG library,
+ * but they don't need to be visible to most applications using the library.
+ * To minimize application namespace pollution, the symbols won't be
+ * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
+ */
+
+#ifdef JPEG_INTERNALS
+#define JPEG_INTERNAL_OPTIONS
+#endif
+
+#ifdef JPEG_INTERNAL_OPTIONS
+
+
+/*
+ * These defines indicate whether to include various optional functions.
+ * Undefining some of these symbols will produce a smaller but less capable
+ * library.  Note that you can leave certain source files out of the
+ * compilation/linking process if you've #undef'd the corresponding symbols.
+ * (You may HAVE to do that if your compiler doesn't like null source files.)
+ */
+
+/* Capability options common to encoder and decoder: */
+
+#define DCT_ISLOW_SUPPORTED	/* slow but accurate integer algorithm */
+#define DCT_IFAST_SUPPORTED	/* faster, less accurate integer method */
+#define DCT_FLOAT_SUPPORTED	/* floating-point: accurate, fast on fast HW */
+
+/* Encoder capability options: */
+
+#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
+#define C_PROGRESSIVE_SUPPORTED	    /* Progressive JPEG? (Requires MULTISCAN)*/
+#define ENTROPY_OPT_SUPPORTED	    /* Optimization of entropy coding parms? */
+/* Note: if you selected 12-bit data precision, it is dangerous to turn off
+ * ENTROPY_OPT_SUPPORTED.  The standard Huffman tables are only good for 8-bit
+ * precision, so jchuff.c normally uses entropy optimization to compute
+ * usable tables for higher precision.  If you don't want to do optimization,
+ * you'll have to supply different default Huffman tables.
+ * The exact same statements apply for progressive JPEG: the default tables
+ * don't work for progressive mode.  (This may get fixed, however.)
+ */
+#define INPUT_SMOOTHING_SUPPORTED   /* Input image smoothing option? */
+
+/* Decoder capability options: */
+
+#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
+#define D_PROGRESSIVE_SUPPORTED	    /* Progressive JPEG? (Requires MULTISCAN)*/
+#define SAVE_MARKERS_SUPPORTED	    /* jpeg_save_markers() needed? */
+#define BLOCK_SMOOTHING_SUPPORTED   /* Block smoothing? (Progressive only) */
+#define IDCT_SCALING_SUPPORTED	    /* Output rescaling via IDCT? */
+#undef  UPSAMPLE_SCALING_SUPPORTED  /* Output rescaling at upsample stage? */
+#define UPSAMPLE_MERGING_SUPPORTED  /* Fast path for sloppy upsampling? */
+#define QUANT_1PASS_SUPPORTED	    /* 1-pass color quantization? */
+#define QUANT_2PASS_SUPPORTED	    /* 2-pass color quantization? */
+
+/* more capability options later, no doubt */
+
+
+/*
+ * Ordering of RGB data in scanlines passed to or from the application.
+ * If your application wants to deal with data in the order B,G,R, just
+ * change these macros.  You can also deal with formats such as R,G,B,X
+ * (one extra byte per pixel) by changing RGB_PIXELSIZE.  Note that changing
+ * the offsets will also change the order in which colormap data is organized.
+ * RESTRICTIONS:
+ * 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
+ * 2. These macros only affect RGB<=>YCbCr color conversion, so they are not
+ *    useful if you are using JPEG color spaces other than YCbCr or grayscale.
+ * 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
+ *    is not 3 (they don't understand about dummy color components!).  So you
+ *    can't use color quantization if you change that value.
+ */
+
+#define RGB_RED		0	/* Offset of Red in an RGB scanline element */
+#define RGB_GREEN	1	/* Offset of Green */
+#define RGB_BLUE	2	/* Offset of Blue */
+#define RGB_PIXELSIZE	3	/* JSAMPLEs per RGB scanline element */
+
+#define JPEG_NUMCS 16
+
+#define EXT_RGB_RED        0
+#define EXT_RGB_GREEN      1
+#define EXT_RGB_BLUE       2
+#define EXT_RGB_PIXELSIZE  3
+
+#define EXT_RGBX_RED       0
+#define EXT_RGBX_GREEN     1
+#define EXT_RGBX_BLUE      2
+#define EXT_RGBX_PIXELSIZE 4
+
+#define EXT_BGR_RED        2
+#define EXT_BGR_GREEN      1
+#define EXT_BGR_BLUE       0
+#define EXT_BGR_PIXELSIZE  3
+
+#define EXT_BGRX_RED       2
+#define EXT_BGRX_GREEN     1
+#define EXT_BGRX_BLUE      0
+#define EXT_BGRX_PIXELSIZE 4
+
+#define EXT_XBGR_RED       3
+#define EXT_XBGR_GREEN     2
+#define EXT_XBGR_BLUE      1
+#define EXT_XBGR_PIXELSIZE 4
+
+#define EXT_XRGB_RED       1
+#define EXT_XRGB_GREEN     2
+#define EXT_XRGB_BLUE      3
+#define EXT_XRGB_PIXELSIZE 4
+
+static const int rgb_red[JPEG_NUMCS] = {
+  -1, -1, RGB_RED, -1, -1, -1, EXT_RGB_RED, EXT_RGBX_RED,
+  EXT_BGR_RED, EXT_BGRX_RED, EXT_XBGR_RED, EXT_XRGB_RED,
+  EXT_RGBX_RED, EXT_BGRX_RED, EXT_XBGR_RED, EXT_XRGB_RED
+};
+
+static const int rgb_green[JPEG_NUMCS] = {
+  -1, -1, RGB_GREEN, -1, -1, -1, EXT_RGB_GREEN, EXT_RGBX_GREEN,
+  EXT_BGR_GREEN, EXT_BGRX_GREEN, EXT_XBGR_GREEN, EXT_XRGB_GREEN,
+  EXT_RGBX_GREEN, EXT_BGRX_GREEN, EXT_XBGR_GREEN, EXT_XRGB_GREEN
+};
+
+static const int rgb_blue[JPEG_NUMCS] = {
+  -1, -1, RGB_BLUE, -1, -1, -1, EXT_RGB_BLUE, EXT_RGBX_BLUE,
+  EXT_BGR_BLUE, EXT_BGRX_BLUE, EXT_XBGR_BLUE, EXT_XRGB_BLUE,
+  EXT_RGBX_BLUE, EXT_BGRX_BLUE, EXT_XBGR_BLUE, EXT_XRGB_BLUE
+};
+
+static const int rgb_pixelsize[JPEG_NUMCS] = {
+  -1, -1, RGB_PIXELSIZE, -1, -1, -1, EXT_RGB_PIXELSIZE, EXT_RGBX_PIXELSIZE,
+  EXT_BGR_PIXELSIZE, EXT_BGRX_PIXELSIZE, EXT_XBGR_PIXELSIZE, EXT_XRGB_PIXELSIZE,
+  EXT_RGBX_PIXELSIZE, EXT_BGRX_PIXELSIZE, EXT_XBGR_PIXELSIZE, EXT_XRGB_PIXELSIZE
+};
+
+/* Definitions for speed-related optimizations. */
+
+/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
+ * two 16-bit shorts is faster than multiplying two ints.  Define MULTIPLIER
+ * as short on such a machine.  MULTIPLIER must be at least 16 bits wide.
+ */
+
+#ifndef MULTIPLIER
+#ifndef WITH_SIMD
+#define MULTIPLIER  int		/* type for fastest integer multiply */
+#else
+#define MULTIPLIER short  /* prefer 16-bit with SIMD for parellelism */
+#endif
+#endif
+
+
+/* FAST_FLOAT should be either float or double, whichever is done faster
+ * by your compiler.  (Note that this type is only used in the floating point
+ * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
+ * Typically, float is faster in ANSI C compilers, while double is faster in
+ * pre-ANSI compilers (because they insist on converting to double anyway).
+ * The code below therefore chooses float if we have ANSI-style prototypes.
+ */
+
+#ifndef FAST_FLOAT
+#ifdef HAVE_PROTOTYPES
+#define FAST_FLOAT  float
+#else
+#define FAST_FLOAT  double
+#endif
+#endif
+
+#endif /* JPEG_INTERNAL_OPTIONS */

=== added file 'src/libjpeg-turbo/jpegcomp.h'
--- src/libjpeg-turbo/jpegcomp.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jpegcomp.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,26 @@ 
+/*
+ * jpegcomp.h
+ *
+ * Copyright (C) 2010, D. R. Commander
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * JPEG compatibility macros
+ * These declarations are considered internal to the JPEG library; most
+ * applications using the library shouldn't need to include this file.
+ */
+
+#if JPEG_LIB_VERSION >= 70
+#define _DCT_scaled_size DCT_h_scaled_size
+#define _min_DCT_scaled_size min_DCT_h_scaled_size
+#define _min_DCT_h_scaled_size min_DCT_h_scaled_size
+#define _min_DCT_v_scaled_size min_DCT_v_scaled_size
+#define _jpeg_width jpeg_width
+#define _jpeg_height jpeg_height
+#else
+#define _DCT_scaled_size DCT_scaled_size
+#define _min_DCT_scaled_size min_DCT_scaled_size
+#define _min_DCT_h_scaled_size min_DCT_scaled_size
+#define _min_DCT_v_scaled_size min_DCT_scaled_size
+#define _jpeg_width image_width
+#define _jpeg_height image_height
+#endif

=== added file 'src/libjpeg-turbo/jpegint.h'
--- src/libjpeg-turbo/jpegint.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jpegint.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,401 @@ 
+/*
+ * jpegint.h
+ *
+ * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 1997-2009 by Guido Vollbeding.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides common declarations for the various JPEG modules.
+ * These declarations are considered internal to the JPEG library; most
+ * applications using the library shouldn't need to include this file.
+ */
+
+
+/* Declarations for both compression & decompression */
+
+typedef enum {			/* Operating modes for buffer controllers */
+	JBUF_PASS_THRU,		/* Plain stripwise operation */
+	/* Remaining modes require a full-image buffer to have been created */
+	JBUF_SAVE_SOURCE,	/* Run source subobject only, save output */
+	JBUF_CRANK_DEST,	/* Run dest subobject only, using saved data */
+	JBUF_SAVE_AND_PASS	/* Run both subobjects, save output */
+} J_BUF_MODE;
+
+/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
+#define CSTATE_START	100	/* after create_compress */
+#define CSTATE_SCANNING	101	/* start_compress done, write_scanlines OK */
+#define CSTATE_RAW_OK	102	/* start_compress done, write_raw_data OK */
+#define CSTATE_WRCOEFS	103	/* jpeg_write_coefficients done */
+#define DSTATE_START	200	/* after create_decompress */
+#define DSTATE_INHEADER	201	/* reading header markers, no SOS yet */
+#define DSTATE_READY	202	/* found SOS, ready for start_decompress */
+#define DSTATE_PRELOAD	203	/* reading multiscan file in start_decompress*/
+#define DSTATE_PRESCAN	204	/* performing dummy pass for 2-pass quant */
+#define DSTATE_SCANNING	205	/* start_decompress done, read_scanlines OK */
+#define DSTATE_RAW_OK	206	/* start_decompress done, read_raw_data OK */
+#define DSTATE_BUFIMAGE	207	/* expecting jpeg_start_output */
+#define DSTATE_BUFPOST	208	/* looking for SOS/EOI in jpeg_finish_output */
+#define DSTATE_RDCOEFS	209	/* reading file in jpeg_read_coefficients */
+#define DSTATE_STOPPING	210	/* looking for EOI in jpeg_finish_decompress */
+
+
+/* Declarations for compression modules */
+
+/* Master control module */
+struct jpeg_comp_master {
+  JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
+  JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
+  JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
+
+  /* State variables made visible to other modules */
+  boolean call_pass_startup;	/* True if pass_startup must be called */
+  boolean is_last_pass;		/* True during last pass */
+};
+
+/* Main buffer control (downsampled-data buffer) */
+struct jpeg_c_main_controller {
+  JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+  JMETHOD(void, process_data, (j_compress_ptr cinfo,
+			       JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+			       JDIMENSION in_rows_avail));
+};
+
+/* Compression preprocessing (downsampling input buffer control) */
+struct jpeg_c_prep_controller {
+  JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+  JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
+				   JSAMPARRAY input_buf,
+				   JDIMENSION *in_row_ctr,
+				   JDIMENSION in_rows_avail,
+				   JSAMPIMAGE output_buf,
+				   JDIMENSION *out_row_group_ctr,
+				   JDIMENSION out_row_groups_avail));
+};
+
+/* Coefficient buffer control */
+struct jpeg_c_coef_controller {
+  JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+  JMETHOD(boolean, compress_data, (j_compress_ptr cinfo,
+				   JSAMPIMAGE input_buf));
+};
+
+/* Colorspace conversion */
+struct jpeg_color_converter {
+  JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+  JMETHOD(void, color_convert, (j_compress_ptr cinfo,
+				JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+				JDIMENSION output_row, int num_rows));
+};
+
+/* Downsampling */
+struct jpeg_downsampler {
+  JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+  JMETHOD(void, downsample, (j_compress_ptr cinfo,
+			     JSAMPIMAGE input_buf, JDIMENSION in_row_index,
+			     JSAMPIMAGE output_buf,
+			     JDIMENSION out_row_group_index));
+
+  boolean need_context_rows;	/* TRUE if need rows above & below */
+};
+
+/* Forward DCT (also controls coefficient quantization) */
+struct jpeg_forward_dct {
+  JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+  /* perhaps this should be an array??? */
+  JMETHOD(void, forward_DCT, (j_compress_ptr cinfo,
+			      jpeg_component_info * compptr,
+			      JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+			      JDIMENSION start_row, JDIMENSION start_col,
+			      JDIMENSION num_blocks));
+};
+
+/* Entropy encoding */
+struct jpeg_entropy_encoder {
+  JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
+  JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data));
+  JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
+};
+
+/* Marker writing */
+struct jpeg_marker_writer {
+  JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
+  JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
+  JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
+  JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
+  JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
+  /* These routines are exported to allow insertion of extra markers */
+  /* Probably only COM and APPn markers should be written this way */
+  JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker,
+				      unsigned int datalen));
+  JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val));
+};
+
+
+/* Declarations for decompression modules */
+
+/* Master control module */
+struct jpeg_decomp_master {
+  JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo));
+  JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo));
+
+  /* State variables made visible to other modules */
+  boolean is_dummy_pass;	/* True during 1st pass for 2-pass quant */
+};
+
+/* Input control module */
+struct jpeg_input_controller {
+  JMETHOD(int, consume_input, (j_decompress_ptr cinfo));
+  JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo));
+  JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
+  JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo));
+
+  /* State variables made visible to other modules */
+  boolean has_multiple_scans;	/* True if file has multiple scans */
+  boolean eoi_reached;		/* True when EOI has been consumed */
+};
+
+/* Main buffer control (downsampled-data buffer) */
+struct jpeg_d_main_controller {
+  JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
+  JMETHOD(void, process_data, (j_decompress_ptr cinfo,
+			       JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+			       JDIMENSION out_rows_avail));
+};
+
+/* Coefficient buffer control */
+struct jpeg_d_coef_controller {
+  JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
+  JMETHOD(int, consume_data, (j_decompress_ptr cinfo));
+  JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
+  JMETHOD(int, decompress_data, (j_decompress_ptr cinfo,
+				 JSAMPIMAGE output_buf));
+  /* Pointer to array of coefficient virtual arrays, or NULL if none */
+  jvirt_barray_ptr *coef_arrays;
+};
+
+/* Decompression postprocessing (color quantization buffer control) */
+struct jpeg_d_post_controller {
+  JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
+  JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
+				    JSAMPIMAGE input_buf,
+				    JDIMENSION *in_row_group_ctr,
+				    JDIMENSION in_row_groups_avail,
+				    JSAMPARRAY output_buf,
+				    JDIMENSION *out_row_ctr,
+				    JDIMENSION out_rows_avail));
+};
+
+/* Marker reading & parsing */
+struct jpeg_marker_reader {
+  JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
+  /* Read markers until SOS or EOI.
+   * Returns same codes as are defined for jpeg_consume_input:
+   * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+   */
+  JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
+  /* Read a restart marker --- exported for use by entropy decoder only */
+  jpeg_marker_parser_method read_restart_marker;
+
+  /* State of marker reader --- nominally internal, but applications
+   * supplying COM or APPn handlers might like to know the state.
+   */
+  boolean saw_SOI;		/* found SOI? */
+  boolean saw_SOF;		/* found SOF? */
+  int next_restart_num;		/* next restart number expected (0-7) */
+  unsigned int discarded_bytes;	/* # of bytes skipped looking for a marker */
+};
+
+/* Entropy decoding */
+struct jpeg_entropy_decoder {
+  JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+  JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo,
+				JBLOCKROW *MCU_data));
+
+  /* This is here to share code between baseline and progressive decoders; */
+  /* other modules probably should not use it */
+  boolean insufficient_data;	/* set TRUE after emitting warning */
+};
+
+/* Inverse DCT (also performs dequantization) */
+typedef JMETHOD(void, inverse_DCT_method_ptr,
+		(j_decompress_ptr cinfo, jpeg_component_info * compptr,
+		 JCOEFPTR coef_block,
+		 JSAMPARRAY output_buf, JDIMENSION output_col));
+
+struct jpeg_inverse_dct {
+  JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+  /* It is useful to allow each component to have a separate IDCT method. */
+  inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
+};
+
+/* Upsampling (note that upsampler must also call color converter) */
+struct jpeg_upsampler {
+  JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+  JMETHOD(void, upsample, (j_decompress_ptr cinfo,
+			   JSAMPIMAGE input_buf,
+			   JDIMENSION *in_row_group_ctr,
+			   JDIMENSION in_row_groups_avail,
+			   JSAMPARRAY output_buf,
+			   JDIMENSION *out_row_ctr,
+			   JDIMENSION out_rows_avail));
+
+  boolean need_context_rows;	/* TRUE if need rows above & below */
+};
+
+/* Colorspace conversion */
+struct jpeg_color_deconverter {
+  JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+  JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
+				JSAMPIMAGE input_buf, JDIMENSION input_row,
+				JSAMPARRAY output_buf, int num_rows));
+};
+
+/* Color quantization or color precision reduction */
+struct jpeg_color_quantizer {
+  JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
+  JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
+				 JSAMPARRAY input_buf, JSAMPARRAY output_buf,
+				 int num_rows));
+  JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
+  JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
+};
+
+
+/* Miscellaneous useful macros */
+
+#undef MAX
+#define MAX(a,b)	((a) > (b) ? (a) : (b))
+#undef MIN
+#define MIN(a,b)	((a) < (b) ? (a) : (b))
+
+
+/* We assume that right shift corresponds to signed division by 2 with
+ * rounding towards minus infinity.  This is correct for typical "arithmetic
+ * shift" instructions that shift in copies of the sign bit.  But some
+ * C compilers implement >> with an unsigned shift.  For these machines you
+ * must define RIGHT_SHIFT_IS_UNSIGNED.
+ * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
+ * It is only applied with constant shift counts.  SHIFT_TEMPS must be
+ * included in the variables of any routine using RIGHT_SHIFT.
+ */
+
+#ifdef RIGHT_SHIFT_IS_UNSIGNED
+#define SHIFT_TEMPS	INT32 shift_temp;
+#define RIGHT_SHIFT(x,shft)  \
+	((shift_temp = (x)) < 0 ? \
+	 (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
+	 (shift_temp >> (shft)))
+#else
+#define SHIFT_TEMPS
+#define RIGHT_SHIFT(x,shft)	((x) >> (shft))
+#endif
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jinit_compress_master	jICompress
+#define jinit_c_master_control	jICMaster
+#define jinit_c_main_controller	jICMainC
+#define jinit_c_prep_controller	jICPrepC
+#define jinit_c_coef_controller	jICCoefC
+#define jinit_color_converter	jICColor
+#define jinit_downsampler	jIDownsampler
+#define jinit_forward_dct	jIFDCT
+#define jinit_huff_encoder	jIHEncoder
+#define jinit_phuff_encoder	jIPHEncoder
+#define jinit_arith_encoder	jIAEncoder
+#define jinit_marker_writer	jIMWriter
+#define jinit_master_decompress	jIDMaster
+#define jinit_d_main_controller	jIDMainC
+#define jinit_d_coef_controller	jIDCoefC
+#define jinit_d_post_controller	jIDPostC
+#define jinit_input_controller	jIInCtlr
+#define jinit_marker_reader	jIMReader
+#define jinit_huff_decoder	jIHDecoder
+#define jinit_phuff_decoder	jIPHDecoder
+#define jinit_arith_decoder	jIADecoder
+#define jinit_inverse_dct	jIIDCT
+#define jinit_upsampler		jIUpsampler
+#define jinit_color_deconverter	jIDColor
+#define jinit_1pass_quantizer	jI1Quant
+#define jinit_2pass_quantizer	jI2Quant
+#define jinit_merged_upsampler	jIMUpsampler
+#define jinit_memory_mgr	jIMemMgr
+#define jdiv_round_up		jDivRound
+#define jround_up		jRound
+#define jcopy_sample_rows	jCopySamples
+#define jcopy_block_row		jCopyBlocks
+#define jzero_far		jZeroFar
+#define jpeg_zigzag_order	jZIGTable
+#define jpeg_natural_order	jZAGTable
+#define jpeg_aritab		jAriTab
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/* Compression module initialization routines */
+EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo,
+					 boolean transcode_only));
+EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo,
+					  boolean need_full_buffer));
+EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo,
+					  boolean need_full_buffer));
+EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo,
+					  boolean need_full_buffer));
+EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_phuff_encoder JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_arith_encoder JPP((j_compress_ptr cinfo));
+EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo));
+/* Decompression module initialization routines */
+EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo,
+					  boolean need_full_buffer));
+EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
+					  boolean need_full_buffer));
+EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo,
+					  boolean need_full_buffer));
+EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_phuff_decoder JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_arith_decoder JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
+EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
+/* Memory manager initialization */
+EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo));
+
+/* Utility routines in jutils.c */
+EXTERN(long) jdiv_round_up JPP((long a, long b));
+EXTERN(long) jround_up JPP((long a, long b));
+EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row,
+				    JSAMPARRAY output_array, int dest_row,
+				    int num_rows, JDIMENSION num_cols));
+EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
+				  JDIMENSION num_blocks));
+EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero));
+/* Constant tables in jutils.c */
+#if 0				/* This table is not actually needed in v6a */
+extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
+#endif
+extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */
+
+/* Arithmetic coding probability estimation tables in jaricom.c */
+extern const INT32 jpeg_aritab[];
+
+/* Suppress undefined-structure complaints if necessary. */
+
+#ifdef INCOMPLETE_TYPES_BROKEN
+#ifndef AM_MEMORY_MANAGER	/* only jmemmgr.c defines these */
+struct jvirt_sarray_control { long dummy; };
+struct jvirt_barray_control { long dummy; };
+#endif
+#endif /* INCOMPLETE_TYPES_BROKEN */

=== added file 'src/libjpeg-turbo/jpeglib.h'
--- src/libjpeg-turbo/jpeglib.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jpeglib.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,1213 @@ 
+/*
+ * jpeglib.h
+ *
+ * Copyright (C) 1991-1998, Thomas G. Lane.
+ * Modified 2002-2009 by Guido Vollbeding.
+ * Copyright (C) 2009-2011, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file defines the application interface for the JPEG library.
+ * Most applications using the library need only include this file,
+ * and perhaps jerror.h if they want to know the exact error codes.
+ */
+
+#ifndef JPEGLIB_H
+#define JPEGLIB_H
+
+/*
+ * First we include the configuration files that record how this
+ * installation of the JPEG library is set up.  jconfig.h can be
+ * generated automatically for many systems.  jmorecfg.h contains
+ * manual configuration options that most people need not worry about.
+ */
+
+#ifndef JCONFIG_INCLUDED	/* in case jinclude.h already did */
+#include "jconfig.h"		/* widely used configuration options */
+#endif
+#include "jmorecfg.h"		/* seldom changed options */
+
+
+#ifdef __cplusplus
+#ifndef DONT_USE_EXTERN_C
+extern "C" {
+#endif
+#endif
+
+
+/* Various constants determining the sizes of things.
+ * All of these are specified by the JPEG standard, so don't change them
+ * if you want to be compatible.
+ */
+
+#define DCTSIZE		    8	/* The basic DCT block is 8x8 samples */
+#define DCTSIZE2	    64	/* DCTSIZE squared; # of elements in a block */
+#define NUM_QUANT_TBLS      4	/* Quantization tables are numbered 0..3 */
+#define NUM_HUFF_TBLS       4	/* Huffman tables are numbered 0..3 */
+#define NUM_ARITH_TBLS      16	/* Arith-coding tables are numbered 0..15 */
+#define MAX_COMPS_IN_SCAN   4	/* JPEG limit on # of components in one scan */
+#define MAX_SAMP_FACTOR     4	/* JPEG limit on sampling factors */
+/* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard;
+ * the PostScript DCT filter can emit files with many more than 10 blocks/MCU.
+ * If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU
+ * to handle it.  We even let you do this from the jconfig.h file.  However,
+ * we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe
+ * sometimes emits noncompliant files doesn't mean you should too.
+ */
+#define C_MAX_BLOCKS_IN_MCU   10 /* compressor's limit on blocks per MCU */
+#ifndef D_MAX_BLOCKS_IN_MCU
+#define D_MAX_BLOCKS_IN_MCU   10 /* decompressor's limit on blocks per MCU */
+#endif
+
+
+/* Data structures for images (arrays of samples and of DCT coefficients).
+ * On 80x86 machines, the image arrays are too big for near pointers,
+ * but the pointer arrays can fit in near memory.
+ */
+
+typedef JSAMPLE FAR *JSAMPROW;	/* ptr to one image row of pixel samples. */
+typedef JSAMPROW *JSAMPARRAY;	/* ptr to some rows (a 2-D sample array) */
+typedef JSAMPARRAY *JSAMPIMAGE;	/* a 3-D sample array: top index is color */
+
+typedef JCOEF JBLOCK[DCTSIZE2];	/* one block of coefficients */
+typedef JBLOCK FAR *JBLOCKROW;	/* pointer to one row of coefficient blocks */
+typedef JBLOCKROW *JBLOCKARRAY;		/* a 2-D array of coefficient blocks */
+typedef JBLOCKARRAY *JBLOCKIMAGE;	/* a 3-D array of coefficient blocks */
+
+typedef JCOEF FAR *JCOEFPTR;	/* useful in a couple of places */
+
+
+/* Types for JPEG compression parameters and working tables. */
+
+
+/* DCT coefficient quantization tables. */
+
+typedef struct {
+  /* This array gives the coefficient quantizers in natural array order
+   * (not the zigzag order in which they are stored in a JPEG DQT marker).
+   * CAUTION: IJG versions prior to v6a kept this array in zigzag order.
+   */
+  UINT16 quantval[DCTSIZE2];	/* quantization step for each coefficient */
+  /* This field is used only during compression.  It's initialized FALSE when
+   * the table is created, and set TRUE when it's been output to the file.
+   * You could suppress output of a table by setting this to TRUE.
+   * (See jpeg_suppress_tables for an example.)
+   */
+  boolean sent_table;		/* TRUE when table has been output */
+} JQUANT_TBL;
+
+
+/* Huffman coding tables. */
+
+typedef struct {
+  /* These two fields directly represent the contents of a JPEG DHT marker */
+  UINT8 bits[17];		/* bits[k] = # of symbols with codes of */
+				/* length k bits; bits[0] is unused */
+  UINT8 huffval[256];		/* The symbols, in order of incr code length */
+  /* This field is used only during compression.  It's initialized FALSE when
+   * the table is created, and set TRUE when it's been output to the file.
+   * You could suppress output of a table by setting this to TRUE.
+   * (See jpeg_suppress_tables for an example.)
+   */
+  boolean sent_table;		/* TRUE when table has been output */
+} JHUFF_TBL;
+
+
+/* Basic info about one component (color channel). */
+
+typedef struct {
+  /* These values are fixed over the whole image. */
+  /* For compression, they must be supplied by parameter setup; */
+  /* for decompression, they are read from the SOF marker. */
+  int component_id;		/* identifier for this component (0..255) */
+  int component_index;		/* its index in SOF or cinfo->comp_info[] */
+  int h_samp_factor;		/* horizontal sampling factor (1..4) */
+  int v_samp_factor;		/* vertical sampling factor (1..4) */
+  int quant_tbl_no;		/* quantization table selector (0..3) */
+  /* These values may vary between scans. */
+  /* For compression, they must be supplied by parameter setup; */
+  /* for decompression, they are read from the SOS marker. */
+  /* The decompressor output side may not use these variables. */
+  int dc_tbl_no;		/* DC entropy table selector (0..3) */
+  int ac_tbl_no;		/* AC entropy table selector (0..3) */
+  
+  /* Remaining fields should be treated as private by applications. */
+  
+  /* These values are computed during compression or decompression startup: */
+  /* Component's size in DCT blocks.
+   * Any dummy blocks added to complete an MCU are not counted; therefore
+   * these values do not depend on whether a scan is interleaved or not.
+   */
+  JDIMENSION width_in_blocks;
+  JDIMENSION height_in_blocks;
+  /* Size of a DCT block in samples.  Always DCTSIZE for compression.
+   * For decompression this is the size of the output from one DCT block,
+   * reflecting any scaling we choose to apply during the IDCT step.
+   * Values of 1,2,4,8 are likely to be supported.  Note that different
+   * components may receive different IDCT scalings.
+   */
+#if JPEG_LIB_VERSION >= 70
+  int DCT_h_scaled_size;
+  int DCT_v_scaled_size;
+#else
+  int DCT_scaled_size;
+#endif
+  /* The downsampled dimensions are the component's actual, unpadded number
+   * of samples at the main buffer (preprocessing/compression interface), thus
+   * downsampled_width = ceil(image_width * Hi/Hmax)
+   * and similarly for height.  For decompression, IDCT scaling is included, so
+   * downsampled_width = ceil(image_width * Hi/Hmax * DCT_[h_]scaled_size/DCTSIZE)
+   */
+  JDIMENSION downsampled_width;	 /* actual width in samples */
+  JDIMENSION downsampled_height; /* actual height in samples */
+  /* This flag is used only for decompression.  In cases where some of the
+   * components will be ignored (eg grayscale output from YCbCr image),
+   * we can skip most computations for the unused components.
+   */
+  boolean component_needed;	/* do we need the value of this component? */
+
+  /* These values are computed before starting a scan of the component. */
+  /* The decompressor output side may not use these variables. */
+  int MCU_width;		/* number of blocks per MCU, horizontally */
+  int MCU_height;		/* number of blocks per MCU, vertically */
+  int MCU_blocks;		/* MCU_width * MCU_height */
+  int MCU_sample_width;		/* MCU width in samples, MCU_width*DCT_[h_]scaled_size */
+  int last_col_width;		/* # of non-dummy blocks across in last MCU */
+  int last_row_height;		/* # of non-dummy blocks down in last MCU */
+
+  /* Saved quantization table for component; NULL if none yet saved.
+   * See jdinput.c comments about the need for this information.
+   * This field is currently used only for decompression.
+   */
+  JQUANT_TBL * quant_table;
+
+  /* Private per-component storage for DCT or IDCT subsystem. */
+  void * dct_table;
+} jpeg_component_info;
+
+
+/* The script for encoding a multiple-scan file is an array of these: */
+
+typedef struct {
+  int comps_in_scan;		/* number of components encoded in this scan */
+  int component_index[MAX_COMPS_IN_SCAN]; /* their SOF/comp_info[] indexes */
+  int Ss, Se;			/* progressive JPEG spectral selection parms */
+  int Ah, Al;			/* progressive JPEG successive approx. parms */
+} jpeg_scan_info;
+
+/* The decompressor can save APPn and COM markers in a list of these: */
+
+typedef struct jpeg_marker_struct FAR * jpeg_saved_marker_ptr;
+
+struct jpeg_marker_struct {
+  jpeg_saved_marker_ptr next;	/* next in list, or NULL */
+  UINT8 marker;			/* marker code: JPEG_COM, or JPEG_APP0+n */
+  unsigned int original_length;	/* # bytes of data in the file */
+  unsigned int data_length;	/* # bytes of data saved at data[] */
+  JOCTET FAR * data;		/* the data contained in the marker */
+  /* the marker length word is not counted in data_length or original_length */
+};
+
+/* Known color spaces. */
+
+#define JCS_EXTENSIONS 1
+#define JCS_ALPHA_EXTENSIONS 1
+
+typedef enum {
+	JCS_UNKNOWN,		/* error/unspecified */
+	JCS_GRAYSCALE,		/* monochrome */
+	JCS_RGB,		/* red/green/blue as specified by the RGB_RED, RGB_GREEN,
+				   RGB_BLUE, and RGB_PIXELSIZE macros */
+	JCS_YCbCr,		/* Y/Cb/Cr (also known as YUV) */
+	JCS_CMYK,		/* C/M/Y/K */
+	JCS_YCCK,		/* Y/Cb/Cr/K */
+	JCS_EXT_RGB,		/* red/green/blue */
+	JCS_EXT_RGBX,		/* red/green/blue/x */
+	JCS_EXT_BGR,		/* blue/green/red */
+	JCS_EXT_BGRX,		/* blue/green/red/x */
+	JCS_EXT_XBGR,		/* x/blue/green/red */
+	JCS_EXT_XRGB,		/* x/red/green/blue */
+	/* When out_color_space it set to JCS_EXT_RGBX, JCS_EXT_BGRX,
+	   JCS_EXT_XBGR, or JCS_EXT_XRGB during decompression, the X byte is
+	   undefined, and in order to ensure the best performance,
+	   libjpeg-turbo can set that byte to whatever value it wishes.  Use
+	   the following colorspace constants to ensure that the X byte is set
+	   to 0xFF, so that it can be interpreted as an opaque alpha
+	   channel. */
+	JCS_EXT_RGBA,		/* red/green/blue/alpha */
+	JCS_EXT_BGRA,		/* blue/green/red/alpha */
+	JCS_EXT_ABGR,		/* alpha/blue/green/red */
+	JCS_EXT_ARGB		/* alpha/red/green/blue */
+} J_COLOR_SPACE;
+
+/* DCT/IDCT algorithm options. */
+
+typedef enum {
+	JDCT_ISLOW,		/* slow but accurate integer algorithm */
+	JDCT_IFAST,		/* faster, less accurate integer method */
+	JDCT_FLOAT		/* floating-point: accurate, fast on fast HW */
+} J_DCT_METHOD;
+
+#ifndef JDCT_DEFAULT		/* may be overridden in jconfig.h */
+#define JDCT_DEFAULT  JDCT_ISLOW
+#endif
+#ifndef JDCT_FASTEST		/* may be overridden in jconfig.h */
+#define JDCT_FASTEST  JDCT_IFAST
+#endif
+
+/* Dithering options for decompression. */
+
+typedef enum {
+	JDITHER_NONE,		/* no dithering */
+	JDITHER_ORDERED,	/* simple ordered dither */
+	JDITHER_FS		/* Floyd-Steinberg error diffusion dither */
+} J_DITHER_MODE;
+
+
+/* Common fields between JPEG compression and decompression master structs. */
+
+#define jpeg_common_fields \
+  struct jpeg_error_mgr * err;	/* Error handler module */\
+  struct jpeg_memory_mgr * mem;	/* Memory manager module */\
+  struct jpeg_progress_mgr * progress; /* Progress monitor, or NULL if none */\
+  void * client_data;		/* Available for use by application */\
+  boolean is_decompressor;	/* So common code can tell which is which */\
+  int global_state		/* For checking call sequence validity */
+
+/* Routines that are to be used by both halves of the library are declared
+ * to receive a pointer to this structure.  There are no actual instances of
+ * jpeg_common_struct, only of jpeg_compress_struct and jpeg_decompress_struct.
+ */
+struct jpeg_common_struct {
+  jpeg_common_fields;		/* Fields common to both master struct types */
+  /* Additional fields follow in an actual jpeg_compress_struct or
+   * jpeg_decompress_struct.  All three structs must agree on these
+   * initial fields!  (This would be a lot cleaner in C++.)
+   */
+};
+
+typedef struct jpeg_common_struct * j_common_ptr;
+typedef struct jpeg_compress_struct * j_compress_ptr;
+typedef struct jpeg_decompress_struct * j_decompress_ptr;
+
+
+/* Master record for a compression instance */
+
+struct jpeg_compress_struct {
+  jpeg_common_fields;		/* Fields shared with jpeg_decompress_struct */
+
+  /* Destination for compressed data */
+  struct jpeg_destination_mgr * dest;
+
+  /* Description of source image --- these fields must be filled in by
+   * outer application before starting compression.  in_color_space must
+   * be correct before you can even call jpeg_set_defaults().
+   */
+
+  JDIMENSION image_width;	/* input image width */
+  JDIMENSION image_height;	/* input image height */
+  int input_components;		/* # of color components in input image */
+  J_COLOR_SPACE in_color_space;	/* colorspace of input image */
+
+  double input_gamma;		/* image gamma of input image */
+
+  /* Compression parameters --- these fields must be set before calling
+   * jpeg_start_compress().  We recommend calling jpeg_set_defaults() to
+   * initialize everything to reasonable defaults, then changing anything
+   * the application specifically wants to change.  That way you won't get
+   * burnt when new parameters are added.  Also note that there are several
+   * helper routines to simplify changing parameters.
+   */
+
+#if JPEG_LIB_VERSION >= 70
+  unsigned int scale_num, scale_denom; /* fraction by which to scale image */
+
+  JDIMENSION jpeg_width;	/* scaled JPEG image width */
+  JDIMENSION jpeg_height;	/* scaled JPEG image height */
+  /* Dimensions of actual JPEG image that will be written to file,
+   * derived from input dimensions by scaling factors above.
+   * These fields are computed by jpeg_start_compress().
+   * You can also use jpeg_calc_jpeg_dimensions() to determine these values
+   * in advance of calling jpeg_start_compress().
+   */
+#endif
+
+  int data_precision;		/* bits of precision in image data */
+
+  int num_components;		/* # of color components in JPEG image */
+  J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
+
+  jpeg_component_info * comp_info;
+  /* comp_info[i] describes component that appears i'th in SOF */
+
+  JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
+#if JPEG_LIB_VERSION >= 70
+  int q_scale_factor[NUM_QUANT_TBLS];
+#endif
+  /* ptrs to coefficient quantization tables, or NULL if not defined,
+   * and corresponding scale factors (percentage, initialized 100).
+   */
+
+  JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
+  JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
+  /* ptrs to Huffman coding tables, or NULL if not defined */
+
+  UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
+  UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
+  UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
+
+  int num_scans;		/* # of entries in scan_info array */
+  const jpeg_scan_info * scan_info; /* script for multi-scan file, or NULL */
+  /* The default value of scan_info is NULL, which causes a single-scan
+   * sequential JPEG file to be emitted.  To create a multi-scan file,
+   * set num_scans and scan_info to point to an array of scan definitions.
+   */
+
+  boolean raw_data_in;		/* TRUE=caller supplies downsampled data */
+  boolean arith_code;		/* TRUE=arithmetic coding, FALSE=Huffman */
+  boolean optimize_coding;	/* TRUE=optimize entropy encoding parms */
+  boolean CCIR601_sampling;	/* TRUE=first samples are cosited */
+#if JPEG_LIB_VERSION >= 70
+  boolean do_fancy_downsampling; /* TRUE=apply fancy downsampling */
+#endif
+  int smoothing_factor;		/* 1..100, or 0 for no input smoothing */
+  J_DCT_METHOD dct_method;	/* DCT algorithm selector */
+
+  /* The restart interval can be specified in absolute MCUs by setting
+   * restart_interval, or in MCU rows by setting restart_in_rows
+   * (in which case the correct restart_interval will be figured
+   * for each scan).
+   */
+  unsigned int restart_interval; /* MCUs per restart, or 0 for no restart */
+  int restart_in_rows;		/* if > 0, MCU rows per restart interval */
+
+  /* Parameters controlling emission of special markers. */
+
+  boolean write_JFIF_header;	/* should a JFIF marker be written? */
+  UINT8 JFIF_major_version;	/* What to write for the JFIF version number */
+  UINT8 JFIF_minor_version;
+  /* These three values are not used by the JPEG code, merely copied */
+  /* into the JFIF APP0 marker.  density_unit can be 0 for unknown, */
+  /* 1 for dots/inch, or 2 for dots/cm.  Note that the pixel aspect */
+  /* ratio is defined by X_density/Y_density even when density_unit=0. */
+  UINT8 density_unit;		/* JFIF code for pixel size units */
+  UINT16 X_density;		/* Horizontal pixel density */
+  UINT16 Y_density;		/* Vertical pixel density */
+  boolean write_Adobe_marker;	/* should an Adobe marker be written? */
+  
+  /* State variable: index of next scanline to be written to
+   * jpeg_write_scanlines().  Application may use this to control its
+   * processing loop, e.g., "while (next_scanline < image_height)".
+   */
+
+  JDIMENSION next_scanline;	/* 0 .. image_height-1  */
+
+  /* Remaining fields are known throughout compressor, but generally
+   * should not be touched by a surrounding application.
+   */
+
+  /*
+   * These fields are computed during compression startup
+   */
+  boolean progressive_mode;	/* TRUE if scan script uses progressive mode */
+  int max_h_samp_factor;	/* largest h_samp_factor */
+  int max_v_samp_factor;	/* largest v_samp_factor */
+
+#if JPEG_LIB_VERSION >= 70
+  int min_DCT_h_scaled_size;	/* smallest DCT_h_scaled_size of any component */
+  int min_DCT_v_scaled_size;	/* smallest DCT_v_scaled_size of any component */
+#endif
+
+  JDIMENSION total_iMCU_rows;	/* # of iMCU rows to be input to coef ctlr */
+  /* The coefficient controller receives data in units of MCU rows as defined
+   * for fully interleaved scans (whether the JPEG file is interleaved or not).
+   * There are v_samp_factor * DCTSIZE sample rows of each component in an
+   * "iMCU" (interleaved MCU) row.
+   */
+  
+  /*
+   * These fields are valid during any one scan.
+   * They describe the components and MCUs actually appearing in the scan.
+   */
+  int comps_in_scan;		/* # of JPEG components in this scan */
+  jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
+  /* *cur_comp_info[i] describes component that appears i'th in SOS */
+  
+  JDIMENSION MCUs_per_row;	/* # of MCUs across the image */
+  JDIMENSION MCU_rows_in_scan;	/* # of MCU rows in the image */
+  
+  int blocks_in_MCU;		/* # of DCT blocks per MCU */
+  int MCU_membership[C_MAX_BLOCKS_IN_MCU];
+  /* MCU_membership[i] is index in cur_comp_info of component owning */
+  /* i'th block in an MCU */
+
+  int Ss, Se, Ah, Al;		/* progressive JPEG parameters for scan */
+
+#if JPEG_LIB_VERSION >= 80
+  int block_size;		/* the basic DCT block size: 1..16 */
+  const int * natural_order;	/* natural-order position array */
+  int lim_Se;			/* min( Se, DCTSIZE2-1 ) */
+#endif
+
+  /*
+   * Links to compression subobjects (methods and private variables of modules)
+   */
+  struct jpeg_comp_master * master;
+  struct jpeg_c_main_controller * main;
+  struct jpeg_c_prep_controller * prep;
+  struct jpeg_c_coef_controller * coef;
+  struct jpeg_marker_writer * marker;
+  struct jpeg_color_converter * cconvert;
+  struct jpeg_downsampler * downsample;
+  struct jpeg_forward_dct * fdct;
+  struct jpeg_entropy_encoder * entropy;
+  jpeg_scan_info * script_space; /* workspace for jpeg_simple_progression */
+  int script_space_size;
+};
+
+
+/* Master record for a decompression instance */
+
+struct jpeg_decompress_struct {
+  jpeg_common_fields;		/* Fields shared with jpeg_compress_struct */
+
+  /* Source of compressed data */
+  struct jpeg_source_mgr * src;
+
+  /* Basic description of image --- filled in by jpeg_read_header(). */
+  /* Application may inspect these values to decide how to process image. */
+
+  JDIMENSION image_width;	/* nominal image width (from SOF marker) */
+  JDIMENSION image_height;	/* nominal image height */
+  int num_components;		/* # of color components in JPEG image */
+  J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
+
+  /* Decompression processing parameters --- these fields must be set before
+   * calling jpeg_start_decompress().  Note that jpeg_read_header() initializes
+   * them to default values.
+   */
+
+  J_COLOR_SPACE out_color_space; /* colorspace for output */
+
+  unsigned int scale_num, scale_denom; /* fraction by which to scale image */
+
+  double output_gamma;		/* image gamma wanted in output */
+
+  boolean buffered_image;	/* TRUE=multiple output passes */
+  boolean raw_data_out;		/* TRUE=downsampled data wanted */
+
+  J_DCT_METHOD dct_method;	/* IDCT algorithm selector */
+  boolean do_fancy_upsampling;	/* TRUE=apply fancy upsampling */
+  boolean do_block_smoothing;	/* TRUE=apply interblock smoothing */
+
+  boolean quantize_colors;	/* TRUE=colormapped output wanted */
+  /* the following are ignored if not quantize_colors: */
+  J_DITHER_MODE dither_mode;	/* type of color dithering to use */
+  boolean two_pass_quantize;	/* TRUE=use two-pass color quantization */
+  int desired_number_of_colors;	/* max # colors to use in created colormap */
+  /* these are significant only in buffered-image mode: */
+  boolean enable_1pass_quant;	/* enable future use of 1-pass quantizer */
+  boolean enable_external_quant;/* enable future use of external colormap */
+  boolean enable_2pass_quant;	/* enable future use of 2-pass quantizer */
+
+  /* Description of actual output image that will be returned to application.
+   * These fields are computed by jpeg_start_decompress().
+   * You can also use jpeg_calc_output_dimensions() to determine these values
+   * in advance of calling jpeg_start_decompress().
+   */
+
+  JDIMENSION output_width;	/* scaled image width */
+  JDIMENSION output_height;	/* scaled image height */
+  int out_color_components;	/* # of color components in out_color_space */
+  int output_components;	/* # of color components returned */
+  /* output_components is 1 (a colormap index) when quantizing colors;
+   * otherwise it equals out_color_components.
+   */
+  int rec_outbuf_height;	/* min recommended height of scanline buffer */
+  /* If the buffer passed to jpeg_read_scanlines() is less than this many rows
+   * high, space and time will be wasted due to unnecessary data copying.
+   * Usually rec_outbuf_height will be 1 or 2, at most 4.
+   */
+
+  /* When quantizing colors, the output colormap is described by these fields.
+   * The application can supply a colormap by setting colormap non-NULL before
+   * calling jpeg_start_decompress; otherwise a colormap is created during
+   * jpeg_start_decompress or jpeg_start_output.
+   * The map has out_color_components rows and actual_number_of_colors columns.
+   */
+  int actual_number_of_colors;	/* number of entries in use */
+  JSAMPARRAY colormap;		/* The color map as a 2-D pixel array */
+
+  /* State variables: these variables indicate the progress of decompression.
+   * The application may examine these but must not modify them.
+   */
+
+  /* Row index of next scanline to be read from jpeg_read_scanlines().
+   * Application may use this to control its processing loop, e.g.,
+   * "while (output_scanline < output_height)".
+   */
+  JDIMENSION output_scanline;	/* 0 .. output_height-1  */
+
+  /* Current input scan number and number of iMCU rows completed in scan.
+   * These indicate the progress of the decompressor input side.
+   */
+  int input_scan_number;	/* Number of SOS markers seen so far */
+  JDIMENSION input_iMCU_row;	/* Number of iMCU rows completed */
+
+  /* The "output scan number" is the notional scan being displayed by the
+   * output side.  The decompressor will not allow output scan/row number
+   * to get ahead of input scan/row, but it can fall arbitrarily far behind.
+   */
+  int output_scan_number;	/* Nominal scan number being displayed */
+  JDIMENSION output_iMCU_row;	/* Number of iMCU rows read */
+
+  /* Current progression status.  coef_bits[c][i] indicates the precision
+   * with which component c's DCT coefficient i (in zigzag order) is known.
+   * It is -1 when no data has yet been received, otherwise it is the point
+   * transform (shift) value for the most recent scan of the coefficient
+   * (thus, 0 at completion of the progression).
+   * This pointer is NULL when reading a non-progressive file.
+   */
+  int (*coef_bits)[DCTSIZE2];	/* -1 or current Al value for each coef */
+
+  /* Internal JPEG parameters --- the application usually need not look at
+   * these fields.  Note that the decompressor output side may not use
+   * any parameters that can change between scans.
+   */
+
+  /* Quantization and Huffman tables are carried forward across input
+   * datastreams when processing abbreviated JPEG datastreams.
+   */
+
+  JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
+  /* ptrs to coefficient quantization tables, or NULL if not defined */
+
+  JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
+  JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
+  /* ptrs to Huffman coding tables, or NULL if not defined */
+
+  /* These parameters are never carried across datastreams, since they
+   * are given in SOF/SOS markers or defined to be reset by SOI.
+   */
+
+  int data_precision;		/* bits of precision in image data */
+
+  jpeg_component_info * comp_info;
+  /* comp_info[i] describes component that appears i'th in SOF */
+
+#if JPEG_LIB_VERSION >= 80
+  boolean is_baseline;		/* TRUE if Baseline SOF0 encountered */
+#endif
+  boolean progressive_mode;	/* TRUE if SOFn specifies progressive mode */
+  boolean arith_code;		/* TRUE=arithmetic coding, FALSE=Huffman */
+
+  UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
+  UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
+  UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
+
+  unsigned int restart_interval; /* MCUs per restart interval, or 0 for no restart */
+
+  /* These fields record data obtained from optional markers recognized by
+   * the JPEG library.
+   */
+  boolean saw_JFIF_marker;	/* TRUE iff a JFIF APP0 marker was found */
+  /* Data copied from JFIF marker; only valid if saw_JFIF_marker is TRUE: */
+  UINT8 JFIF_major_version;	/* JFIF version number */
+  UINT8 JFIF_minor_version;
+  UINT8 density_unit;		/* JFIF code for pixel size units */
+  UINT16 X_density;		/* Horizontal pixel density */
+  UINT16 Y_density;		/* Vertical pixel density */
+  boolean saw_Adobe_marker;	/* TRUE iff an Adobe APP14 marker was found */
+  UINT8 Adobe_transform;	/* Color transform code from Adobe marker */
+
+  boolean CCIR601_sampling;	/* TRUE=first samples are cosited */
+
+  /* Aside from the specific data retained from APPn markers known to the
+   * library, the uninterpreted contents of any or all APPn and COM markers
+   * can be saved in a list for examination by the application.
+   */
+  jpeg_saved_marker_ptr marker_list; /* Head of list of saved markers */
+
+  /* Remaining fields are known throughout decompressor, but generally
+   * should not be touched by a surrounding application.
+   */
+
+  /*
+   * These fields are computed during decompression startup
+   */
+  int max_h_samp_factor;	/* largest h_samp_factor */
+  int max_v_samp_factor;	/* largest v_samp_factor */
+
+#if JPEG_LIB_VERSION >= 70
+  int min_DCT_h_scaled_size;	/* smallest DCT_h_scaled_size of any component */
+  int min_DCT_v_scaled_size;	/* smallest DCT_v_scaled_size of any component */
+#else
+  int min_DCT_scaled_size;	/* smallest DCT_scaled_size of any component */
+#endif
+
+  JDIMENSION total_iMCU_rows;	/* # of iMCU rows in image */
+  /* The coefficient controller's input and output progress is measured in
+   * units of "iMCU" (interleaved MCU) rows.  These are the same as MCU rows
+   * in fully interleaved JPEG scans, but are used whether the scan is
+   * interleaved or not.  We define an iMCU row as v_samp_factor DCT block
+   * rows of each component.  Therefore, the IDCT output contains
+   * v_samp_factor*DCT_[v_]scaled_size sample rows of a component per iMCU row.
+   */
+
+  JSAMPLE * sample_range_limit; /* table for fast range-limiting */
+
+  /*
+   * These fields are valid during any one scan.
+   * They describe the components and MCUs actually appearing in the scan.
+   * Note that the decompressor output side must not use these fields.
+   */
+  int comps_in_scan;		/* # of JPEG components in this scan */
+  jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
+  /* *cur_comp_info[i] describes component that appears i'th in SOS */
+
+  JDIMENSION MCUs_per_row;	/* # of MCUs across the image */
+  JDIMENSION MCU_rows_in_scan;	/* # of MCU rows in the image */
+
+  int blocks_in_MCU;		/* # of DCT blocks per MCU */
+  int MCU_membership[D_MAX_BLOCKS_IN_MCU];
+  /* MCU_membership[i] is index in cur_comp_info of component owning */
+  /* i'th block in an MCU */
+
+  int Ss, Se, Ah, Al;		/* progressive JPEG parameters for scan */
+
+#if JPEG_LIB_VERSION >= 80
+  /* These fields are derived from Se of first SOS marker.
+   */
+  int block_size;		/* the basic DCT block size: 1..16 */
+  const int * natural_order; /* natural-order position array for entropy decode */
+  int lim_Se;			/* min( Se, DCTSIZE2-1 ) for entropy decode */
+#endif
+
+  /* This field is shared between entropy decoder and marker parser.
+   * It is either zero or the code of a JPEG marker that has been
+   * read from the data source, but has not yet been processed.
+   */
+  int unread_marker;
+
+  /*
+   * Links to decompression subobjects (methods, private variables of modules)
+   */
+  struct jpeg_decomp_master * master;
+  struct jpeg_d_main_controller * main;
+  struct jpeg_d_coef_controller * coef;
+  struct jpeg_d_post_controller * post;
+  struct jpeg_input_controller * inputctl;
+  struct jpeg_marker_reader * marker;
+  struct jpeg_entropy_decoder * entropy;
+  struct jpeg_inverse_dct * idct;
+  struct jpeg_upsampler * upsample;
+  struct jpeg_color_deconverter * cconvert;
+  struct jpeg_color_quantizer * cquantize;
+};
+
+
+/* "Object" declarations for JPEG modules that may be supplied or called
+ * directly by the surrounding application.
+ * As with all objects in the JPEG library, these structs only define the
+ * publicly visible methods and state variables of a module.  Additional
+ * private fields may exist after the public ones.
+ */
+
+
+/* Error handler object */
+
+struct jpeg_error_mgr {
+  /* Error exit handler: does not return to caller */
+  JMETHOD(void, error_exit, (j_common_ptr cinfo));
+  /* Conditionally emit a trace or warning message */
+  JMETHOD(void, emit_message, (j_common_ptr cinfo, int msg_level));
+  /* Routine that actually outputs a trace or error message */
+  JMETHOD(void, output_message, (j_common_ptr cinfo));
+  /* Format a message string for the most recent JPEG error or message */
+  JMETHOD(void, format_message, (j_common_ptr cinfo, char * buffer));
+#define JMSG_LENGTH_MAX  200	/* recommended size of format_message buffer */
+  /* Reset error state variables at start of a new image */
+  JMETHOD(void, reset_error_mgr, (j_common_ptr cinfo));
+  
+  /* The message ID code and any parameters are saved here.
+   * A message can have one string parameter or up to 8 int parameters.
+   */
+  int msg_code;
+#define JMSG_STR_PARM_MAX  80
+  union {
+    int i[8];
+    char s[JMSG_STR_PARM_MAX];
+  } msg_parm;
+  
+  /* Standard state variables for error facility */
+  
+  int trace_level;		/* max msg_level that will be displayed */
+  
+  /* For recoverable corrupt-data errors, we emit a warning message,
+   * but keep going unless emit_message chooses to abort.  emit_message
+   * should count warnings in num_warnings.  The surrounding application
+   * can check for bad data by seeing if num_warnings is nonzero at the
+   * end of processing.
+   */
+  long num_warnings;		/* number of corrupt-data warnings */
+
+  /* These fields point to the table(s) of error message strings.
+   * An application can change the table pointer to switch to a different
+   * message list (typically, to change the language in which errors are
+   * reported).  Some applications may wish to add additional error codes
+   * that will be handled by the JPEG library error mechanism; the second
+   * table pointer is used for this purpose.
+   *
+   * First table includes all errors generated by JPEG library itself.
+   * Error code 0 is reserved for a "no such error string" message.
+   */
+  const char * const * jpeg_message_table; /* Library errors */
+  int last_jpeg_message;    /* Table contains strings 0..last_jpeg_message */
+  /* Second table can be added by application (see cjpeg/djpeg for example).
+   * It contains strings numbered first_addon_message..last_addon_message.
+   */
+  const char * const * addon_message_table; /* Non-library errors */
+  int first_addon_message;	/* code for first string in addon table */
+  int last_addon_message;	/* code for last string in addon table */
+};
+
+
+/* Progress monitor object */
+
+struct jpeg_progress_mgr {
+  JMETHOD(void, progress_monitor, (j_common_ptr cinfo));
+
+  long pass_counter;		/* work units completed in this pass */
+  long pass_limit;		/* total number of work units in this pass */
+  int completed_passes;		/* passes completed so far */
+  int total_passes;		/* total number of passes expected */
+};
+
+
+/* Data destination object for compression */
+
+struct jpeg_destination_mgr {
+  JOCTET * next_output_byte;	/* => next byte to write in buffer */
+  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
+
+  JMETHOD(void, init_destination, (j_compress_ptr cinfo));
+  JMETHOD(boolean, empty_output_buffer, (j_compress_ptr cinfo));
+  JMETHOD(void, term_destination, (j_compress_ptr cinfo));
+};
+
+
+/* Data source object for decompression */
+
+struct jpeg_source_mgr {
+  const JOCTET * next_input_byte; /* => next byte to read from buffer */
+  size_t bytes_in_buffer;	/* # of bytes remaining in buffer */
+
+  JMETHOD(void, init_source, (j_decompress_ptr cinfo));
+  JMETHOD(boolean, fill_input_buffer, (j_decompress_ptr cinfo));
+  JMETHOD(void, skip_input_data, (j_decompress_ptr cinfo, long num_bytes));
+  JMETHOD(boolean, resync_to_restart, (j_decompress_ptr cinfo, int desired));
+  JMETHOD(void, term_source, (j_decompress_ptr cinfo));
+};
+
+
+/* Memory manager object.
+ * Allocates "small" objects (a few K total), "large" objects (tens of K),
+ * and "really big" objects (virtual arrays with backing store if needed).
+ * The memory manager does not allow individual objects to be freed; rather,
+ * each created object is assigned to a pool, and whole pools can be freed
+ * at once.  This is faster and more convenient than remembering exactly what
+ * to free, especially where malloc()/free() are not too speedy.
+ * NB: alloc routines never return NULL.  They exit to error_exit if not
+ * successful.
+ */
+
+#define JPOOL_PERMANENT	0	/* lasts until master record is destroyed */
+#define JPOOL_IMAGE	1	/* lasts until done with image/datastream */
+#define JPOOL_NUMPOOLS	2
+
+typedef struct jvirt_sarray_control * jvirt_sarray_ptr;
+typedef struct jvirt_barray_control * jvirt_barray_ptr;
+
+
+struct jpeg_memory_mgr {
+  /* Method pointers */
+  JMETHOD(void *, alloc_small, (j_common_ptr cinfo, int pool_id,
+				size_t sizeofobject));
+  JMETHOD(void FAR *, alloc_large, (j_common_ptr cinfo, int pool_id,
+				     size_t sizeofobject));
+  JMETHOD(JSAMPARRAY, alloc_sarray, (j_common_ptr cinfo, int pool_id,
+				     JDIMENSION samplesperrow,
+				     JDIMENSION numrows));
+  JMETHOD(JBLOCKARRAY, alloc_barray, (j_common_ptr cinfo, int pool_id,
+				      JDIMENSION blocksperrow,
+				      JDIMENSION numrows));
+  JMETHOD(jvirt_sarray_ptr, request_virt_sarray, (j_common_ptr cinfo,
+						  int pool_id,
+						  boolean pre_zero,
+						  JDIMENSION samplesperrow,
+						  JDIMENSION numrows,
+						  JDIMENSION maxaccess));
+  JMETHOD(jvirt_barray_ptr, request_virt_barray, (j_common_ptr cinfo,
+						  int pool_id,
+						  boolean pre_zero,
+						  JDIMENSION blocksperrow,
+						  JDIMENSION numrows,
+						  JDIMENSION maxaccess));
+  JMETHOD(void, realize_virt_arrays, (j_common_ptr cinfo));
+  JMETHOD(JSAMPARRAY, access_virt_sarray, (j_common_ptr cinfo,
+					   jvirt_sarray_ptr ptr,
+					   JDIMENSION start_row,
+					   JDIMENSION num_rows,
+					   boolean writable));
+  JMETHOD(JBLOCKARRAY, access_virt_barray, (j_common_ptr cinfo,
+					    jvirt_barray_ptr ptr,
+					    JDIMENSION start_row,
+					    JDIMENSION num_rows,
+					    boolean writable));
+  JMETHOD(void, free_pool, (j_common_ptr cinfo, int pool_id));
+  JMETHOD(void, self_destruct, (j_common_ptr cinfo));
+
+  /* Limit on memory allocation for this JPEG object.  (Note that this is
+   * merely advisory, not a guaranteed maximum; it only affects the space
+   * used for virtual-array buffers.)  May be changed by outer application
+   * after creating the JPEG object.
+   */
+  long max_memory_to_use;
+
+  /* Maximum allocation request accepted by alloc_large. */
+  long max_alloc_chunk;
+};
+
+
+/* Routine signature for application-supplied marker processing methods.
+ * Need not pass marker code since it is stored in cinfo->unread_marker.
+ */
+typedef JMETHOD(boolean, jpeg_marker_parser_method, (j_decompress_ptr cinfo));
+
+
+/* Declarations for routines called by application.
+ * The JPP macro hides prototype parameters from compilers that can't cope.
+ * Note JPP requires double parentheses.
+ */
+
+#ifdef HAVE_PROTOTYPES
+#define JPP(arglist)	arglist
+#else
+#define JPP(arglist)	()
+#endif
+
+
+/* Short forms of external names for systems with brain-damaged linkers.
+ * We shorten external names to be unique in the first six letters, which
+ * is good enough for all known systems.
+ * (If your compiler itself needs names to be unique in less than 15 
+ * characters, you are out of luck.  Get a better compiler.)
+ */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_std_error		jStdError
+#define jpeg_CreateCompress	jCreaCompress
+#define jpeg_CreateDecompress	jCreaDecompress
+#define jpeg_destroy_compress	jDestCompress
+#define jpeg_destroy_decompress	jDestDecompress
+#define jpeg_stdio_dest		jStdDest
+#define jpeg_stdio_src		jStdSrc
+#if JPEG_LIB_VERSION >= 80
+#define jpeg_mem_dest		jMemDest
+#define jpeg_mem_src		jMemSrc
+#endif
+#define jpeg_set_defaults	jSetDefaults
+#define jpeg_set_colorspace	jSetColorspace
+#define jpeg_default_colorspace	jDefColorspace
+#define jpeg_set_quality	jSetQuality
+#define jpeg_set_linear_quality	jSetLQuality
+#if JPEG_LIB_VERSION >= 70
+#define jpeg_default_qtables	jDefQTables
+#endif
+#define jpeg_add_quant_table	jAddQuantTable
+#define jpeg_quality_scaling	jQualityScaling
+#define jpeg_simple_progression	jSimProgress
+#define jpeg_suppress_tables	jSuppressTables
+#define jpeg_alloc_quant_table	jAlcQTable
+#define jpeg_alloc_huff_table	jAlcHTable
+#define jpeg_start_compress	jStrtCompress
+#define jpeg_write_scanlines	jWrtScanlines
+#define jpeg_finish_compress	jFinCompress
+#if JPEG_LIB_VERSION >= 70
+#define jpeg_calc_jpeg_dimensions	jCjpegDimensions
+#endif
+#define jpeg_write_raw_data	jWrtRawData
+#define jpeg_write_marker	jWrtMarker
+#define jpeg_write_m_header	jWrtMHeader
+#define jpeg_write_m_byte	jWrtMByte
+#define jpeg_write_tables	jWrtTables
+#define jpeg_read_header	jReadHeader
+#define jpeg_start_decompress	jStrtDecompress
+#define jpeg_read_scanlines	jReadScanlines
+#define jpeg_finish_decompress	jFinDecompress
+#define jpeg_read_raw_data	jReadRawData
+#define jpeg_has_multiple_scans	jHasMultScn
+#define jpeg_start_output	jStrtOutput
+#define jpeg_finish_output	jFinOutput
+#define jpeg_input_complete	jInComplete
+#define jpeg_new_colormap	jNewCMap
+#define jpeg_consume_input	jConsumeInput
+#if JPEG_LIB_VERSION >= 80
+#define jpeg_core_output_dimensions	jCoreDimensions
+#endif
+#define jpeg_calc_output_dimensions	jCalcDimensions
+#define jpeg_save_markers	jSaveMarkers
+#define jpeg_set_marker_processor	jSetMarker
+#define jpeg_read_coefficients	jReadCoefs
+#define jpeg_write_coefficients	jWrtCoefs
+#define jpeg_copy_critical_parameters	jCopyCrit
+#define jpeg_abort_compress	jAbrtCompress
+#define jpeg_abort_decompress	jAbrtDecompress
+#define jpeg_abort		jAbort
+#define jpeg_destroy		jDestroy
+#define jpeg_resync_to_restart	jResyncRestart
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/* Default error-management setup */
+EXTERN(struct jpeg_error_mgr *) jpeg_std_error
+	JPP((struct jpeg_error_mgr * err));
+
+/* Initialization of JPEG compression objects.
+ * jpeg_create_compress() and jpeg_create_decompress() are the exported
+ * names that applications should call.  These expand to calls on
+ * jpeg_CreateCompress and jpeg_CreateDecompress with additional information
+ * passed for version mismatch checking.
+ * NB: you must set up the error-manager BEFORE calling jpeg_create_xxx.
+ */
+#define jpeg_create_compress(cinfo) \
+    jpeg_CreateCompress((cinfo), JPEG_LIB_VERSION, \
+			(size_t) sizeof(struct jpeg_compress_struct))
+#define jpeg_create_decompress(cinfo) \
+    jpeg_CreateDecompress((cinfo), JPEG_LIB_VERSION, \
+			  (size_t) sizeof(struct jpeg_decompress_struct))
+EXTERN(void) jpeg_CreateCompress JPP((j_compress_ptr cinfo,
+				      int version, size_t structsize));
+EXTERN(void) jpeg_CreateDecompress JPP((j_decompress_ptr cinfo,
+					int version, size_t structsize));
+/* Destruction of JPEG compression objects */
+EXTERN(void) jpeg_destroy_compress JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_destroy_decompress JPP((j_decompress_ptr cinfo));
+
+/* Standard data source and destination managers: stdio streams. */
+/* Caller is responsible for opening the file before and closing after. */
+EXTERN(void) jpeg_stdio_dest JPP((j_compress_ptr cinfo, FILE * outfile));
+EXTERN(void) jpeg_stdio_src JPP((j_decompress_ptr cinfo, FILE * infile));
+
+#if JPEG_LIB_VERSION >= 80
+/* Data source and destination managers: memory buffers. */
+EXTERN(void) jpeg_mem_dest JPP((j_compress_ptr cinfo,
+			       unsigned char ** outbuffer,
+			       unsigned long * outsize));
+EXTERN(void) jpeg_mem_src JPP((j_decompress_ptr cinfo,
+			      unsigned char * inbuffer,
+			      unsigned long insize));
+#endif
+
+/* Default parameter setup for compression */
+EXTERN(void) jpeg_set_defaults JPP((j_compress_ptr cinfo));
+/* Compression parameter setup aids */
+EXTERN(void) jpeg_set_colorspace JPP((j_compress_ptr cinfo,
+				      J_COLOR_SPACE colorspace));
+EXTERN(void) jpeg_default_colorspace JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_set_quality JPP((j_compress_ptr cinfo, int quality,
+				   boolean force_baseline));
+EXTERN(void) jpeg_set_linear_quality JPP((j_compress_ptr cinfo,
+					  int scale_factor,
+					  boolean force_baseline));
+#if JPEG_LIB_VERSION >= 70
+EXTERN(void) jpeg_default_qtables JPP((j_compress_ptr cinfo,
+				       boolean force_baseline));
+#endif
+EXTERN(void) jpeg_add_quant_table JPP((j_compress_ptr cinfo, int which_tbl,
+				       const unsigned int *basic_table,
+				       int scale_factor,
+				       boolean force_baseline));
+EXTERN(int) jpeg_quality_scaling JPP((int quality));
+EXTERN(void) jpeg_simple_progression JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_suppress_tables JPP((j_compress_ptr cinfo,
+				       boolean suppress));
+EXTERN(JQUANT_TBL *) jpeg_alloc_quant_table JPP((j_common_ptr cinfo));
+EXTERN(JHUFF_TBL *) jpeg_alloc_huff_table JPP((j_common_ptr cinfo));
+
+/* Main entry points for compression */
+EXTERN(void) jpeg_start_compress JPP((j_compress_ptr cinfo,
+				      boolean write_all_tables));
+EXTERN(JDIMENSION) jpeg_write_scanlines JPP((j_compress_ptr cinfo,
+					     JSAMPARRAY scanlines,
+					     JDIMENSION num_lines));
+EXTERN(void) jpeg_finish_compress JPP((j_compress_ptr cinfo));
+
+#if JPEG_LIB_VERSION >= 70
+/* Precalculate JPEG dimensions for current compression parameters. */
+EXTERN(void) jpeg_calc_jpeg_dimensions JPP((j_compress_ptr cinfo));
+#endif
+
+/* Replaces jpeg_write_scanlines when writing raw downsampled data. */
+EXTERN(JDIMENSION) jpeg_write_raw_data JPP((j_compress_ptr cinfo,
+					    JSAMPIMAGE data,
+					    JDIMENSION num_lines));
+
+/* Write a special marker.  See libjpeg.txt concerning safe usage. */
+EXTERN(void) jpeg_write_marker
+	JPP((j_compress_ptr cinfo, int marker,
+	     const JOCTET * dataptr, unsigned int datalen));
+/* Same, but piecemeal. */
+EXTERN(void) jpeg_write_m_header
+	JPP((j_compress_ptr cinfo, int marker, unsigned int datalen));
+EXTERN(void) jpeg_write_m_byte
+	JPP((j_compress_ptr cinfo, int val));
+
+/* Alternate compression function: just write an abbreviated table file */
+EXTERN(void) jpeg_write_tables JPP((j_compress_ptr cinfo));
+
+/* Decompression startup: read start of JPEG datastream to see what's there */
+EXTERN(int) jpeg_read_header JPP((j_decompress_ptr cinfo,
+				  boolean require_image));
+/* Return value is one of: */
+#define JPEG_SUSPENDED		0 /* Suspended due to lack of input data */
+#define JPEG_HEADER_OK		1 /* Found valid image datastream */
+#define JPEG_HEADER_TABLES_ONLY	2 /* Found valid table-specs-only datastream */
+/* If you pass require_image = TRUE (normal case), you need not check for
+ * a TABLES_ONLY return code; an abbreviated file will cause an error exit.
+ * JPEG_SUSPENDED is only possible if you use a data source module that can
+ * give a suspension return (the stdio source module doesn't).
+ */
+
+/* Main entry points for decompression */
+EXTERN(boolean) jpeg_start_decompress JPP((j_decompress_ptr cinfo));
+EXTERN(JDIMENSION) jpeg_read_scanlines JPP((j_decompress_ptr cinfo,
+					    JSAMPARRAY scanlines,
+					    JDIMENSION max_lines));
+EXTERN(boolean) jpeg_finish_decompress JPP((j_decompress_ptr cinfo));
+
+/* Replaces jpeg_read_scanlines when reading raw downsampled data. */
+EXTERN(JDIMENSION) jpeg_read_raw_data JPP((j_decompress_ptr cinfo,
+					   JSAMPIMAGE data,
+					   JDIMENSION max_lines));
+
+/* Additional entry points for buffered-image mode. */
+EXTERN(boolean) jpeg_has_multiple_scans JPP((j_decompress_ptr cinfo));
+EXTERN(boolean) jpeg_start_output JPP((j_decompress_ptr cinfo,
+				       int scan_number));
+EXTERN(boolean) jpeg_finish_output JPP((j_decompress_ptr cinfo));
+EXTERN(boolean) jpeg_input_complete JPP((j_decompress_ptr cinfo));
+EXTERN(void) jpeg_new_colormap JPP((j_decompress_ptr cinfo));
+EXTERN(int) jpeg_consume_input JPP((j_decompress_ptr cinfo));
+/* Return value is one of: */
+/* #define JPEG_SUSPENDED	0    Suspended due to lack of input data */
+#define JPEG_REACHED_SOS	1 /* Reached start of new scan */
+#define JPEG_REACHED_EOI	2 /* Reached end of image */
+#define JPEG_ROW_COMPLETED	3 /* Completed one iMCU row */
+#define JPEG_SCAN_COMPLETED	4 /* Completed last iMCU row of a scan */
+
+/* Precalculate output dimensions for current decompression parameters. */
+#if JPEG_LIB_VERSION >= 80
+EXTERN(void) jpeg_core_output_dimensions JPP((j_decompress_ptr cinfo));
+#endif
+EXTERN(void) jpeg_calc_output_dimensions JPP((j_decompress_ptr cinfo));
+
+/* Control saving of COM and APPn markers into marker_list. */
+EXTERN(void) jpeg_save_markers
+	JPP((j_decompress_ptr cinfo, int marker_code,
+	     unsigned int length_limit));
+
+/* Install a special processing method for COM or APPn markers. */
+EXTERN(void) jpeg_set_marker_processor
+	JPP((j_decompress_ptr cinfo, int marker_code,
+	     jpeg_marker_parser_method routine));
+
+/* Read or write raw DCT coefficients --- useful for lossless transcoding. */
+EXTERN(jvirt_barray_ptr *) jpeg_read_coefficients JPP((j_decompress_ptr cinfo));
+EXTERN(void) jpeg_write_coefficients JPP((j_compress_ptr cinfo,
+					  jvirt_barray_ptr * coef_arrays));
+EXTERN(void) jpeg_copy_critical_parameters JPP((j_decompress_ptr srcinfo,
+						j_compress_ptr dstinfo));
+
+/* If you choose to abort compression or decompression before completing
+ * jpeg_finish_(de)compress, then you need to clean up to release memory,
+ * temporary files, etc.  You can just call jpeg_destroy_(de)compress
+ * if you're done with the JPEG object, but if you want to clean it up and
+ * reuse it, call this:
+ */
+EXTERN(void) jpeg_abort_compress JPP((j_compress_ptr cinfo));
+EXTERN(void) jpeg_abort_decompress JPP((j_decompress_ptr cinfo));
+
+/* Generic versions of jpeg_abort and jpeg_destroy that work on either
+ * flavor of JPEG object.  These may be more convenient in some places.
+ */
+EXTERN(void) jpeg_abort JPP((j_common_ptr cinfo));
+EXTERN(void) jpeg_destroy JPP((j_common_ptr cinfo));
+
+/* Default restart-marker-resync procedure for use by data source modules */
+EXTERN(boolean) jpeg_resync_to_restart JPP((j_decompress_ptr cinfo,
+					    int desired));
+
+
+/* These marker codes are exported since applications and data source modules
+ * are likely to want to use them.
+ */
+
+#define JPEG_RST0	0xD0	/* RST0 marker code */
+#define JPEG_EOI	0xD9	/* EOI marker code */
+#define JPEG_APP0	0xE0	/* APP0 marker code */
+#define JPEG_COM	0xFE	/* COM marker code */
+
+
+/* If we have a brain-damaged compiler that emits warnings (or worse, errors)
+ * for structure definitions that are never filled in, keep it quiet by
+ * supplying dummy definitions for the various substructures.
+ */
+
+#ifdef INCOMPLETE_TYPES_BROKEN
+#ifndef JPEG_INTERNALS		/* will be defined in jpegint.h */
+struct jvirt_sarray_control { long dummy; };
+struct jvirt_barray_control { long dummy; };
+struct jpeg_comp_master { long dummy; };
+struct jpeg_c_main_controller { long dummy; };
+struct jpeg_c_prep_controller { long dummy; };
+struct jpeg_c_coef_controller { long dummy; };
+struct jpeg_marker_writer { long dummy; };
+struct jpeg_color_converter { long dummy; };
+struct jpeg_downsampler { long dummy; };
+struct jpeg_forward_dct { long dummy; };
+struct jpeg_entropy_encoder { long dummy; };
+struct jpeg_decomp_master { long dummy; };
+struct jpeg_d_main_controller { long dummy; };
+struct jpeg_d_coef_controller { long dummy; };
+struct jpeg_d_post_controller { long dummy; };
+struct jpeg_input_controller { long dummy; };
+struct jpeg_marker_reader { long dummy; };
+struct jpeg_entropy_decoder { long dummy; };
+struct jpeg_inverse_dct { long dummy; };
+struct jpeg_upsampler { long dummy; };
+struct jpeg_color_deconverter { long dummy; };
+struct jpeg_color_quantizer { long dummy; };
+#endif /* JPEG_INTERNALS */
+#endif /* INCOMPLETE_TYPES_BROKEN */
+
+
+/*
+ * The JPEG library modules define JPEG_INTERNALS before including this file.
+ * The internal structure declarations are read only when that is true.
+ * Applications using the library should not include jpegint.h, but may wish
+ * to include jerror.h.
+ */
+
+#ifdef JPEG_INTERNALS
+#include "jpegint.h"		/* fetch private declarations */
+#include "jerror.h"		/* fetch error codes too */
+#endif
+
+#ifdef __cplusplus
+#ifndef DONT_USE_EXTERN_C
+}
+#endif
+#endif
+
+#endif /* JPEGLIB_H */

=== added file 'src/libjpeg-turbo/jquant1.c'
--- src/libjpeg-turbo/jquant1.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jquant1.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,860 @@ 
+/*
+ * jquant1.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Copyright (C) 2009, D. R. Commander
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains 1-pass color quantization (color mapping) routines.
+ * These routines provide mapping to a fixed color map using equally spaced
+ * color values.  Optional Floyd-Steinberg or ordered dithering is available.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+#ifdef QUANT_1PASS_SUPPORTED
+
+
+/*
+ * The main purpose of 1-pass quantization is to provide a fast, if not very
+ * high quality, colormapped output capability.  A 2-pass quantizer usually
+ * gives better visual quality; however, for quantized grayscale output this
+ * quantizer is perfectly adequate.  Dithering is highly recommended with this
+ * quantizer, though you can turn it off if you really want to.
+ *
+ * In 1-pass quantization the colormap must be chosen in advance of seeing the
+ * image.  We use a map consisting of all combinations of Ncolors[i] color
+ * values for the i'th component.  The Ncolors[] values are chosen so that
+ * their product, the total number of colors, is no more than that requested.
+ * (In most cases, the product will be somewhat less.)
+ *
+ * Since the colormap is orthogonal, the representative value for each color
+ * component can be determined without considering the other components;
+ * then these indexes can be combined into a colormap index by a standard
+ * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
+ * can be precalculated and stored in the lookup table colorindex[].
+ * colorindex[i][j] maps pixel value j in component i to the nearest
+ * representative value (grid plane) for that component; this index is
+ * multiplied by the array stride for component i, so that the
+ * index of the colormap entry closest to a given pixel value is just
+ *    sum( colorindex[component-number][pixel-component-value] )
+ * Aside from being fast, this scheme allows for variable spacing between
+ * representative values with no additional lookup cost.
+ *
+ * If gamma correction has been applied in color conversion, it might be wise
+ * to adjust the color grid spacing so that the representative colors are
+ * equidistant in linear space.  At this writing, gamma correction is not
+ * implemented by jdcolor, so nothing is done here.
+ */
+
+
+/* Declarations for ordered dithering.
+ *
+ * We use a standard 16x16 ordered dither array.  The basic concept of ordered
+ * dithering is described in many references, for instance Dale Schumacher's
+ * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
+ * In place of Schumacher's comparisons against a "threshold" value, we add a
+ * "dither" value to the input pixel and then round the result to the nearest
+ * output value.  The dither value is equivalent to (0.5 - threshold) times
+ * the distance between output values.  For ordered dithering, we assume that
+ * the output colors are equally spaced; if not, results will probably be
+ * worse, since the dither may be too much or too little at a given point.
+ *
+ * The normal calculation would be to form pixel value + dither, range-limit
+ * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
+ * We can skip the separate range-limiting step by extending the colorindex
+ * table in both directions.
+ */
+
+#define ODITHER_SIZE  16	/* dimension of dither matrix */
+/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
+#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)	/* # cells in matrix */
+#define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
+
+typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
+typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
+
+static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
+  /* Bayer's order-4 dither array.  Generated by the code given in
+   * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
+   * The values in this array must range from 0 to ODITHER_CELLS-1.
+   */
+  {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
+  { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
+  {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
+  { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
+  {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
+  { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
+  {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
+  { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
+  {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
+  { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
+  {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
+  { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
+  {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
+  { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
+  {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
+  { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
+};
+
+
+/* Declarations for Floyd-Steinberg dithering.
+ *
+ * Errors are accumulated into the array fserrors[], at a resolution of
+ * 1/16th of a pixel count.  The error at a given pixel is propagated
+ * to its not-yet-processed neighbors using the standard F-S fractions,
+ *		...	(here)	7/16
+ *		3/16	5/16	1/16
+ * We work left-to-right on even rows, right-to-left on odd rows.
+ *
+ * We can get away with a single array (holding one row's worth of errors)
+ * by using it to store the current row's errors at pixel columns not yet
+ * processed, but the next row's errors at columns already processed.  We
+ * need only a few extra variables to hold the errors immediately around the
+ * current column.  (If we are lucky, those variables are in registers, but
+ * even if not, they're probably cheaper to access than array elements are.)
+ *
+ * The fserrors[] array is indexed [component#][position].
+ * We provide (#columns + 2) entries per component; the extra entry at each
+ * end saves us from special-casing the first and last pixels.
+ *
+ * Note: on a wide image, we might not have enough room in a PC's near data
+ * segment to hold the error array; so it is allocated with alloc_large.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+typedef INT16 FSERROR;		/* 16 bits should be enough */
+typedef int LOCFSERROR;		/* use 'int' for calculation temps */
+#else
+typedef INT32 FSERROR;		/* may need more than 16 bits */
+typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
+#endif
+
+typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
+
+
+/* Private subobject */
+
+#define MAX_Q_COMPS 4		/* max components I can handle */
+
+typedef struct {
+  struct jpeg_color_quantizer pub; /* public fields */
+
+  /* Initially allocated colormap is saved here */
+  JSAMPARRAY sv_colormap;	/* The color map as a 2-D pixel array */
+  int sv_actual;		/* number of entries in use */
+
+  JSAMPARRAY colorindex;	/* Precomputed mapping for speed */
+  /* colorindex[i][j] = index of color closest to pixel value j in component i,
+   * premultiplied as described above.  Since colormap indexes must fit into
+   * JSAMPLEs, the entries of this array will too.
+   */
+  boolean is_padded;		/* is the colorindex padded for odither? */
+
+  int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */
+
+  /* Variables for ordered dithering */
+  int row_index;		/* cur row's vertical index in dither matrix */
+  ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
+
+  /* Variables for Floyd-Steinberg dithering */
+  FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
+  boolean on_odd_row;		/* flag to remember which row we are on */
+} my_cquantizer;
+
+typedef my_cquantizer * my_cquantize_ptr;
+
+
+/*
+ * Policy-making subroutines for create_colormap and create_colorindex.
+ * These routines determine the colormap to be used.  The rest of the module
+ * only assumes that the colormap is orthogonal.
+ *
+ *  * select_ncolors decides how to divvy up the available colors
+ *    among the components.
+ *  * output_value defines the set of representative values for a component.
+ *  * largest_input_value defines the mapping from input values to
+ *    representative values for a component.
+ * Note that the latter two routines may impose different policies for
+ * different components, though this is not currently done.
+ */
+
+
+LOCAL(int)
+select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
+/* Determine allocation of desired colors to components, */
+/* and fill in Ncolors[] array to indicate choice. */
+/* Return value is total number of colors (product of Ncolors[] values). */
+{
+  int nc = cinfo->out_color_components; /* number of color components */
+  int max_colors = cinfo->desired_number_of_colors;
+  int total_colors, iroot, i, j;
+  boolean changed;
+  long temp;
+  int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
+  RGB_order[0] = rgb_green[cinfo->out_color_space];
+  RGB_order[1] = rgb_red[cinfo->out_color_space];
+  RGB_order[2] = rgb_blue[cinfo->out_color_space];
+
+  /* We can allocate at least the nc'th root of max_colors per component. */
+  /* Compute floor(nc'th root of max_colors). */
+  iroot = 1;
+  do {
+    iroot++;
+    temp = iroot;		/* set temp = iroot ** nc */
+    for (i = 1; i < nc; i++)
+      temp *= iroot;
+  } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
+  iroot--;			/* now iroot = floor(root) */
+
+  /* Must have at least 2 color values per component */
+  if (iroot < 2)
+    ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
+
+  /* Initialize to iroot color values for each component */
+  total_colors = 1;
+  for (i = 0; i < nc; i++) {
+    Ncolors[i] = iroot;
+    total_colors *= iroot;
+  }
+  /* We may be able to increment the count for one or more components without
+   * exceeding max_colors, though we know not all can be incremented.
+   * Sometimes, the first component can be incremented more than once!
+   * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
+   * In RGB colorspace, try to increment G first, then R, then B.
+   */
+  do {
+    changed = FALSE;
+    for (i = 0; i < nc; i++) {
+      j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
+      /* calculate new total_colors if Ncolors[j] is incremented */
+      temp = total_colors / Ncolors[j];
+      temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */
+      if (temp > (long) max_colors)
+	break;			/* won't fit, done with this pass */
+      Ncolors[j]++;		/* OK, apply the increment */
+      total_colors = (int) temp;
+      changed = TRUE;
+    }
+  } while (changed);
+
+  return total_colors;
+}
+
+
+LOCAL(int)
+output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
+/* Return j'th output value, where j will range from 0 to maxj */
+/* The output values must fall in 0..MAXJSAMPLE in increasing order */
+{
+  /* We always provide values 0 and MAXJSAMPLE for each component;
+   * any additional values are equally spaced between these limits.
+   * (Forcing the upper and lower values to the limits ensures that
+   * dithering can't produce a color outside the selected gamut.)
+   */
+  return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
+}
+
+
+LOCAL(int)
+largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
+/* Return largest input value that should map to j'th output value */
+/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
+{
+  /* Breakpoints are halfway between values returned by output_value */
+  return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
+}
+
+
+/*
+ * Create the colormap.
+ */
+
+LOCAL(void)
+create_colormap (j_decompress_ptr cinfo)
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  JSAMPARRAY colormap;		/* Created colormap */
+  int total_colors;		/* Number of distinct output colors */
+  int i,j,k, nci, blksize, blkdist, ptr, val;
+
+  /* Select number of colors for each component */
+  total_colors = select_ncolors(cinfo, cquantize->Ncolors);
+
+  /* Report selected color counts */
+  if (cinfo->out_color_components == 3)
+    TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
+	     total_colors, cquantize->Ncolors[0],
+	     cquantize->Ncolors[1], cquantize->Ncolors[2]);
+  else
+    TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
+
+  /* Allocate and fill in the colormap. */
+  /* The colors are ordered in the map in standard row-major order, */
+  /* i.e. rightmost (highest-indexed) color changes most rapidly. */
+
+  colormap = (*cinfo->mem->alloc_sarray)
+    ((j_common_ptr) cinfo, JPOOL_IMAGE,
+     (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
+
+  /* blksize is number of adjacent repeated entries for a component */
+  /* blkdist is distance between groups of identical entries for a component */
+  blkdist = total_colors;
+
+  for (i = 0; i < cinfo->out_color_components; i++) {
+    /* fill in colormap entries for i'th color component */
+    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
+    blksize = blkdist / nci;
+    for (j = 0; j < nci; j++) {
+      /* Compute j'th output value (out of nci) for component */
+      val = output_value(cinfo, i, j, nci-1);
+      /* Fill in all colormap entries that have this value of this component */
+      for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
+	/* fill in blksize entries beginning at ptr */
+	for (k = 0; k < blksize; k++)
+	  colormap[i][ptr+k] = (JSAMPLE) val;
+      }
+    }
+    blkdist = blksize;		/* blksize of this color is blkdist of next */
+  }
+
+  /* Save the colormap in private storage,
+   * where it will survive color quantization mode changes.
+   */
+  cquantize->sv_colormap = colormap;
+  cquantize->sv_actual = total_colors;
+}
+
+
+/*
+ * Create the color index table.
+ */
+
+LOCAL(void)
+create_colorindex (j_decompress_ptr cinfo)
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  JSAMPROW indexptr;
+  int i,j,k, nci, blksize, val, pad;
+
+  /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
+   * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
+   * This is not necessary in the other dithering modes.  However, we
+   * flag whether it was done in case user changes dithering mode.
+   */
+  if (cinfo->dither_mode == JDITHER_ORDERED) {
+    pad = MAXJSAMPLE*2;
+    cquantize->is_padded = TRUE;
+  } else {
+    pad = 0;
+    cquantize->is_padded = FALSE;
+  }
+
+  cquantize->colorindex = (*cinfo->mem->alloc_sarray)
+    ((j_common_ptr) cinfo, JPOOL_IMAGE,
+     (JDIMENSION) (MAXJSAMPLE+1 + pad),
+     (JDIMENSION) cinfo->out_color_components);
+
+  /* blksize is number of adjacent repeated entries for a component */
+  blksize = cquantize->sv_actual;
+
+  for (i = 0; i < cinfo->out_color_components; i++) {
+    /* fill in colorindex entries for i'th color component */
+    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
+    blksize = blksize / nci;
+
+    /* adjust colorindex pointers to provide padding at negative indexes. */
+    if (pad)
+      cquantize->colorindex[i] += MAXJSAMPLE;
+
+    /* in loop, val = index of current output value, */
+    /* and k = largest j that maps to current val */
+    indexptr = cquantize->colorindex[i];
+    val = 0;
+    k = largest_input_value(cinfo, i, 0, nci-1);
+    for (j = 0; j <= MAXJSAMPLE; j++) {
+      while (j > k)		/* advance val if past boundary */
+	k = largest_input_value(cinfo, i, ++val, nci-1);
+      /* premultiply so that no multiplication needed in main processing */
+      indexptr[j] = (JSAMPLE) (val * blksize);
+    }
+    /* Pad at both ends if necessary */
+    if (pad)
+      for (j = 1; j <= MAXJSAMPLE; j++) {
+	indexptr[-j] = indexptr[0];
+	indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
+      }
+  }
+}
+
+
+/*
+ * Create an ordered-dither array for a component having ncolors
+ * distinct output values.
+ */
+
+LOCAL(ODITHER_MATRIX_PTR)
+make_odither_array (j_decompress_ptr cinfo, int ncolors)
+{
+  ODITHER_MATRIX_PTR odither;
+  int j,k;
+  INT32 num,den;
+
+  odither = (ODITHER_MATRIX_PTR)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(ODITHER_MATRIX));
+  /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
+   * Hence the dither value for the matrix cell with fill order f
+   * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
+   * On 16-bit-int machine, be careful to avoid overflow.
+   */
+  den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
+  for (j = 0; j < ODITHER_SIZE; j++) {
+    for (k = 0; k < ODITHER_SIZE; k++) {
+      num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
+	    * MAXJSAMPLE;
+      /* Ensure round towards zero despite C's lack of consistency
+       * about rounding negative values in integer division...
+       */
+      odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
+    }
+  }
+  return odither;
+}
+
+
+/*
+ * Create the ordered-dither tables.
+ * Components having the same number of representative colors may 
+ * share a dither table.
+ */
+
+LOCAL(void)
+create_odither_tables (j_decompress_ptr cinfo)
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  ODITHER_MATRIX_PTR odither;
+  int i, j, nci;
+
+  for (i = 0; i < cinfo->out_color_components; i++) {
+    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
+    odither = NULL;		/* search for matching prior component */
+    for (j = 0; j < i; j++) {
+      if (nci == cquantize->Ncolors[j]) {
+	odither = cquantize->odither[j];
+	break;
+      }
+    }
+    if (odither == NULL)	/* need a new table? */
+      odither = make_odither_array(cinfo, nci);
+    cquantize->odither[i] = odither;
+  }
+}
+
+
+/*
+ * Map some rows of pixels to the output colormapped representation.
+ */
+
+METHODDEF(void)
+color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+		JSAMPARRAY output_buf, int num_rows)
+/* General case, no dithering */
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  JSAMPARRAY colorindex = cquantize->colorindex;
+  register int pixcode, ci;
+  register JSAMPROW ptrin, ptrout;
+  int row;
+  JDIMENSION col;
+  JDIMENSION width = cinfo->output_width;
+  register int nc = cinfo->out_color_components;
+
+  for (row = 0; row < num_rows; row++) {
+    ptrin = input_buf[row];
+    ptrout = output_buf[row];
+    for (col = width; col > 0; col--) {
+      pixcode = 0;
+      for (ci = 0; ci < nc; ci++) {
+	pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
+      }
+      *ptrout++ = (JSAMPLE) pixcode;
+    }
+  }
+}
+
+
+METHODDEF(void)
+color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+		 JSAMPARRAY output_buf, int num_rows)
+/* Fast path for out_color_components==3, no dithering */
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  register int pixcode;
+  register JSAMPROW ptrin, ptrout;
+  JSAMPROW colorindex0 = cquantize->colorindex[0];
+  JSAMPROW colorindex1 = cquantize->colorindex[1];
+  JSAMPROW colorindex2 = cquantize->colorindex[2];
+  int row;
+  JDIMENSION col;
+  JDIMENSION width = cinfo->output_width;
+
+  for (row = 0; row < num_rows; row++) {
+    ptrin = input_buf[row];
+    ptrout = output_buf[row];
+    for (col = width; col > 0; col--) {
+      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
+      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
+      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
+      *ptrout++ = (JSAMPLE) pixcode;
+    }
+  }
+}
+
+
+METHODDEF(void)
+quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+		     JSAMPARRAY output_buf, int num_rows)
+/* General case, with ordered dithering */
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  register JSAMPROW input_ptr;
+  register JSAMPROW output_ptr;
+  JSAMPROW colorindex_ci;
+  int * dither;			/* points to active row of dither matrix */
+  int row_index, col_index;	/* current indexes into dither matrix */
+  int nc = cinfo->out_color_components;
+  int ci;
+  int row;
+  JDIMENSION col;
+  JDIMENSION width = cinfo->output_width;
+
+  for (row = 0; row < num_rows; row++) {
+    /* Initialize output values to 0 so can process components separately */
+    jzero_far((void FAR *) output_buf[row],
+	      (size_t) (width * SIZEOF(JSAMPLE)));
+    row_index = cquantize->row_index;
+    for (ci = 0; ci < nc; ci++) {
+      input_ptr = input_buf[row] + ci;
+      output_ptr = output_buf[row];
+      colorindex_ci = cquantize->colorindex[ci];
+      dither = cquantize->odither[ci][row_index];
+      col_index = 0;
+
+      for (col = width; col > 0; col--) {
+	/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
+	 * select output value, accumulate into output code for this pixel.
+	 * Range-limiting need not be done explicitly, as we have extended
+	 * the colorindex table to produce the right answers for out-of-range
+	 * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
+	 * required amount of padding.
+	 */
+	*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
+	input_ptr += nc;
+	output_ptr++;
+	col_index = (col_index + 1) & ODITHER_MASK;
+      }
+    }
+    /* Advance row index for next row */
+    row_index = (row_index + 1) & ODITHER_MASK;
+    cquantize->row_index = row_index;
+  }
+}
+
+
+METHODDEF(void)
+quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+		      JSAMPARRAY output_buf, int num_rows)
+/* Fast path for out_color_components==3, with ordered dithering */
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  register int pixcode;
+  register JSAMPROW input_ptr;
+  register JSAMPROW output_ptr;
+  JSAMPROW colorindex0 = cquantize->colorindex[0];
+  JSAMPROW colorindex1 = cquantize->colorindex[1];
+  JSAMPROW colorindex2 = cquantize->colorindex[2];
+  int * dither0;		/* points to active row of dither matrix */
+  int * dither1;
+  int * dither2;
+  int row_index, col_index;	/* current indexes into dither matrix */
+  int row;
+  JDIMENSION col;
+  JDIMENSION width = cinfo->output_width;
+
+  for (row = 0; row < num_rows; row++) {
+    row_index = cquantize->row_index;
+    input_ptr = input_buf[row];
+    output_ptr = output_buf[row];
+    dither0 = cquantize->odither[0][row_index];
+    dither1 = cquantize->odither[1][row_index];
+    dither2 = cquantize->odither[2][row_index];
+    col_index = 0;
+
+    for (col = width; col > 0; col--) {
+      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
+					dither0[col_index]]);
+      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
+					dither1[col_index]]);
+      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
+					dither2[col_index]]);
+      *output_ptr++ = (JSAMPLE) pixcode;
+      col_index = (col_index + 1) & ODITHER_MASK;
+    }
+    row_index = (row_index + 1) & ODITHER_MASK;
+    cquantize->row_index = row_index;
+  }
+}
+
+
+METHODDEF(void)
+quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+		    JSAMPARRAY output_buf, int num_rows)
+/* General case, with Floyd-Steinberg dithering */
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  register LOCFSERROR cur;	/* current error or pixel value */
+  LOCFSERROR belowerr;		/* error for pixel below cur */
+  LOCFSERROR bpreverr;		/* error for below/prev col */
+  LOCFSERROR bnexterr;		/* error for below/next col */
+  LOCFSERROR delta;
+  register FSERRPTR errorptr;	/* => fserrors[] at column before current */
+  register JSAMPROW input_ptr;
+  register JSAMPROW output_ptr;
+  JSAMPROW colorindex_ci;
+  JSAMPROW colormap_ci;
+  int pixcode;
+  int nc = cinfo->out_color_components;
+  int dir;			/* 1 for left-to-right, -1 for right-to-left */
+  int dirnc;			/* dir * nc */
+  int ci;
+  int row;
+  JDIMENSION col;
+  JDIMENSION width = cinfo->output_width;
+  JSAMPLE *range_limit = cinfo->sample_range_limit;
+  SHIFT_TEMPS
+
+  for (row = 0; row < num_rows; row++) {
+    /* Initialize output values to 0 so can process components separately */
+    jzero_far((void FAR *) output_buf[row],
+	      (size_t) (width * SIZEOF(JSAMPLE)));
+    for (ci = 0; ci < nc; ci++) {
+      input_ptr = input_buf[row] + ci;
+      output_ptr = output_buf[row];
+      if (cquantize->on_odd_row) {
+	/* work right to left in this row */
+	input_ptr += (width-1) * nc; /* so point to rightmost pixel */
+	output_ptr += width-1;
+	dir = -1;
+	dirnc = -nc;
+	errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
+      } else {
+	/* work left to right in this row */
+	dir = 1;
+	dirnc = nc;
+	errorptr = cquantize->fserrors[ci]; /* => entry before first column */
+      }
+      colorindex_ci = cquantize->colorindex[ci];
+      colormap_ci = cquantize->sv_colormap[ci];
+      /* Preset error values: no error propagated to first pixel from left */
+      cur = 0;
+      /* and no error propagated to row below yet */
+      belowerr = bpreverr = 0;
+
+      for (col = width; col > 0; col--) {
+	/* cur holds the error propagated from the previous pixel on the
+	 * current line.  Add the error propagated from the previous line
+	 * to form the complete error correction term for this pixel, and
+	 * round the error term (which is expressed * 16) to an integer.
+	 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
+	 * for either sign of the error value.
+	 * Note: errorptr points to *previous* column's array entry.
+	 */
+	cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
+	/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
+	 * The maximum error is +- MAXJSAMPLE; this sets the required size
+	 * of the range_limit array.
+	 */
+	cur += GETJSAMPLE(*input_ptr);
+	cur = GETJSAMPLE(range_limit[cur]);
+	/* Select output value, accumulate into output code for this pixel */
+	pixcode = GETJSAMPLE(colorindex_ci[cur]);
+	*output_ptr += (JSAMPLE) pixcode;
+	/* Compute actual representation error at this pixel */
+	/* Note: we can do this even though we don't have the final */
+	/* pixel code, because the colormap is orthogonal. */
+	cur -= GETJSAMPLE(colormap_ci[pixcode]);
+	/* Compute error fractions to be propagated to adjacent pixels.
+	 * Add these into the running sums, and simultaneously shift the
+	 * next-line error sums left by 1 column.
+	 */
+	bnexterr = cur;
+	delta = cur * 2;
+	cur += delta;		/* form error * 3 */
+	errorptr[0] = (FSERROR) (bpreverr + cur);
+	cur += delta;		/* form error * 5 */
+	bpreverr = belowerr + cur;
+	belowerr = bnexterr;
+	cur += delta;		/* form error * 7 */
+	/* At this point cur contains the 7/16 error value to be propagated
+	 * to the next pixel on the current line, and all the errors for the
+	 * next line have been shifted over. We are therefore ready to move on.
+	 */
+	input_ptr += dirnc;	/* advance input ptr to next column */
+	output_ptr += dir;	/* advance output ptr to next column */
+	errorptr += dir;	/* advance errorptr to current column */
+      }
+      /* Post-loop cleanup: we must unload the final error value into the
+       * final fserrors[] entry.  Note we need not unload belowerr because
+       * it is for the dummy column before or after the actual array.
+       */
+      errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
+    }
+    cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
+  }
+}
+
+
+/*
+ * Allocate workspace for Floyd-Steinberg errors.
+ */
+
+LOCAL(void)
+alloc_fs_workspace (j_decompress_ptr cinfo)
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  size_t arraysize;
+  int i;
+
+  arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
+  for (i = 0; i < cinfo->out_color_components; i++) {
+    cquantize->fserrors[i] = (FSERRPTR)
+      (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
+  }
+}
+
+
+/*
+ * Initialize for one-pass color quantization.
+ */
+
+METHODDEF(void)
+start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  size_t arraysize;
+  int i;
+
+  /* Install my colormap. */
+  cinfo->colormap = cquantize->sv_colormap;
+  cinfo->actual_number_of_colors = cquantize->sv_actual;
+
+  /* Initialize for desired dithering mode. */
+  switch (cinfo->dither_mode) {
+  case JDITHER_NONE:
+    if (cinfo->out_color_components == 3)
+      cquantize->pub.color_quantize = color_quantize3;
+    else
+      cquantize->pub.color_quantize = color_quantize;
+    break;
+  case JDITHER_ORDERED:
+    if (cinfo->out_color_components == 3)
+      cquantize->pub.color_quantize = quantize3_ord_dither;
+    else
+      cquantize->pub.color_quantize = quantize_ord_dither;
+    cquantize->row_index = 0;	/* initialize state for ordered dither */
+    /* If user changed to ordered dither from another mode,
+     * we must recreate the color index table with padding.
+     * This will cost extra space, but probably isn't very likely.
+     */
+    if (! cquantize->is_padded)
+      create_colorindex(cinfo);
+    /* Create ordered-dither tables if we didn't already. */
+    if (cquantize->odither[0] == NULL)
+      create_odither_tables(cinfo);
+    break;
+  case JDITHER_FS:
+    cquantize->pub.color_quantize = quantize_fs_dither;
+    cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
+    /* Allocate Floyd-Steinberg workspace if didn't already. */
+    if (cquantize->fserrors[0] == NULL)
+      alloc_fs_workspace(cinfo);
+    /* Initialize the propagated errors to zero. */
+    arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
+    for (i = 0; i < cinfo->out_color_components; i++)
+      jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
+    break;
+  default:
+    ERREXIT(cinfo, JERR_NOT_COMPILED);
+    break;
+  }
+}
+
+
+/*
+ * Finish up at the end of the pass.
+ */
+
+METHODDEF(void)
+finish_pass_1_quant (j_decompress_ptr cinfo)
+{
+  /* no work in 1-pass case */
+}
+
+
+/*
+ * Switch to a new external colormap between output passes.
+ * Shouldn't get to this module!
+ */
+
+METHODDEF(void)
+new_color_map_1_quant (j_decompress_ptr cinfo)
+{
+  ERREXIT(cinfo, JERR_MODE_CHANGE);
+}
+
+
+/*
+ * Module initialization routine for 1-pass color quantization.
+ */
+
+GLOBAL(void)
+jinit_1pass_quantizer (j_decompress_ptr cinfo)
+{
+  my_cquantize_ptr cquantize;
+
+  cquantize = (my_cquantize_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_cquantizer));
+  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
+  cquantize->pub.start_pass = start_pass_1_quant;
+  cquantize->pub.finish_pass = finish_pass_1_quant;
+  cquantize->pub.new_color_map = new_color_map_1_quant;
+  cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
+  cquantize->odither[0] = NULL;	/* Also flag odither arrays not allocated */
+
+  /* Make sure my internal arrays won't overflow */
+  if (cinfo->out_color_components > MAX_Q_COMPS)
+    ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
+  /* Make sure colormap indexes can be represented by JSAMPLEs */
+  if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
+    ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
+
+  /* Create the colormap and color index table. */
+  create_colormap(cinfo);
+  create_colorindex(cinfo);
+
+  /* Allocate Floyd-Steinberg workspace now if requested.
+   * We do this now since it is FAR storage and may affect the memory
+   * manager's space calculations.  If the user changes to FS dither
+   * mode in a later pass, we will allocate the space then, and will
+   * possibly overrun the max_memory_to_use setting.
+   */
+  if (cinfo->dither_mode == JDITHER_FS)
+    alloc_fs_workspace(cinfo);
+}
+
+#endif /* QUANT_1PASS_SUPPORTED */

=== added file 'src/libjpeg-turbo/jquant2.c'
--- src/libjpeg-turbo/jquant2.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jquant2.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,1293 @@ 
+/*
+ * jquant2.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * Copyright (C) 2009, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains 2-pass color quantization (color mapping) routines.
+ * These routines provide selection of a custom color map for an image,
+ * followed by mapping of the image to that color map, with optional
+ * Floyd-Steinberg dithering.
+ * It is also possible to use just the second pass to map to an arbitrary
+ * externally-given color map.
+ *
+ * Note: ordered dithering is not supported, since there isn't any fast
+ * way to compute intercolor distances; it's unclear that ordered dither's
+ * fundamental assumptions even hold with an irregularly spaced color map.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+#ifdef QUANT_2PASS_SUPPORTED
+
+
+/*
+ * This module implements the well-known Heckbert paradigm for color
+ * quantization.  Most of the ideas used here can be traced back to
+ * Heckbert's seminal paper
+ *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
+ *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
+ *
+ * In the first pass over the image, we accumulate a histogram showing the
+ * usage count of each possible color.  To keep the histogram to a reasonable
+ * size, we reduce the precision of the input; typical practice is to retain
+ * 5 or 6 bits per color, so that 8 or 4 different input values are counted
+ * in the same histogram cell.
+ *
+ * Next, the color-selection step begins with a box representing the whole
+ * color space, and repeatedly splits the "largest" remaining box until we
+ * have as many boxes as desired colors.  Then the mean color in each
+ * remaining box becomes one of the possible output colors.
+ * 
+ * The second pass over the image maps each input pixel to the closest output
+ * color (optionally after applying a Floyd-Steinberg dithering correction).
+ * This mapping is logically trivial, but making it go fast enough requires
+ * considerable care.
+ *
+ * Heckbert-style quantizers vary a good deal in their policies for choosing
+ * the "largest" box and deciding where to cut it.  The particular policies
+ * used here have proved out well in experimental comparisons, but better ones
+ * may yet be found.
+ *
+ * In earlier versions of the IJG code, this module quantized in YCbCr color
+ * space, processing the raw upsampled data without a color conversion step.
+ * This allowed the color conversion math to be done only once per colormap
+ * entry, not once per pixel.  However, that optimization precluded other
+ * useful optimizations (such as merging color conversion with upsampling)
+ * and it also interfered with desired capabilities such as quantizing to an
+ * externally-supplied colormap.  We have therefore abandoned that approach.
+ * The present code works in the post-conversion color space, typically RGB.
+ *
+ * To improve the visual quality of the results, we actually work in scaled
+ * RGB space, giving G distances more weight than R, and R in turn more than
+ * B.  To do everything in integer math, we must use integer scale factors.
+ * The 2/3/1 scale factors used here correspond loosely to the relative
+ * weights of the colors in the NTSC grayscale equation.
+ * If you want to use this code to quantize a non-RGB color space, you'll
+ * probably need to change these scale factors.
+ */
+
+#define R_SCALE 2		/* scale R distances by this much */
+#define G_SCALE 3		/* scale G distances by this much */
+#define B_SCALE 1		/* and B by this much */
+
+static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE};
+#define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]]
+#define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]]
+#define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]]
+
+/*
+ * First we have the histogram data structure and routines for creating it.
+ *
+ * The number of bits of precision can be adjusted by changing these symbols.
+ * We recommend keeping 6 bits for G and 5 each for R and B.
+ * If you have plenty of memory and cycles, 6 bits all around gives marginally
+ * better results; if you are short of memory, 5 bits all around will save
+ * some space but degrade the results.
+ * To maintain a fully accurate histogram, we'd need to allocate a "long"
+ * (preferably unsigned long) for each cell.  In practice this is overkill;
+ * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
+ * and clamping those that do overflow to the maximum value will give close-
+ * enough results.  This reduces the recommended histogram size from 256Kb
+ * to 128Kb, which is a useful savings on PC-class machines.
+ * (In the second pass the histogram space is re-used for pixel mapping data;
+ * in that capacity, each cell must be able to store zero to the number of
+ * desired colors.  16 bits/cell is plenty for that too.)
+ * Since the JPEG code is intended to run in small memory model on 80x86
+ * machines, we can't just allocate the histogram in one chunk.  Instead
+ * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
+ * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
+ * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
+ * on 80x86 machines, the pointer row is in near memory but the actual
+ * arrays are in far memory (same arrangement as we use for image arrays).
+ */
+
+#define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
+
+/* These will do the right thing for either R,G,B or B,G,R color order,
+ * but you may not like the results for other color orders.
+ */
+#define HIST_C0_BITS  5		/* bits of precision in R/B histogram */
+#define HIST_C1_BITS  6		/* bits of precision in G histogram */
+#define HIST_C2_BITS  5		/* bits of precision in B/R histogram */
+
+/* Number of elements along histogram axes. */
+#define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
+#define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
+#define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
+
+/* These are the amounts to shift an input value to get a histogram index. */
+#define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
+#define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
+#define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
+
+
+typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */
+
+typedef histcell FAR * histptr;	/* for pointers to histogram cells */
+
+typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
+typedef hist1d FAR * hist2d;	/* type for the 2nd-level pointers */
+typedef hist2d * hist3d;	/* type for top-level pointer */
+
+
+/* Declarations for Floyd-Steinberg dithering.
+ *
+ * Errors are accumulated into the array fserrors[], at a resolution of
+ * 1/16th of a pixel count.  The error at a given pixel is propagated
+ * to its not-yet-processed neighbors using the standard F-S fractions,
+ *		...	(here)	7/16
+ *		3/16	5/16	1/16
+ * We work left-to-right on even rows, right-to-left on odd rows.
+ *
+ * We can get away with a single array (holding one row's worth of errors)
+ * by using it to store the current row's errors at pixel columns not yet
+ * processed, but the next row's errors at columns already processed.  We
+ * need only a few extra variables to hold the errors immediately around the
+ * current column.  (If we are lucky, those variables are in registers, but
+ * even if not, they're probably cheaper to access than array elements are.)
+ *
+ * The fserrors[] array has (#columns + 2) entries; the extra entry at
+ * each end saves us from special-casing the first and last pixels.
+ * Each entry is three values long, one value for each color component.
+ *
+ * Note: on a wide image, we might not have enough room in a PC's near data
+ * segment to hold the error array; so it is allocated with alloc_large.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+typedef INT16 FSERROR;		/* 16 bits should be enough */
+typedef int LOCFSERROR;		/* use 'int' for calculation temps */
+#else
+typedef INT32 FSERROR;		/* may need more than 16 bits */
+typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
+#endif
+
+typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
+
+
+/* Private subobject */
+
+typedef struct {
+  struct jpeg_color_quantizer pub; /* public fields */
+
+  /* Space for the eventually created colormap is stashed here */
+  JSAMPARRAY sv_colormap;	/* colormap allocated at init time */
+  int desired;			/* desired # of colors = size of colormap */
+
+  /* Variables for accumulating image statistics */
+  hist3d histogram;		/* pointer to the histogram */
+
+  boolean needs_zeroed;		/* TRUE if next pass must zero histogram */
+
+  /* Variables for Floyd-Steinberg dithering */
+  FSERRPTR fserrors;		/* accumulated errors */
+  boolean on_odd_row;		/* flag to remember which row we are on */
+  int * error_limiter;		/* table for clamping the applied error */
+} my_cquantizer;
+
+typedef my_cquantizer * my_cquantize_ptr;
+
+
+/*
+ * Prescan some rows of pixels.
+ * In this module the prescan simply updates the histogram, which has been
+ * initialized to zeroes by start_pass.
+ * An output_buf parameter is required by the method signature, but no data
+ * is actually output (in fact the buffer controller is probably passing a
+ * NULL pointer).
+ */
+
+METHODDEF(void)
+prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+		  JSAMPARRAY output_buf, int num_rows)
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  register JSAMPROW ptr;
+  register histptr histp;
+  register hist3d histogram = cquantize->histogram;
+  int row;
+  JDIMENSION col;
+  JDIMENSION width = cinfo->output_width;
+
+  for (row = 0; row < num_rows; row++) {
+    ptr = input_buf[row];
+    for (col = width; col > 0; col--) {
+      /* get pixel value and index into the histogram */
+      histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
+			 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
+			 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
+      /* increment, check for overflow and undo increment if so. */
+      if (++(*histp) <= 0)
+	(*histp)--;
+      ptr += 3;
+    }
+  }
+}
+
+
+/*
+ * Next we have the really interesting routines: selection of a colormap
+ * given the completed histogram.
+ * These routines work with a list of "boxes", each representing a rectangular
+ * subset of the input color space (to histogram precision).
+ */
+
+typedef struct {
+  /* The bounds of the box (inclusive); expressed as histogram indexes */
+  int c0min, c0max;
+  int c1min, c1max;
+  int c2min, c2max;
+  /* The volume (actually 2-norm) of the box */
+  INT32 volume;
+  /* The number of nonzero histogram cells within this box */
+  long colorcount;
+} box;
+
+typedef box * boxptr;
+
+
+LOCAL(boxptr)
+find_biggest_color_pop (boxptr boxlist, int numboxes)
+/* Find the splittable box with the largest color population */
+/* Returns NULL if no splittable boxes remain */
+{
+  register boxptr boxp;
+  register int i;
+  register long maxc = 0;
+  boxptr which = NULL;
+  
+  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
+    if (boxp->colorcount > maxc && boxp->volume > 0) {
+      which = boxp;
+      maxc = boxp->colorcount;
+    }
+  }
+  return which;
+}
+
+
+LOCAL(boxptr)
+find_biggest_volume (boxptr boxlist, int numboxes)
+/* Find the splittable box with the largest (scaled) volume */
+/* Returns NULL if no splittable boxes remain */
+{
+  register boxptr boxp;
+  register int i;
+  register INT32 maxv = 0;
+  boxptr which = NULL;
+  
+  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
+    if (boxp->volume > maxv) {
+      which = boxp;
+      maxv = boxp->volume;
+    }
+  }
+  return which;
+}
+
+
+LOCAL(void)
+update_box (j_decompress_ptr cinfo, boxptr boxp)
+/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
+/* and recompute its volume and population */
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  hist3d histogram = cquantize->histogram;
+  histptr histp;
+  int c0,c1,c2;
+  int c0min,c0max,c1min,c1max,c2min,c2max;
+  INT32 dist0,dist1,dist2;
+  long ccount;
+  
+  c0min = boxp->c0min;  c0max = boxp->c0max;
+  c1min = boxp->c1min;  c1max = boxp->c1max;
+  c2min = boxp->c2min;  c2max = boxp->c2max;
+  
+  if (c0max > c0min)
+    for (c0 = c0min; c0 <= c0max; c0++)
+      for (c1 = c1min; c1 <= c1max; c1++) {
+	histp = & histogram[c0][c1][c2min];
+	for (c2 = c2min; c2 <= c2max; c2++)
+	  if (*histp++ != 0) {
+	    boxp->c0min = c0min = c0;
+	    goto have_c0min;
+	  }
+      }
+ have_c0min:
+  if (c0max > c0min)
+    for (c0 = c0max; c0 >= c0min; c0--)
+      for (c1 = c1min; c1 <= c1max; c1++) {
+	histp = & histogram[c0][c1][c2min];
+	for (c2 = c2min; c2 <= c2max; c2++)
+	  if (*histp++ != 0) {
+	    boxp->c0max = c0max = c0;
+	    goto have_c0max;
+	  }
+      }
+ have_c0max:
+  if (c1max > c1min)
+    for (c1 = c1min; c1 <= c1max; c1++)
+      for (c0 = c0min; c0 <= c0max; c0++) {
+	histp = & histogram[c0][c1][c2min];
+	for (c2 = c2min; c2 <= c2max; c2++)
+	  if (*histp++ != 0) {
+	    boxp->c1min = c1min = c1;
+	    goto have_c1min;
+	  }
+      }
+ have_c1min:
+  if (c1max > c1min)
+    for (c1 = c1max; c1 >= c1min; c1--)
+      for (c0 = c0min; c0 <= c0max; c0++) {
+	histp = & histogram[c0][c1][c2min];
+	for (c2 = c2min; c2 <= c2max; c2++)
+	  if (*histp++ != 0) {
+	    boxp->c1max = c1max = c1;
+	    goto have_c1max;
+	  }
+      }
+ have_c1max:
+  if (c2max > c2min)
+    for (c2 = c2min; c2 <= c2max; c2++)
+      for (c0 = c0min; c0 <= c0max; c0++) {
+	histp = & histogram[c0][c1min][c2];
+	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
+	  if (*histp != 0) {
+	    boxp->c2min = c2min = c2;
+	    goto have_c2min;
+	  }
+      }
+ have_c2min:
+  if (c2max > c2min)
+    for (c2 = c2max; c2 >= c2min; c2--)
+      for (c0 = c0min; c0 <= c0max; c0++) {
+	histp = & histogram[c0][c1min][c2];
+	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
+	  if (*histp != 0) {
+	    boxp->c2max = c2max = c2;
+	    goto have_c2max;
+	  }
+      }
+ have_c2max:
+
+  /* Update box volume.
+   * We use 2-norm rather than real volume here; this biases the method
+   * against making long narrow boxes, and it has the side benefit that
+   * a box is splittable iff norm > 0.
+   * Since the differences are expressed in histogram-cell units,
+   * we have to shift back to JSAMPLE units to get consistent distances;
+   * after which, we scale according to the selected distance scale factors.
+   */
+  dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
+  dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
+  dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
+  boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
+  
+  /* Now scan remaining volume of box and compute population */
+  ccount = 0;
+  for (c0 = c0min; c0 <= c0max; c0++)
+    for (c1 = c1min; c1 <= c1max; c1++) {
+      histp = & histogram[c0][c1][c2min];
+      for (c2 = c2min; c2 <= c2max; c2++, histp++)
+	if (*histp != 0) {
+	  ccount++;
+	}
+    }
+  boxp->colorcount = ccount;
+}
+
+
+LOCAL(int)
+median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
+	    int desired_colors)
+/* Repeatedly select and split the largest box until we have enough boxes */
+{
+  int n,lb;
+  int c0,c1,c2,cmax;
+  register boxptr b1,b2;
+
+  while (numboxes < desired_colors) {
+    /* Select box to split.
+     * Current algorithm: by population for first half, then by volume.
+     */
+    if (numboxes*2 <= desired_colors) {
+      b1 = find_biggest_color_pop(boxlist, numboxes);
+    } else {
+      b1 = find_biggest_volume(boxlist, numboxes);
+    }
+    if (b1 == NULL)		/* no splittable boxes left! */
+      break;
+    b2 = &boxlist[numboxes];	/* where new box will go */
+    /* Copy the color bounds to the new box. */
+    b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
+    b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
+    /* Choose which axis to split the box on.
+     * Current algorithm: longest scaled axis.
+     * See notes in update_box about scaling distances.
+     */
+    c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
+    c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
+    c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
+    /* We want to break any ties in favor of green, then red, blue last.
+     * This code does the right thing for R,G,B or B,G,R color orders only.
+     */
+    if (rgb_red[cinfo->out_color_space] == 0) {
+      cmax = c1; n = 1;
+      if (c0 > cmax) { cmax = c0; n = 0; }
+      if (c2 > cmax) { n = 2; }
+    }
+    else {
+      cmax = c1; n = 1;
+      if (c2 > cmax) { cmax = c2; n = 2; }
+      if (c0 > cmax) { n = 0; }
+    }
+    /* Choose split point along selected axis, and update box bounds.
+     * Current algorithm: split at halfway point.
+     * (Since the box has been shrunk to minimum volume,
+     * any split will produce two nonempty subboxes.)
+     * Note that lb value is max for lower box, so must be < old max.
+     */
+    switch (n) {
+    case 0:
+      lb = (b1->c0max + b1->c0min) / 2;
+      b1->c0max = lb;
+      b2->c0min = lb+1;
+      break;
+    case 1:
+      lb = (b1->c1max + b1->c1min) / 2;
+      b1->c1max = lb;
+      b2->c1min = lb+1;
+      break;
+    case 2:
+      lb = (b1->c2max + b1->c2min) / 2;
+      b1->c2max = lb;
+      b2->c2min = lb+1;
+      break;
+    }
+    /* Update stats for boxes */
+    update_box(cinfo, b1);
+    update_box(cinfo, b2);
+    numboxes++;
+  }
+  return numboxes;
+}
+
+
+LOCAL(void)
+compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
+/* Compute representative color for a box, put it in colormap[icolor] */
+{
+  /* Current algorithm: mean weighted by pixels (not colors) */
+  /* Note it is important to get the rounding correct! */
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  hist3d histogram = cquantize->histogram;
+  histptr histp;
+  int c0,c1,c2;
+  int c0min,c0max,c1min,c1max,c2min,c2max;
+  long count;
+  long total = 0;
+  long c0total = 0;
+  long c1total = 0;
+  long c2total = 0;
+  
+  c0min = boxp->c0min;  c0max = boxp->c0max;
+  c1min = boxp->c1min;  c1max = boxp->c1max;
+  c2min = boxp->c2min;  c2max = boxp->c2max;
+  
+  for (c0 = c0min; c0 <= c0max; c0++)
+    for (c1 = c1min; c1 <= c1max; c1++) {
+      histp = & histogram[c0][c1][c2min];
+      for (c2 = c2min; c2 <= c2max; c2++) {
+	if ((count = *histp++) != 0) {
+	  total += count;
+	  c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
+	  c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
+	  c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
+	}
+      }
+    }
+  
+  cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
+  cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
+  cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
+}
+
+
+LOCAL(void)
+select_colors (j_decompress_ptr cinfo, int desired_colors)
+/* Master routine for color selection */
+{
+  boxptr boxlist;
+  int numboxes;
+  int i;
+
+  /* Allocate workspace for box list */
+  boxlist = (boxptr) (*cinfo->mem->alloc_small)
+    ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
+  /* Initialize one box containing whole space */
+  numboxes = 1;
+  boxlist[0].c0min = 0;
+  boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
+  boxlist[0].c1min = 0;
+  boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
+  boxlist[0].c2min = 0;
+  boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
+  /* Shrink it to actually-used volume and set its statistics */
+  update_box(cinfo, & boxlist[0]);
+  /* Perform median-cut to produce final box list */
+  numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
+  /* Compute the representative color for each box, fill colormap */
+  for (i = 0; i < numboxes; i++)
+    compute_color(cinfo, & boxlist[i], i);
+  cinfo->actual_number_of_colors = numboxes;
+  TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
+}
+
+
+/*
+ * These routines are concerned with the time-critical task of mapping input
+ * colors to the nearest color in the selected colormap.
+ *
+ * We re-use the histogram space as an "inverse color map", essentially a
+ * cache for the results of nearest-color searches.  All colors within a
+ * histogram cell will be mapped to the same colormap entry, namely the one
+ * closest to the cell's center.  This may not be quite the closest entry to
+ * the actual input color, but it's almost as good.  A zero in the cache
+ * indicates we haven't found the nearest color for that cell yet; the array
+ * is cleared to zeroes before starting the mapping pass.  When we find the
+ * nearest color for a cell, its colormap index plus one is recorded in the
+ * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
+ * when they need to use an unfilled entry in the cache.
+ *
+ * Our method of efficiently finding nearest colors is based on the "locally
+ * sorted search" idea described by Heckbert and on the incremental distance
+ * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
+ * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
+ * the distances from a given colormap entry to each cell of the histogram can
+ * be computed quickly using an incremental method: the differences between
+ * distances to adjacent cells themselves differ by a constant.  This allows a
+ * fairly fast implementation of the "brute force" approach of computing the
+ * distance from every colormap entry to every histogram cell.  Unfortunately,
+ * it needs a work array to hold the best-distance-so-far for each histogram
+ * cell (because the inner loop has to be over cells, not colormap entries).
+ * The work array elements have to be INT32s, so the work array would need
+ * 256Kb at our recommended precision.  This is not feasible in DOS machines.
+ *
+ * To get around these problems, we apply Thomas' method to compute the
+ * nearest colors for only the cells within a small subbox of the histogram.
+ * The work array need be only as big as the subbox, so the memory usage
+ * problem is solved.  Furthermore, we need not fill subboxes that are never
+ * referenced in pass2; many images use only part of the color gamut, so a
+ * fair amount of work is saved.  An additional advantage of this
+ * approach is that we can apply Heckbert's locality criterion to quickly
+ * eliminate colormap entries that are far away from the subbox; typically
+ * three-fourths of the colormap entries are rejected by Heckbert's criterion,
+ * and we need not compute their distances to individual cells in the subbox.
+ * The speed of this approach is heavily influenced by the subbox size: too
+ * small means too much overhead, too big loses because Heckbert's criterion
+ * can't eliminate as many colormap entries.  Empirically the best subbox
+ * size seems to be about 1/512th of the histogram (1/8th in each direction).
+ *
+ * Thomas' article also describes a refined method which is asymptotically
+ * faster than the brute-force method, but it is also far more complex and
+ * cannot efficiently be applied to small subboxes.  It is therefore not
+ * useful for programs intended to be portable to DOS machines.  On machines
+ * with plenty of memory, filling the whole histogram in one shot with Thomas'
+ * refined method might be faster than the present code --- but then again,
+ * it might not be any faster, and it's certainly more complicated.
+ */
+
+
+/* log2(histogram cells in update box) for each axis; this can be adjusted */
+#define BOX_C0_LOG  (HIST_C0_BITS-3)
+#define BOX_C1_LOG  (HIST_C1_BITS-3)
+#define BOX_C2_LOG  (HIST_C2_BITS-3)
+
+#define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
+#define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
+#define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
+
+#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
+#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
+#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
+
+
+/*
+ * The next three routines implement inverse colormap filling.  They could
+ * all be folded into one big routine, but splitting them up this way saves
+ * some stack space (the mindist[] and bestdist[] arrays need not coexist)
+ * and may allow some compilers to produce better code by registerizing more
+ * inner-loop variables.
+ */
+
+LOCAL(int)
+find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
+		    JSAMPLE colorlist[])
+/* Locate the colormap entries close enough to an update box to be candidates
+ * for the nearest entry to some cell(s) in the update box.  The update box
+ * is specified by the center coordinates of its first cell.  The number of
+ * candidate colormap entries is returned, and their colormap indexes are
+ * placed in colorlist[].
+ * This routine uses Heckbert's "locally sorted search" criterion to select
+ * the colors that need further consideration.
+ */
+{
+  int numcolors = cinfo->actual_number_of_colors;
+  int maxc0, maxc1, maxc2;
+  int centerc0, centerc1, centerc2;
+  int i, x, ncolors;
+  INT32 minmaxdist, min_dist, max_dist, tdist;
+  INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */
+
+  /* Compute true coordinates of update box's upper corner and center.
+   * Actually we compute the coordinates of the center of the upper-corner
+   * histogram cell, which are the upper bounds of the volume we care about.
+   * Note that since ">>" rounds down, the "center" values may be closer to
+   * min than to max; hence comparisons to them must be "<=", not "<".
+   */
+  maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
+  centerc0 = (minc0 + maxc0) >> 1;
+  maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
+  centerc1 = (minc1 + maxc1) >> 1;
+  maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
+  centerc2 = (minc2 + maxc2) >> 1;
+
+  /* For each color in colormap, find:
+   *  1. its minimum squared-distance to any point in the update box
+   *     (zero if color is within update box);
+   *  2. its maximum squared-distance to any point in the update box.
+   * Both of these can be found by considering only the corners of the box.
+   * We save the minimum distance for each color in mindist[];
+   * only the smallest maximum distance is of interest.
+   */
+  minmaxdist = 0x7FFFFFFFL;
+
+  for (i = 0; i < numcolors; i++) {
+    /* We compute the squared-c0-distance term, then add in the other two. */
+    x = GETJSAMPLE(cinfo->colormap[0][i]);
+    if (x < minc0) {
+      tdist = (x - minc0) * C0_SCALE;
+      min_dist = tdist*tdist;
+      tdist = (x - maxc0) * C0_SCALE;
+      max_dist = tdist*tdist;
+    } else if (x > maxc0) {
+      tdist = (x - maxc0) * C0_SCALE;
+      min_dist = tdist*tdist;
+      tdist = (x - minc0) * C0_SCALE;
+      max_dist = tdist*tdist;
+    } else {
+      /* within cell range so no contribution to min_dist */
+      min_dist = 0;
+      if (x <= centerc0) {
+	tdist = (x - maxc0) * C0_SCALE;
+	max_dist = tdist*tdist;
+      } else {
+	tdist = (x - minc0) * C0_SCALE;
+	max_dist = tdist*tdist;
+      }
+    }
+
+    x = GETJSAMPLE(cinfo->colormap[1][i]);
+    if (x < minc1) {
+      tdist = (x - minc1) * C1_SCALE;
+      min_dist += tdist*tdist;
+      tdist = (x - maxc1) * C1_SCALE;
+      max_dist += tdist*tdist;
+    } else if (x > maxc1) {
+      tdist = (x - maxc1) * C1_SCALE;
+      min_dist += tdist*tdist;
+      tdist = (x - minc1) * C1_SCALE;
+      max_dist += tdist*tdist;
+    } else {
+      /* within cell range so no contribution to min_dist */
+      if (x <= centerc1) {
+	tdist = (x - maxc1) * C1_SCALE;
+	max_dist += tdist*tdist;
+      } else {
+	tdist = (x - minc1) * C1_SCALE;
+	max_dist += tdist*tdist;
+      }
+    }
+
+    x = GETJSAMPLE(cinfo->colormap[2][i]);
+    if (x < minc2) {
+      tdist = (x - minc2) * C2_SCALE;
+      min_dist += tdist*tdist;
+      tdist = (x - maxc2) * C2_SCALE;
+      max_dist += tdist*tdist;
+    } else if (x > maxc2) {
+      tdist = (x - maxc2) * C2_SCALE;
+      min_dist += tdist*tdist;
+      tdist = (x - minc2) * C2_SCALE;
+      max_dist += tdist*tdist;
+    } else {
+      /* within cell range so no contribution to min_dist */
+      if (x <= centerc2) {
+	tdist = (x - maxc2) * C2_SCALE;
+	max_dist += tdist*tdist;
+      } else {
+	tdist = (x - minc2) * C2_SCALE;
+	max_dist += tdist*tdist;
+      }
+    }
+
+    mindist[i] = min_dist;	/* save away the results */
+    if (max_dist < minmaxdist)
+      minmaxdist = max_dist;
+  }
+
+  /* Now we know that no cell in the update box is more than minmaxdist
+   * away from some colormap entry.  Therefore, only colors that are
+   * within minmaxdist of some part of the box need be considered.
+   */
+  ncolors = 0;
+  for (i = 0; i < numcolors; i++) {
+    if (mindist[i] <= minmaxdist)
+      colorlist[ncolors++] = (JSAMPLE) i;
+  }
+  return ncolors;
+}
+
+
+LOCAL(void)
+find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
+		  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
+/* Find the closest colormap entry for each cell in the update box,
+ * given the list of candidate colors prepared by find_nearby_colors.
+ * Return the indexes of the closest entries in the bestcolor[] array.
+ * This routine uses Thomas' incremental distance calculation method to
+ * find the distance from a colormap entry to successive cells in the box.
+ */
+{
+  int ic0, ic1, ic2;
+  int i, icolor;
+  register INT32 * bptr;	/* pointer into bestdist[] array */
+  JSAMPLE * cptr;		/* pointer into bestcolor[] array */
+  INT32 dist0, dist1;		/* initial distance values */
+  register INT32 dist2;		/* current distance in inner loop */
+  INT32 xx0, xx1;		/* distance increments */
+  register INT32 xx2;
+  INT32 inc0, inc1, inc2;	/* initial values for increments */
+  /* This array holds the distance to the nearest-so-far color for each cell */
+  INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
+
+  /* Initialize best-distance for each cell of the update box */
+  bptr = bestdist;
+  for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
+    *bptr++ = 0x7FFFFFFFL;
+  
+  /* For each color selected by find_nearby_colors,
+   * compute its distance to the center of each cell in the box.
+   * If that's less than best-so-far, update best distance and color number.
+   */
+  
+  /* Nominal steps between cell centers ("x" in Thomas article) */
+#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
+#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
+#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
+  
+  for (i = 0; i < numcolors; i++) {
+    icolor = GETJSAMPLE(colorlist[i]);
+    /* Compute (square of) distance from minc0/c1/c2 to this color */
+    inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
+    dist0 = inc0*inc0;
+    inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
+    dist0 += inc1*inc1;
+    inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
+    dist0 += inc2*inc2;
+    /* Form the initial difference increments */
+    inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
+    inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
+    inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
+    /* Now loop over all cells in box, updating distance per Thomas method */
+    bptr = bestdist;
+    cptr = bestcolor;
+    xx0 = inc0;
+    for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
+      dist1 = dist0;
+      xx1 = inc1;
+      for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
+	dist2 = dist1;
+	xx2 = inc2;
+	for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
+	  if (dist2 < *bptr) {
+	    *bptr = dist2;
+	    *cptr = (JSAMPLE) icolor;
+	  }
+	  dist2 += xx2;
+	  xx2 += 2 * STEP_C2 * STEP_C2;
+	  bptr++;
+	  cptr++;
+	}
+	dist1 += xx1;
+	xx1 += 2 * STEP_C1 * STEP_C1;
+      }
+      dist0 += xx0;
+      xx0 += 2 * STEP_C0 * STEP_C0;
+    }
+  }
+}
+
+
+LOCAL(void)
+fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
+/* Fill the inverse-colormap entries in the update box that contains */
+/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
+/* we can fill as many others as we wish.) */
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  hist3d histogram = cquantize->histogram;
+  int minc0, minc1, minc2;	/* lower left corner of update box */
+  int ic0, ic1, ic2;
+  register JSAMPLE * cptr;	/* pointer into bestcolor[] array */
+  register histptr cachep;	/* pointer into main cache array */
+  /* This array lists the candidate colormap indexes. */
+  JSAMPLE colorlist[MAXNUMCOLORS];
+  int numcolors;		/* number of candidate colors */
+  /* This array holds the actually closest colormap index for each cell. */
+  JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
+
+  /* Convert cell coordinates to update box ID */
+  c0 >>= BOX_C0_LOG;
+  c1 >>= BOX_C1_LOG;
+  c2 >>= BOX_C2_LOG;
+
+  /* Compute true coordinates of update box's origin corner.
+   * Actually we compute the coordinates of the center of the corner
+   * histogram cell, which are the lower bounds of the volume we care about.
+   */
+  minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
+  minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
+  minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
+  
+  /* Determine which colormap entries are close enough to be candidates
+   * for the nearest entry to some cell in the update box.
+   */
+  numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
+
+  /* Determine the actually nearest colors. */
+  find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
+		   bestcolor);
+
+  /* Save the best color numbers (plus 1) in the main cache array */
+  c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */
+  c1 <<= BOX_C1_LOG;
+  c2 <<= BOX_C2_LOG;
+  cptr = bestcolor;
+  for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
+    for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
+      cachep = & histogram[c0+ic0][c1+ic1][c2];
+      for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
+	*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
+      }
+    }
+  }
+}
+
+
+/*
+ * Map some rows of pixels to the output colormapped representation.
+ */
+
+METHODDEF(void)
+pass2_no_dither (j_decompress_ptr cinfo,
+		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
+/* This version performs no dithering */
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  hist3d histogram = cquantize->histogram;
+  register JSAMPROW inptr, outptr;
+  register histptr cachep;
+  register int c0, c1, c2;
+  int row;
+  JDIMENSION col;
+  JDIMENSION width = cinfo->output_width;
+
+  for (row = 0; row < num_rows; row++) {
+    inptr = input_buf[row];
+    outptr = output_buf[row];
+    for (col = width; col > 0; col--) {
+      /* get pixel value and index into the cache */
+      c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
+      c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
+      c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
+      cachep = & histogram[c0][c1][c2];
+      /* If we have not seen this color before, find nearest colormap entry */
+      /* and update the cache */
+      if (*cachep == 0)
+	fill_inverse_cmap(cinfo, c0,c1,c2);
+      /* Now emit the colormap index for this cell */
+      *outptr++ = (JSAMPLE) (*cachep - 1);
+    }
+  }
+}
+
+
+METHODDEF(void)
+pass2_fs_dither (j_decompress_ptr cinfo,
+		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
+/* This version performs Floyd-Steinberg dithering */
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  hist3d histogram = cquantize->histogram;
+  register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */
+  LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
+  LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
+  register FSERRPTR errorptr;	/* => fserrors[] at column before current */
+  JSAMPROW inptr;		/* => current input pixel */
+  JSAMPROW outptr;		/* => current output pixel */
+  histptr cachep;
+  int dir;			/* +1 or -1 depending on direction */
+  int dir3;			/* 3*dir, for advancing inptr & errorptr */
+  int row;
+  JDIMENSION col;
+  JDIMENSION width = cinfo->output_width;
+  JSAMPLE *range_limit = cinfo->sample_range_limit;
+  int *error_limit = cquantize->error_limiter;
+  JSAMPROW colormap0 = cinfo->colormap[0];
+  JSAMPROW colormap1 = cinfo->colormap[1];
+  JSAMPROW colormap2 = cinfo->colormap[2];
+  SHIFT_TEMPS
+
+  for (row = 0; row < num_rows; row++) {
+    inptr = input_buf[row];
+    outptr = output_buf[row];
+    if (cquantize->on_odd_row) {
+      /* work right to left in this row */
+      inptr += (width-1) * 3;	/* so point to rightmost pixel */
+      outptr += width-1;
+      dir = -1;
+      dir3 = -3;
+      errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
+      cquantize->on_odd_row = FALSE; /* flip for next time */
+    } else {
+      /* work left to right in this row */
+      dir = 1;
+      dir3 = 3;
+      errorptr = cquantize->fserrors; /* => entry before first real column */
+      cquantize->on_odd_row = TRUE; /* flip for next time */
+    }
+    /* Preset error values: no error propagated to first pixel from left */
+    cur0 = cur1 = cur2 = 0;
+    /* and no error propagated to row below yet */
+    belowerr0 = belowerr1 = belowerr2 = 0;
+    bpreverr0 = bpreverr1 = bpreverr2 = 0;
+
+    for (col = width; col > 0; col--) {
+      /* curN holds the error propagated from the previous pixel on the
+       * current line.  Add the error propagated from the previous line
+       * to form the complete error correction term for this pixel, and
+       * round the error term (which is expressed * 16) to an integer.
+       * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
+       * for either sign of the error value.
+       * Note: errorptr points to *previous* column's array entry.
+       */
+      cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
+      cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
+      cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
+      /* Limit the error using transfer function set by init_error_limit.
+       * See comments with init_error_limit for rationale.
+       */
+      cur0 = error_limit[cur0];
+      cur1 = error_limit[cur1];
+      cur2 = error_limit[cur2];
+      /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
+       * The maximum error is +- MAXJSAMPLE (or less with error limiting);
+       * this sets the required size of the range_limit array.
+       */
+      cur0 += GETJSAMPLE(inptr[0]);
+      cur1 += GETJSAMPLE(inptr[1]);
+      cur2 += GETJSAMPLE(inptr[2]);
+      cur0 = GETJSAMPLE(range_limit[cur0]);
+      cur1 = GETJSAMPLE(range_limit[cur1]);
+      cur2 = GETJSAMPLE(range_limit[cur2]);
+      /* Index into the cache with adjusted pixel value */
+      cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
+      /* If we have not seen this color before, find nearest colormap */
+      /* entry and update the cache */
+      if (*cachep == 0)
+	fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
+      /* Now emit the colormap index for this cell */
+      { register int pixcode = *cachep - 1;
+	*outptr = (JSAMPLE) pixcode;
+	/* Compute representation error for this pixel */
+	cur0 -= GETJSAMPLE(colormap0[pixcode]);
+	cur1 -= GETJSAMPLE(colormap1[pixcode]);
+	cur2 -= GETJSAMPLE(colormap2[pixcode]);
+      }
+      /* Compute error fractions to be propagated to adjacent pixels.
+       * Add these into the running sums, and simultaneously shift the
+       * next-line error sums left by 1 column.
+       */
+      { register LOCFSERROR bnexterr, delta;
+
+	bnexterr = cur0;	/* Process component 0 */
+	delta = cur0 * 2;
+	cur0 += delta;		/* form error * 3 */
+	errorptr[0] = (FSERROR) (bpreverr0 + cur0);
+	cur0 += delta;		/* form error * 5 */
+	bpreverr0 = belowerr0 + cur0;
+	belowerr0 = bnexterr;
+	cur0 += delta;		/* form error * 7 */
+	bnexterr = cur1;	/* Process component 1 */
+	delta = cur1 * 2;
+	cur1 += delta;		/* form error * 3 */
+	errorptr[1] = (FSERROR) (bpreverr1 + cur1);
+	cur1 += delta;		/* form error * 5 */
+	bpreverr1 = belowerr1 + cur1;
+	belowerr1 = bnexterr;
+	cur1 += delta;		/* form error * 7 */
+	bnexterr = cur2;	/* Process component 2 */
+	delta = cur2 * 2;
+	cur2 += delta;		/* form error * 3 */
+	errorptr[2] = (FSERROR) (bpreverr2 + cur2);
+	cur2 += delta;		/* form error * 5 */
+	bpreverr2 = belowerr2 + cur2;
+	belowerr2 = bnexterr;
+	cur2 += delta;		/* form error * 7 */
+      }
+      /* At this point curN contains the 7/16 error value to be propagated
+       * to the next pixel on the current line, and all the errors for the
+       * next line have been shifted over.  We are therefore ready to move on.
+       */
+      inptr += dir3;		/* Advance pixel pointers to next column */
+      outptr += dir;
+      errorptr += dir3;		/* advance errorptr to current column */
+    }
+    /* Post-loop cleanup: we must unload the final error values into the
+     * final fserrors[] entry.  Note we need not unload belowerrN because
+     * it is for the dummy column before or after the actual array.
+     */
+    errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
+    errorptr[1] = (FSERROR) bpreverr1;
+    errorptr[2] = (FSERROR) bpreverr2;
+  }
+}
+
+
+/*
+ * Initialize the error-limiting transfer function (lookup table).
+ * The raw F-S error computation can potentially compute error values of up to
+ * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
+ * much less, otherwise obviously wrong pixels will be created.  (Typical
+ * effects include weird fringes at color-area boundaries, isolated bright
+ * pixels in a dark area, etc.)  The standard advice for avoiding this problem
+ * is to ensure that the "corners" of the color cube are allocated as output
+ * colors; then repeated errors in the same direction cannot cause cascading
+ * error buildup.  However, that only prevents the error from getting
+ * completely out of hand; Aaron Giles reports that error limiting improves
+ * the results even with corner colors allocated.
+ * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
+ * well, but the smoother transfer function used below is even better.  Thanks
+ * to Aaron Giles for this idea.
+ */
+
+LOCAL(void)
+init_error_limit (j_decompress_ptr cinfo)
+/* Allocate and fill in the error_limiter table */
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  int * table;
+  int in, out;
+
+  table = (int *) (*cinfo->mem->alloc_small)
+    ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
+  table += MAXJSAMPLE;		/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
+  cquantize->error_limiter = table;
+
+#define STEPSIZE ((MAXJSAMPLE+1)/16)
+  /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
+  out = 0;
+  for (in = 0; in < STEPSIZE; in++, out++) {
+    table[in] = out; table[-in] = -out;
+  }
+  /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
+  for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
+    table[in] = out; table[-in] = -out;
+  }
+  /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
+  for (; in <= MAXJSAMPLE; in++) {
+    table[in] = out; table[-in] = -out;
+  }
+#undef STEPSIZE
+}
+
+
+/*
+ * Finish up at the end of each pass.
+ */
+
+METHODDEF(void)
+finish_pass1 (j_decompress_ptr cinfo)
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+
+  /* Select the representative colors and fill in cinfo->colormap */
+  cinfo->colormap = cquantize->sv_colormap;
+  select_colors(cinfo, cquantize->desired);
+  /* Force next pass to zero the color index table */
+  cquantize->needs_zeroed = TRUE;
+}
+
+
+METHODDEF(void)
+finish_pass2 (j_decompress_ptr cinfo)
+{
+  /* no work */
+}
+
+
+/*
+ * Initialize for each processing pass.
+ */
+
+METHODDEF(void)
+start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+  hist3d histogram = cquantize->histogram;
+  int i;
+
+  /* Only F-S dithering or no dithering is supported. */
+  /* If user asks for ordered dither, give him F-S. */
+  if (cinfo->dither_mode != JDITHER_NONE)
+    cinfo->dither_mode = JDITHER_FS;
+
+  if (is_pre_scan) {
+    /* Set up method pointers */
+    cquantize->pub.color_quantize = prescan_quantize;
+    cquantize->pub.finish_pass = finish_pass1;
+    cquantize->needs_zeroed = TRUE; /* Always zero histogram */
+  } else {
+    /* Set up method pointers */
+    if (cinfo->dither_mode == JDITHER_FS)
+      cquantize->pub.color_quantize = pass2_fs_dither;
+    else
+      cquantize->pub.color_quantize = pass2_no_dither;
+    cquantize->pub.finish_pass = finish_pass2;
+
+    /* Make sure color count is acceptable */
+    i = cinfo->actual_number_of_colors;
+    if (i < 1)
+      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
+    if (i > MAXNUMCOLORS)
+      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
+
+    if (cinfo->dither_mode == JDITHER_FS) {
+      size_t arraysize = (size_t) ((cinfo->output_width + 2) *
+				   (3 * SIZEOF(FSERROR)));
+      /* Allocate Floyd-Steinberg workspace if we didn't already. */
+      if (cquantize->fserrors == NULL)
+	cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
+	  ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
+      /* Initialize the propagated errors to zero. */
+      jzero_far((void FAR *) cquantize->fserrors, arraysize);
+      /* Make the error-limit table if we didn't already. */
+      if (cquantize->error_limiter == NULL)
+	init_error_limit(cinfo);
+      cquantize->on_odd_row = FALSE;
+    }
+
+  }
+  /* Zero the histogram or inverse color map, if necessary */
+  if (cquantize->needs_zeroed) {
+    for (i = 0; i < HIST_C0_ELEMS; i++) {
+      jzero_far((void FAR *) histogram[i],
+		HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
+    }
+    cquantize->needs_zeroed = FALSE;
+  }
+}
+
+
+/*
+ * Switch to a new external colormap between output passes.
+ */
+
+METHODDEF(void)
+new_color_map_2_quant (j_decompress_ptr cinfo)
+{
+  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+
+  /* Reset the inverse color map */
+  cquantize->needs_zeroed = TRUE;
+}
+
+
+/*
+ * Module initialization routine for 2-pass color quantization.
+ */
+
+GLOBAL(void)
+jinit_2pass_quantizer (j_decompress_ptr cinfo)
+{
+  my_cquantize_ptr cquantize;
+  int i;
+
+  cquantize = (my_cquantize_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_cquantizer));
+  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
+  cquantize->pub.start_pass = start_pass_2_quant;
+  cquantize->pub.new_color_map = new_color_map_2_quant;
+  cquantize->fserrors = NULL;	/* flag optional arrays not allocated */
+  cquantize->error_limiter = NULL;
+
+  /* Make sure jdmaster didn't give me a case I can't handle */
+  if (cinfo->out_color_components != 3)
+    ERREXIT(cinfo, JERR_NOTIMPL);
+
+  /* Allocate the histogram/inverse colormap storage */
+  cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
+    ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
+  for (i = 0; i < HIST_C0_ELEMS; i++) {
+    cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
+      ((j_common_ptr) cinfo, JPOOL_IMAGE,
+       HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
+  }
+  cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
+
+  /* Allocate storage for the completed colormap, if required.
+   * We do this now since it is FAR storage and may affect
+   * the memory manager's space calculations.
+   */
+  if (cinfo->enable_2pass_quant) {
+    /* Make sure color count is acceptable */
+    int desired = cinfo->desired_number_of_colors;
+    /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
+    if (desired < 8)
+      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
+    /* Make sure colormap indexes can be represented by JSAMPLEs */
+    if (desired > MAXNUMCOLORS)
+      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
+    cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
+      ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
+    cquantize->desired = desired;
+  } else
+    cquantize->sv_colormap = NULL;
+
+  /* Only F-S dithering or no dithering is supported. */
+  /* If user asks for ordered dither, give him F-S. */
+  if (cinfo->dither_mode != JDITHER_NONE)
+    cinfo->dither_mode = JDITHER_FS;
+
+  /* Allocate Floyd-Steinberg workspace if necessary.
+   * This isn't really needed until pass 2, but again it is FAR storage.
+   * Although we will cope with a later change in dither_mode,
+   * we do not promise to honor max_memory_to_use if dither_mode changes.
+   */
+  if (cinfo->dither_mode == JDITHER_FS) {
+    cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
+      ((j_common_ptr) cinfo, JPOOL_IMAGE,
+       (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
+    /* Might as well create the error-limiting table too. */
+    init_error_limit(cinfo);
+  }
+}
+
+#endif /* QUANT_2PASS_SUPPORTED */

=== added file 'src/libjpeg-turbo/jsimd.h'
--- src/libjpeg-turbo/jsimd.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jsimd.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,98 @@ 
+/*
+ * jsimd.h
+ *
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
+ * Copyright 2011 D. R. Commander
+ * 
+ * Based on the x86 SIMD extension for IJG JPEG library,
+ * Copyright (C) 1999-2006, MIYASAKA Masaru.
+ * For conditions of distribution and use, see copyright notice in jsimdext.inc
+ *
+ */
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jsimd_can_rgb_ycc                 jSCanRgbYcc
+#define jsimd_can_rgb_gray                jSCanRgbGry
+#define jsimd_can_ycc_rgb                 jSCanYccRgb
+#define jsimd_rgb_ycc_convert             jSRgbYccConv
+#define jsimd_rgb_gray_convert            jSRgbGryConv
+#define jsimd_ycc_rgb_convert             jSYccRgbConv
+#define jsimd_can_h2v2_downsample         jSCanH2V2Down
+#define jsimd_can_h2v1_downsample         jSCanH2V1Down
+#define jsimd_h2v2_downsample             jSH2V2Down
+#define jsimd_h2v1_downsample             jSH2V1Down
+#define jsimd_can_h2v2_upsample           jSCanH2V2Up
+#define jsimd_can_h2v1_upsample           jSCanH2V1Up
+#define jsimd_h2v2_upsample               jSH2V2Up
+#define jsimd_h2v1_upsample               jSH2V1Up
+#define jsimd_can_h2v2_fancy_upsample     jSCanH2V2FUp
+#define jsimd_can_h2v1_fancy_upsample     jSCanH2V1FUp
+#define jsimd_h2v2_fancy_upsample         jSH2V2FUp
+#define jsimd_h2v1_fancy_upsample         jSH2V1FUp
+#define jsimd_can_h2v2_merged_upsample    jSCanH2V2MUp
+#define jsimd_can_h2v1_merged_upsample    jSCanH2V1MUp
+#define jsimd_h2v2_merged_upsample        jSH2V2MUp
+#define jsimd_h2v1_merged_upsample        jSH2V1MUp
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+EXTERN(int) jsimd_can_rgb_ycc JPP((void));
+EXTERN(int) jsimd_can_rgb_gray JPP((void));
+EXTERN(int) jsimd_can_ycc_rgb JPP((void));
+
+EXTERN(void) jsimd_rgb_ycc_convert
+        JPP((j_compress_ptr cinfo,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_rgb_gray_convert
+        JPP((j_compress_ptr cinfo,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_ycc_rgb_convert
+        JPP((j_decompress_ptr cinfo,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+
+EXTERN(int) jsimd_can_h2v2_downsample JPP((void));
+EXTERN(int) jsimd_can_h2v1_downsample JPP((void));
+
+EXTERN(void) jsimd_h2v2_downsample
+        JPP((j_compress_ptr cinfo, jpeg_component_info * compptr,
+             JSAMPARRAY input_data, JSAMPARRAY output_data));
+EXTERN(void) jsimd_h2v1_downsample
+        JPP((j_compress_ptr cinfo, jpeg_component_info * compptr,
+             JSAMPARRAY input_data, JSAMPARRAY output_data));
+
+EXTERN(int) jsimd_can_h2v2_upsample JPP((void));
+EXTERN(int) jsimd_can_h2v1_upsample JPP((void));
+
+EXTERN(void) jsimd_h2v2_upsample
+        JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+             JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+EXTERN(void) jsimd_h2v1_upsample
+        JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+             JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+
+EXTERN(int) jsimd_can_h2v2_fancy_upsample JPP((void));
+EXTERN(int) jsimd_can_h2v1_fancy_upsample JPP((void));
+
+EXTERN(void) jsimd_h2v2_fancy_upsample
+        JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+             JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+EXTERN(void) jsimd_h2v1_fancy_upsample
+        JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+             JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+
+EXTERN(int) jsimd_can_h2v2_merged_upsample JPP((void));
+EXTERN(int) jsimd_can_h2v1_merged_upsample JPP((void));
+
+EXTERN(void) jsimd_h2v2_merged_upsample
+        JPP((j_decompress_ptr cinfo,
+             JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
+             JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v1_merged_upsample
+        JPP((j_decompress_ptr cinfo,
+             JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
+             JSAMPARRAY output_buf));
+

=== added file 'src/libjpeg-turbo/jsimddct.h'
--- src/libjpeg-turbo/jsimddct.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jsimddct.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,102 @@ 
+/*
+ * jsimddct.h
+ *
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
+ * 
+ * Based on the x86 SIMD extension for IJG JPEG library,
+ * Copyright (C) 1999-2006, MIYASAKA Masaru.
+ * For conditions of distribution and use, see copyright notice in jsimdext.inc
+ *
+ */
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jsimd_can_convsamp                jSCanConv
+#define jsimd_can_convsamp_float          jSCanConvF
+#define jsimd_convsamp                    jSConv
+#define jsimd_convsamp_float              jSConvF
+#define jsimd_can_fdct_islow              jSCanFDCTIS
+#define jsimd_can_fdct_ifast              jSCanFDCTIF
+#define jsimd_can_fdct_float              jSCanFDCTFl
+#define jsimd_fdct_islow                  jSFDCTIS
+#define jsimd_fdct_ifast                  jSFDCTIF
+#define jsimd_fdct_float                  jSFDCTFl
+#define jsimd_can_quantize                jSCanQuant
+#define jsimd_can_quantize_float          jSCanQuantF
+#define jsimd_quantize                    jSQuant
+#define jsimd_quantize_float              jSQuantF
+#define jsimd_can_idct_2x2                jSCanIDCT22
+#define jsimd_can_idct_4x4                jSCanIDCT44
+#define jsimd_idct_2x2                    jSIDCT22
+#define jsimd_idct_4x4                    jSIDCT44
+#define jsimd_can_idct_islow              jSCanIDCTIS
+#define jsimd_can_idct_ifast              jSCanIDCTIF
+#define jsimd_can_idct_float              jSCanIDCTFl
+#define jsimd_idct_islow                  jSIDCTIS
+#define jsimd_idct_ifast                  jSIDCTIF
+#define jsimd_idct_float                  jSIDCTFl
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+EXTERN(int) jsimd_can_convsamp JPP((void));
+EXTERN(int) jsimd_can_convsamp_float JPP((void));
+
+EXTERN(void) jsimd_convsamp JPP((JSAMPARRAY sample_data,
+                                 JDIMENSION start_col,
+                                 DCTELEM * workspace));
+EXTERN(void) jsimd_convsamp_float JPP((JSAMPARRAY sample_data,
+                                       JDIMENSION start_col,
+                                       FAST_FLOAT * workspace));
+
+EXTERN(int) jsimd_can_fdct_islow JPP((void));
+EXTERN(int) jsimd_can_fdct_ifast JPP((void));
+EXTERN(int) jsimd_can_fdct_float JPP((void));
+
+EXTERN(void) jsimd_fdct_islow JPP((DCTELEM * data));
+EXTERN(void) jsimd_fdct_ifast JPP((DCTELEM * data));
+EXTERN(void) jsimd_fdct_float JPP((FAST_FLOAT * data));
+
+EXTERN(int) jsimd_can_quantize JPP((void));
+EXTERN(int) jsimd_can_quantize_float JPP((void));
+
+EXTERN(void) jsimd_quantize JPP((JCOEFPTR coef_block,
+                                 DCTELEM * divisors,
+                                 DCTELEM * workspace));
+EXTERN(void) jsimd_quantize_float JPP((JCOEFPTR coef_block,
+                                       FAST_FLOAT * divisors,
+                                       FAST_FLOAT * workspace));
+
+EXTERN(int) jsimd_can_idct_2x2 JPP((void));
+EXTERN(int) jsimd_can_idct_4x4 JPP((void));
+
+EXTERN(void) jsimd_idct_2x2 JPP((j_decompress_ptr cinfo,
+                                 jpeg_component_info * compptr,
+                                 JCOEFPTR coef_block,
+                                 JSAMPARRAY output_buf,
+                                 JDIMENSION output_col));
+EXTERN(void) jsimd_idct_4x4 JPP((j_decompress_ptr cinfo,
+                                 jpeg_component_info * compptr,
+                                 JCOEFPTR coef_block,
+                                 JSAMPARRAY output_buf,
+                                 JDIMENSION output_col));
+
+EXTERN(int) jsimd_can_idct_islow JPP((void));
+EXTERN(int) jsimd_can_idct_ifast JPP((void));
+EXTERN(int) jsimd_can_idct_float JPP((void));
+
+EXTERN(void) jsimd_idct_islow JPP((j_decompress_ptr cinfo,
+                                   jpeg_component_info * compptr,
+                                   JCOEFPTR coef_block,
+                                   JSAMPARRAY output_buf,
+                                   JDIMENSION output_col));
+EXTERN(void) jsimd_idct_ifast JPP((j_decompress_ptr cinfo,
+                                   jpeg_component_info * compptr,
+                                   JCOEFPTR coef_block,
+                                   JSAMPARRAY output_buf,
+                                   JDIMENSION output_col));
+EXTERN(void) jsimd_idct_float JPP((j_decompress_ptr cinfo,
+                                   jpeg_component_info * compptr,
+                                   JCOEFPTR coef_block,
+                                   JSAMPARRAY output_buf,
+                                   JDIMENSION output_col));
+

=== added file 'src/libjpeg-turbo/jutils.c'
--- src/libjpeg-turbo/jutils.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jutils.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,179 @@ 
+/*
+ * jutils.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains tables and miscellaneous utility routines needed
+ * for both compression and decompression.
+ * Note we prefix all global names with "j" to minimize conflicts with
+ * a surrounding application.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
+ * of a DCT block read in natural order (left to right, top to bottom).
+ */
+
+#if 0				/* This table is not actually needed in v6a */
+
+const int jpeg_zigzag_order[DCTSIZE2] = {
+   0,  1,  5,  6, 14, 15, 27, 28,
+   2,  4,  7, 13, 16, 26, 29, 42,
+   3,  8, 12, 17, 25, 30, 41, 43,
+   9, 11, 18, 24, 31, 40, 44, 53,
+  10, 19, 23, 32, 39, 45, 52, 54,
+  20, 22, 33, 38, 46, 51, 55, 60,
+  21, 34, 37, 47, 50, 56, 59, 61,
+  35, 36, 48, 49, 57, 58, 62, 63
+};
+
+#endif
+
+/*
+ * jpeg_natural_order[i] is the natural-order position of the i'th element
+ * of zigzag order.
+ *
+ * When reading corrupted data, the Huffman decoders could attempt
+ * to reference an entry beyond the end of this array (if the decoded
+ * zero run length reaches past the end of the block).  To prevent
+ * wild stores without adding an inner-loop test, we put some extra
+ * "63"s after the real entries.  This will cause the extra coefficient
+ * to be stored in location 63 of the block, not somewhere random.
+ * The worst case would be a run-length of 15, which means we need 16
+ * fake entries.
+ */
+
+const int jpeg_natural_order[DCTSIZE2+16] = {
+  0,  1,  8, 16,  9,  2,  3, 10,
+ 17, 24, 32, 25, 18, 11,  4,  5,
+ 12, 19, 26, 33, 40, 48, 41, 34,
+ 27, 20, 13,  6,  7, 14, 21, 28,
+ 35, 42, 49, 56, 57, 50, 43, 36,
+ 29, 22, 15, 23, 30, 37, 44, 51,
+ 58, 59, 52, 45, 38, 31, 39, 46,
+ 53, 60, 61, 54, 47, 55, 62, 63,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+
+/*
+ * Arithmetic utilities
+ */
+
+GLOBAL(long)
+jdiv_round_up (long a, long b)
+/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
+/* Assumes a >= 0, b > 0 */
+{
+  return (a + b - 1L) / b;
+}
+
+
+GLOBAL(long)
+jround_up (long a, long b)
+/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
+/* Assumes a >= 0, b > 0 */
+{
+  a += b - 1L;
+  return a - (a % b);
+}
+
+
+/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
+ * and coefficient-block arrays.  This won't work on 80x86 because the arrays
+ * are FAR and we're assuming a small-pointer memory model.  However, some
+ * DOS compilers provide far-pointer versions of memcpy() and memset() even
+ * in the small-model libraries.  These will be used if USE_FMEM is defined.
+ * Otherwise, the routines below do it the hard way.  (The performance cost
+ * is not all that great, because these routines aren't very heavily used.)
+ */
+
+#ifndef NEED_FAR_POINTERS	/* normal case, same as regular macros */
+#define FMEMCOPY(dest,src,size)	MEMCOPY(dest,src,size)
+#define FMEMZERO(target,size)	MEMZERO(target,size)
+#else				/* 80x86 case, define if we can */
+#ifdef USE_FMEM
+#define FMEMCOPY(dest,src,size)	_fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
+#define FMEMZERO(target,size)	_fmemset((void FAR *)(target), 0, (size_t)(size))
+#endif
+#endif
+
+
+GLOBAL(void)
+jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
+		   JSAMPARRAY output_array, int dest_row,
+		   int num_rows, JDIMENSION num_cols)
+/* Copy some rows of samples from one place to another.
+ * num_rows rows are copied from input_array[source_row++]
+ * to output_array[dest_row++]; these areas may overlap for duplication.
+ * The source and destination arrays must be at least as wide as num_cols.
+ */
+{
+  register JSAMPROW inptr, outptr;
+#ifdef FMEMCOPY
+  register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE));
+#else
+  register JDIMENSION count;
+#endif
+  register int row;
+
+  input_array += source_row;
+  output_array += dest_row;
+
+  for (row = num_rows; row > 0; row--) {
+    inptr = *input_array++;
+    outptr = *output_array++;
+#ifdef FMEMCOPY
+    FMEMCOPY(outptr, inptr, count);
+#else
+    for (count = num_cols; count > 0; count--)
+      *outptr++ = *inptr++;	/* needn't bother with GETJSAMPLE() here */
+#endif
+  }
+}
+
+
+GLOBAL(void)
+jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
+		 JDIMENSION num_blocks)
+/* Copy a row of coefficient blocks from one place to another. */
+{
+#ifdef FMEMCOPY
+  FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
+#else
+  register JCOEFPTR inptr, outptr;
+  register long count;
+
+  inptr = (JCOEFPTR) input_row;
+  outptr = (JCOEFPTR) output_row;
+  for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
+    *outptr++ = *inptr++;
+  }
+#endif
+}
+
+
+GLOBAL(void)
+jzero_far (void FAR * target, size_t bytestozero)
+/* Zero out a chunk of FAR memory. */
+/* This might be sample-array data, block-array data, or alloc_large data. */
+{
+#ifdef FMEMZERO
+  FMEMZERO(target, bytestozero);
+#else
+  register char FAR * ptr = (char FAR *) target;
+  register size_t count;
+
+  for (count = bytestozero; count > 0; count--) {
+    *ptr++ = 0;
+  }
+#endif
+}

=== added file 'src/libjpeg-turbo/jversion.h'
--- src/libjpeg-turbo/jversion.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/jversion.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,31 @@ 
+/*
+ * jversion.h
+ *
+ * Copyright (C) 1991-2010, Thomas G. Lane, Guido Vollbeding.
+ * Copyright (C) 2010, 2012, D. R. Commander.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains software version identification.
+ */
+
+
+#if JPEG_LIB_VERSION >= 80
+
+#define JVERSION	"8b  16-May-2010"
+
+#elif JPEG_LIB_VERSION >= 70
+
+#define JVERSION        "7  27-Jun-2009"
+
+#else
+
+#define JVERSION	"6b  27-Mar-1998"
+
+#endif
+
+#define JCOPYRIGHT	"Copyright (C) 1991-2010 Thomas G. Lane, Guido Vollbeding\n" \
+			"Copyright (C) 1999-2006 MIYASAKA Masaru\n" \
+			"Copyright (C) 2009 Pierre Ossman for Cendio AB\n" \
+			"Copyright (C) 2009-2012 D. R. Commander\n" \
+			"Copyright (C) 2009-2011 Nokia Corporation and/or its subsidiary(-ies)"

=== added directory 'src/libjpeg-turbo/simd'
=== added file 'src/libjpeg-turbo/simd/jsimd.h'
--- src/libjpeg-turbo/simd/jsimd.h	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/simd/jsimd.h	2012-06-27 08:13:27 +0000
@@ -0,0 +1,666 @@ 
+/*
+ * simd/jsimd.h
+ *
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
+ * Copyright 2011 D. R. Commander
+ * 
+ * Based on the x86 SIMD extension for IJG JPEG library,
+ * Copyright (C) 1999-2006, MIYASAKA Masaru.
+ * For conditions of distribution and use, see copyright notice in jsimdext.inc
+ *
+ */
+
+/* Bitmask for supported acceleration methods */
+
+#define JSIMD_NONE       0x00
+#define JSIMD_MMX        0x01
+#define JSIMD_3DNOW      0x02
+#define JSIMD_SSE        0x04
+#define JSIMD_SSE2       0x08
+#define JSIMD_ARM_NEON   0x10
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_simd_cpu_support                 jSiCpuSupport
+#define jsimd_rgb_ycc_convert_mmx             jSRGBYCCM
+#define jsimd_extrgb_ycc_convert_mmx          jSEXTRGBYCCM
+#define jsimd_extrgbx_ycc_convert_mmx         jSEXTRGBXYCCM
+#define jsimd_extbgr_ycc_convert_mmx          jSEXTBGRYCCM
+#define jsimd_extbgrx_ycc_convert_mmx         jSEXTBGRXYCCM
+#define jsimd_extxbgr_ycc_convert_mmx         jSEXTXBGRYCCM
+#define jsimd_extxrgb_ycc_convert_mmx         jSEXTXRGBYCCM
+#define jsimd_rgb_gray_convert_mmx            jSRGBGRYM
+#define jsimd_extrgb_gray_convert_mmx         jSEXTRGBGRYM
+#define jsimd_extrgbx_gray_convert_mmx        jSEXTRGBXGRYM
+#define jsimd_extbgr_gray_convert_mmx         jSEXTBGRGRYM
+#define jsimd_extbgrx_gray_convert_mmx        jSEXTBGRXGRYM
+#define jsimd_extxbgr_gray_convert_mmx        jSEXTXBGRGRYM
+#define jsimd_extxrgb_gray_convert_mmx        jSEXTXRGBGRYM
+#define jsimd_ycc_rgb_convert_mmx             jSYCCRGBM
+#define jsimd_ycc_extrgb_convert_mmx          jSYCCEXTRGBM
+#define jsimd_ycc_extrgbx_convert_mmx         jSYCCEXTRGBXM
+#define jsimd_ycc_extbgr_convert_mmx          jSYCCEXTBGRM
+#define jsimd_ycc_extbgrx_convert_mmx         jSYCCEXTBGRXM
+#define jsimd_ycc_extxbgr_convert_mmx         jSYCCEXTXBGRM
+#define jsimd_ycc_extxrgb_convert_mmx         jSYCCEXTXRGBM
+#define jconst_rgb_ycc_convert_sse2           jSCRGBYCCS2
+#define jsimd_rgb_ycc_convert_sse2            jSRGBYCCS2
+#define jsimd_extrgb_ycc_convert_sse2         jSEXTRGBYCCS2
+#define jsimd_extrgbx_ycc_convert_sse2        jSEXTRGBXYCCS2
+#define jsimd_extbgr_ycc_convert_sse2         jSEXTBGRYCCS2
+#define jsimd_extbgrx_ycc_convert_sse2        jSEXTBGRXYCCS2
+#define jsimd_extxbgr_ycc_convert_sse2        jSEXTXBGRYCCS2
+#define jsimd_extxrgb_ycc_convert_sse2        jSEXTXRGBYCCS2
+#define jconst_rgb_gray_convert_sse2          jSCRGBGRYS2
+#define jsimd_rgb_gray_convert_sse2           jSRGBGRYS2
+#define jsimd_extrgb_gray_convert_sse2        jSEXTRGBGRYS2
+#define jsimd_extrgbx_gray_convert_sse2       jSEXTRGBXGRYS2
+#define jsimd_extbgr_gray_convert_sse2        jSEXTBGRGRYS2
+#define jsimd_extbgrx_gray_convert_sse2       jSEXTBGRXGRYS2
+#define jsimd_extxbgr_gray_convert_sse2       jSEXTXBGRGRYS2
+#define jsimd_extxrgb_gray_convert_sse2       jSEXTXRGBGRYS2
+#define jconst_ycc_rgb_convert_sse2           jSCYCCRGBS2
+#define jsimd_ycc_rgb_convert_sse2            jSYCCRGBS2
+#define jsimd_ycc_extrgb_convert_sse2         jSYCCEXTRGBS2
+#define jsimd_ycc_extrgbx_convert_sse2        jSYCCEXTRGBXS2
+#define jsimd_ycc_extbgr_convert_sse2         jSYCCEXTBGRS2
+#define jsimd_ycc_extbgrx_convert_sse2        jSYCCEXTBGRXS2
+#define jsimd_ycc_extxbgr_convert_sse2        jSYCCEXTXBGRS2
+#define jsimd_ycc_extxrgb_convert_sse2        jSYCCEXTXRGBS2
+#define jsimd_h2v2_downsample_mmx             jSDnH2V2M
+#define jsimd_h2v1_downsample_mmx             jSDnH2V1M
+#define jsimd_h2v2_downsample_sse2            jSDnH2V2S2
+#define jsimd_h2v1_downsample_sse2            jSDnH2V1S2
+#define jsimd_h2v2_upsample_mmx               jSUpH2V2M
+#define jsimd_h2v1_upsample_mmx               jSUpH2V1M
+#define jsimd_h2v2_fancy_upsample_mmx         jSFUpH2V2M
+#define jsimd_h2v1_fancy_upsample_mmx         jSFUpH2V1M
+#define jsimd_h2v2_merged_upsample_mmx        jSMUpH2V2M
+#define jsimd_h2v2_extrgb_merged_upsample_mmx jSMUpH2V2EXTRGBM
+#define jsimd_h2v2_extrgbx_merged_upsample_mmx jSMUpH2V2EXTRGBXM
+#define jsimd_h2v2_extbgr_merged_upsample_mmx jSMUpH2V2EXTBGRM
+#define jsimd_h2v2_extbgrx_merged_upsample_mmx jSMUpH2V2EXTBGRXM
+#define jsimd_h2v2_extxbgr_merged_upsample_mmx jSMUpH2V2EXTXBGRM
+#define jsimd_h2v2_extxrgb_merged_upsample_mmx jSMUpH2V2EXTXRGBM
+#define jsimd_h2v1_merged_upsample_mmx        jSMUpH2V1M
+#define jsimd_h2v1_extrgb_merged_upsample_mmx jSMUpH2V1EXTRGBM
+#define jsimd_h2v1_extrgbx_merged_upsample_mmx jSMUpH2V1EXTRGBXM
+#define jsimd_h2v1_extbgr_merged_upsample_mmx jSMUpH2V1EXTBGRM
+#define jsimd_h2v1_extbgrx_merged_upsample_mmx jSMUpH2V1EXTBGRXM
+#define jsimd_h2v1_extxbgr_merged_upsample_mmx jSMUpH2V1EXTXBGRM
+#define jsimd_h2v1_extxrgb_merged_upsample_mmx jSMUpH2V1EXTXRGBM
+#define jsimd_h2v2_upsample_sse2              jSUpH2V2S2
+#define jsimd_h2v1_upsample_sse2              jSUpH2V1S2
+#define jconst_fancy_upsample_sse2            jSCFUpS2
+#define jsimd_h2v2_fancy_upsample_sse2        jSFUpH2V2S2
+#define jsimd_h2v1_fancy_upsample_sse2        jSFUpH2V1S2
+#define jconst_merged_upsample_sse2           jSCMUpS2
+#define jsimd_h2v2_merged_upsample_sse2       jSMUpH2V2S2
+#define jsimd_h2v2_extrgb_merged_upsample_sse2 jSMUpH2V2EXTRGBS2
+#define jsimd_h2v2_extrgbx_merged_upsample_sse2 jSMUpH2V2EXTRGBXS2
+#define jsimd_h2v2_extbgr_merged_upsample_sse2 jSMUpH2V2EXTBGRS2
+#define jsimd_h2v2_extbgrx_merged_upsample_sse2 jSMUpH2V2EXTBGRXS2
+#define jsimd_h2v2_extxbgr_merged_upsample_sse2 jSMUpH2V2EXTXBGRS2
+#define jsimd_h2v2_extxrgb_merged_upsample_sse2 jSMUpH2V2EXTXRGBS2
+#define jsimd_h2v1_merged_upsample_sse2       jSMUpH2V1S2
+#define jsimd_h2v1_extrgb_merged_upsample_sse2 jSMUpH2V1EXTRGBS2
+#define jsimd_h2v1_extrgbx_merged_upsample_sse2 jSMUpH2V1EXTRGBXS2
+#define jsimd_h2v1_extbgr_merged_upsample_sse2 jSMUpH2V1EXTBGRS2
+#define jsimd_h2v1_extbgrx_merged_upsample_sse2 jSMUpH2V1EXTBGRXS2
+#define jsimd_h2v1_extxbgr_merged_upsample_sse2 jSMUpH2V1EXTXBGRS2
+#define jsimd_h2v1_extxrgb_merged_upsample_sse2 jSMUpH2V1EXTXRGBS2
+#define jsimd_convsamp_mmx                    jSConvM
+#define jsimd_convsamp_sse2                   jSConvS2
+#define jsimd_convsamp_float_3dnow            jSConvF3D
+#define jsimd_convsamp_float_sse              jSConvFS
+#define jsimd_convsamp_float_sse2             jSConvFS2
+#define jsimd_fdct_islow_mmx                  jSFDMIS
+#define jsimd_fdct_ifast_mmx                  jSFDMIF
+#define jconst_fdct_islow_sse2                jSCFDS2IS
+#define jsimd_fdct_islow_sse2                 jSFDS2IS
+#define jconst_fdct_ifast_sse2                jSCFDS2IF
+#define jsimd_fdct_ifast_sse2                 jSFDS2IF
+#define jsimd_fdct_float_3dnow                jSFD3DF
+#define jconst_fdct_float_sse                 jSCFDSF
+#define jsimd_fdct_float_sse                  jSFDSF
+#define jsimd_quantize_mmx                    jSQuantM
+#define jsimd_quantize_sse2                   jSQuantS2
+#define jsimd_quantize_float_3dnow            jSQuantF3D
+#define jsimd_quantize_float_sse              jSQuantFS
+#define jsimd_quantize_float_sse2             jSQuantFS2
+#define jsimd_idct_2x2_mmx                    jSIDM22
+#define jsimd_idct_4x4_mmx                    jSIDM44
+#define jconst_idct_red_sse2                  jSCIDS2R
+#define jsimd_idct_2x2_sse2                   jSIDS222
+#define jsimd_idct_4x4_sse2                   jSIDS244
+#define jsimd_idct_islow_mmx                  jSIDMIS
+#define jsimd_idct_ifast_mmx                  jSIDMIF
+#define jconst_idct_islow_sse2                jSCIDS2IS
+#define jsimd_idct_islow_sse2                 jSIDS2IS
+#define jconst_idct_ifast_sse2                jSCIDS2IF
+#define jsimd_idct_ifast_sse2                 jSIDS2IF
+#define jsimd_idct_float_3dnow                jSID3DF
+#define jconst_fdct_float_sse                 jSCIDSF
+#define jsimd_idct_float_sse                  jSIDSF
+#define jconst_fdct_float_sse2                jSCIDS2F
+#define jsimd_idct_float_sse2                 jSIDS2F
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+/* SIMD Ext: retrieve SIMD/CPU information */
+EXTERN(unsigned int) jpeg_simd_cpu_support JPP((void));
+
+/* SIMD Color Space Conversion */
+EXTERN(void) jsimd_rgb_ycc_convert_mmx
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extrgb_ycc_convert_mmx
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extrgbx_ycc_convert_mmx
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extbgr_ycc_convert_mmx
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extbgrx_ycc_convert_mmx
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extxbgr_ycc_convert_mmx
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extxrgb_ycc_convert_mmx
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+
+EXTERN(void) jsimd_rgb_gray_convert_mmx
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extrgb_gray_convert_mmx
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extrgbx_gray_convert_mmx
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extbgr_gray_convert_mmx
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extbgrx_gray_convert_mmx
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extxbgr_gray_convert_mmx
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extxrgb_gray_convert_mmx
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+
+EXTERN(void) jsimd_ycc_rgb_convert_mmx
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extrgb_convert_mmx
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extrgbx_convert_mmx
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extbgr_convert_mmx
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extbgrx_convert_mmx
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extxbgr_convert_mmx
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extxrgb_convert_mmx
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+
+extern const int jconst_rgb_ycc_convert_sse2[];
+EXTERN(void) jsimd_rgb_ycc_convert_sse2
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extrgb_ycc_convert_sse2
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extrgbx_ycc_convert_sse2
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extbgr_ycc_convert_sse2
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extbgrx_ycc_convert_sse2
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extxbgr_ycc_convert_sse2
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extxrgb_ycc_convert_sse2
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+
+extern const int jconst_rgb_gray_convert_sse2[];
+EXTERN(void) jsimd_rgb_gray_convert_sse2
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extrgb_gray_convert_sse2
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extrgbx_gray_convert_sse2
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extbgr_gray_convert_sse2
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extbgrx_gray_convert_sse2
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extxbgr_gray_convert_sse2
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extxrgb_gray_convert_sse2
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+
+extern const int jconst_ycc_rgb_convert_sse2[];
+EXTERN(void) jsimd_ycc_rgb_convert_sse2
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extrgb_convert_sse2
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extrgbx_convert_sse2
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extbgr_convert_sse2
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extbgrx_convert_sse2
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extxbgr_convert_sse2
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extxrgb_convert_sse2
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+
+EXTERN(void) jsimd_rgb_ycc_convert_neon
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extrgb_ycc_convert_neon
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extrgbx_ycc_convert_neon
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extbgr_ycc_convert_neon
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extbgrx_ycc_convert_neon
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extxbgr_ycc_convert_neon
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+EXTERN(void) jsimd_extxrgb_ycc_convert_neon
+        JPP((JDIMENSION img_width,
+             JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+             JDIMENSION output_row, int num_rows));
+
+EXTERN(void) jsimd_ycc_rgb_convert_neon
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extrgb_convert_neon
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extrgbx_convert_neon
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extbgr_convert_neon
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extbgrx_convert_neon
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extxbgr_convert_neon
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+EXTERN(void) jsimd_ycc_extxrgb_convert_neon
+        JPP((JDIMENSION out_width,
+             JSAMPIMAGE input_buf, JDIMENSION input_row,
+             JSAMPARRAY output_buf, int num_rows));
+
+/* SIMD Downsample */
+EXTERN(void) jsimd_h2v2_downsample_mmx
+        JPP((JDIMENSION image_width, int max_v_samp_factor,
+             JDIMENSION v_samp_factor, JDIMENSION width_blocks,
+             JSAMPARRAY input_data, JSAMPARRAY output_data));
+EXTERN(void) jsimd_h2v1_downsample_mmx
+        JPP((JDIMENSION image_width, int max_v_samp_factor,
+             JDIMENSION v_samp_factor, JDIMENSION width_blocks,
+             JSAMPARRAY input_data, JSAMPARRAY output_data));
+
+EXTERN(void) jsimd_h2v2_downsample_sse2
+        JPP((JDIMENSION image_width, int max_v_samp_factor,
+             JDIMENSION v_samp_factor, JDIMENSION width_blocks,
+             JSAMPARRAY input_data, JSAMPARRAY output_data));
+EXTERN(void) jsimd_h2v1_downsample_sse2
+        JPP((JDIMENSION image_width, int max_v_samp_factor,
+             JDIMENSION v_samp_factor, JDIMENSION width_blocks,
+             JSAMPARRAY input_data, JSAMPARRAY output_data));
+
+/* SIMD Upsample */
+EXTERN(void) jsimd_h2v2_upsample_mmx
+        JPP((int max_v_samp_factor, JDIMENSION output_width,
+             JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+EXTERN(void) jsimd_h2v1_upsample_mmx
+        JPP((int max_v_samp_factor, JDIMENSION output_width,
+             JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+
+EXTERN(void) jsimd_h2v2_fancy_upsample_mmx
+        JPP((int max_v_samp_factor, JDIMENSION downsampled_width,
+             JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+EXTERN(void) jsimd_h2v1_fancy_upsample_mmx
+        JPP((int max_v_samp_factor, JDIMENSION downsampled_width,
+             JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+
+EXTERN(void) jsimd_h2v2_merged_upsample_mmx
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v2_extrgb_merged_upsample_mmx
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v2_extrgbx_merged_upsample_mmx
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v2_extbgr_merged_upsample_mmx
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v2_extbgrx_merged_upsample_mmx
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v2_extxbgr_merged_upsample_mmx
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v2_extxrgb_merged_upsample_mmx
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v1_merged_upsample_mmx
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v1_extrgb_merged_upsample_mmx
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v1_extrgbx_merged_upsample_mmx
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v1_extbgr_merged_upsample_mmx
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v1_extbgrx_merged_upsample_mmx
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v1_extxbgr_merged_upsample_mmx
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v1_extxrgb_merged_upsample_mmx
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+
+EXTERN(void) jsimd_h2v2_upsample_sse2
+        JPP((int max_v_samp_factor, JDIMENSION output_width,
+             JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+EXTERN(void) jsimd_h2v1_upsample_sse2
+        JPP((int max_v_samp_factor, JDIMENSION output_width,
+             JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+
+extern const int jconst_fancy_upsample_sse2[];
+EXTERN(void) jsimd_h2v2_fancy_upsample_sse2
+        JPP((int max_v_samp_factor, JDIMENSION downsampled_width,
+             JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+EXTERN(void) jsimd_h2v1_fancy_upsample_sse2
+        JPP((int max_v_samp_factor, JDIMENSION downsampled_width,
+             JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+
+extern const int jconst_merged_upsample_sse2[];
+EXTERN(void) jsimd_h2v2_merged_upsample_sse2
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v2_extrgb_merged_upsample_sse2
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v2_extrgbx_merged_upsample_sse2
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v2_extbgr_merged_upsample_sse2
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v2_extbgrx_merged_upsample_sse2
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v2_extxbgr_merged_upsample_sse2
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v2_extxrgb_merged_upsample_sse2
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v1_merged_upsample_sse2
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v1_extrgb_merged_upsample_sse2
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v1_extrgbx_merged_upsample_sse2
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v1_extbgr_merged_upsample_sse2
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v1_extbgrx_merged_upsample_sse2
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v1_extxbgr_merged_upsample_sse2
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+EXTERN(void) jsimd_h2v1_extxrgb_merged_upsample_sse2
+        JPP((JDIMENSION output_width, JSAMPIMAGE input_buf,
+             JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf));
+
+/* SIMD Sample Conversion */
+EXTERN(void) jsimd_convsamp_mmx JPP((JSAMPARRAY sample_data,
+                                     JDIMENSION start_col,
+                                     DCTELEM * workspace));
+
+EXTERN(void) jsimd_convsamp_sse2 JPP((JSAMPARRAY sample_data,
+                                      JDIMENSION start_col,
+                                      DCTELEM * workspace));
+
+EXTERN(void) jsimd_convsamp_neon JPP((JSAMPARRAY sample_data,
+                                      JDIMENSION start_col,
+                                      DCTELEM * workspace));
+
+EXTERN(void) jsimd_convsamp_float_3dnow JPP((JSAMPARRAY sample_data,
+                                             JDIMENSION start_col,
+                                             FAST_FLOAT * workspace));
+
+EXTERN(void) jsimd_convsamp_float_sse JPP((JSAMPARRAY sample_data,
+                                           JDIMENSION start_col,
+                                           FAST_FLOAT * workspace));
+
+EXTERN(void) jsimd_convsamp_float_sse2 JPP((JSAMPARRAY sample_data,
+                                            JDIMENSION start_col,
+                                            FAST_FLOAT * workspace));
+
+/* SIMD Forward DCT */
+EXTERN(void) jsimd_fdct_islow_mmx JPP((DCTELEM * data));
+EXTERN(void) jsimd_fdct_ifast_mmx JPP((DCTELEM * data));
+
+extern const int jconst_fdct_ifast_sse2[];
+EXTERN(void) jsimd_fdct_islow_sse2 JPP((DCTELEM * data));
+extern const int jconst_fdct_islow_sse2[];
+EXTERN(void) jsimd_fdct_ifast_sse2 JPP((DCTELEM * data));
+
+EXTERN(void) jsimd_fdct_ifast_neon JPP((DCTELEM * data));
+
+EXTERN(void) jsimd_fdct_float_3dnow JPP((FAST_FLOAT * data));
+
+extern const int jconst_fdct_float_sse[];
+EXTERN(void) jsimd_fdct_float_sse JPP((FAST_FLOAT * data));
+
+/* SIMD Quantization */
+EXTERN(void) jsimd_quantize_mmx JPP((JCOEFPTR coef_block,
+                                     DCTELEM * divisors,
+                                     DCTELEM * workspace));
+
+EXTERN(void) jsimd_quantize_sse2 JPP((JCOEFPTR coef_block,
+                                      DCTELEM * divisors,
+                                      DCTELEM * workspace));
+
+EXTERN(void) jsimd_quantize_neon JPP((JCOEFPTR coef_block,
+                                      DCTELEM * divisors,
+                                      DCTELEM * workspace));
+
+EXTERN(void) jsimd_quantize_float_3dnow JPP((JCOEFPTR coef_block,
+                                             FAST_FLOAT * divisors,
+                                             FAST_FLOAT * workspace));
+
+EXTERN(void) jsimd_quantize_float_sse JPP((JCOEFPTR coef_block,
+                                           FAST_FLOAT * divisors,
+                                           FAST_FLOAT * workspace));
+
+EXTERN(void) jsimd_quantize_float_sse2 JPP((JCOEFPTR coef_block,
+                                            FAST_FLOAT * divisors,
+                                            FAST_FLOAT * workspace));
+
+/* SIMD Reduced Inverse DCT */
+EXTERN(void) jsimd_idct_2x2_mmx JPP((void * dct_table,
+                                     JCOEFPTR coef_block,
+                                     JSAMPARRAY output_buf,
+                                     JDIMENSION output_col));
+EXTERN(void) jsimd_idct_4x4_mmx JPP((void * dct_table,
+                                     JCOEFPTR coef_block,
+                                     JSAMPARRAY output_buf,
+                                     JDIMENSION output_col));
+
+extern const int jconst_idct_red_sse2[];
+EXTERN(void) jsimd_idct_2x2_sse2 JPP((void * dct_table,
+                                      JCOEFPTR coef_block,
+                                      JSAMPARRAY output_buf,
+                                      JDIMENSION output_col));
+EXTERN(void) jsimd_idct_4x4_sse2 JPP((void * dct_table,
+                                      JCOEFPTR coef_block,
+                                      JSAMPARRAY output_buf,
+                                      JDIMENSION output_col));
+
+EXTERN(void) jsimd_idct_2x2_neon JPP((void * dct_table,
+                                      JCOEFPTR coef_block,
+                                      JSAMPARRAY output_buf,
+                                      JDIMENSION output_col));
+EXTERN(void) jsimd_idct_4x4_neon JPP((void * dct_table,
+                                      JCOEFPTR coef_block,
+                                      JSAMPARRAY output_buf,
+                                      JDIMENSION output_col));
+
+/* SIMD Inverse DCT */
+EXTERN(void) jsimd_idct_islow_mmx JPP((void * dct_table,
+                                       JCOEFPTR coef_block,
+                                       JSAMPARRAY output_buf,
+                                       JDIMENSION output_col));
+EXTERN(void) jsimd_idct_ifast_mmx JPP((void * dct_table,
+                                       JCOEFPTR coef_block,
+                                       JSAMPARRAY output_buf,
+                                       JDIMENSION output_col));
+
+extern const int jconst_idct_islow_sse2[];
+EXTERN(void) jsimd_idct_islow_sse2 JPP((void * dct_table,
+                                        JCOEFPTR coef_block,
+                                        JSAMPARRAY output_buf,
+                                        JDIMENSION output_col));
+extern const int jconst_idct_ifast_sse2[];
+EXTERN(void) jsimd_idct_ifast_sse2 JPP((void * dct_table,
+                                        JCOEFPTR coef_block,
+                                        JSAMPARRAY output_buf,
+                                        JDIMENSION output_col));
+
+EXTERN(void) jsimd_idct_islow_neon JPP((void * dct_table,
+                                        JCOEFPTR coef_block,
+                                        JSAMPARRAY output_buf,
+                                        JDIMENSION output_col));
+EXTERN(void) jsimd_idct_ifast_neon JPP((void * dct_table,
+                                        JCOEFPTR coef_block,
+                                        JSAMPARRAY output_buf,
+                                        JDIMENSION output_col));
+
+EXTERN(void) jsimd_idct_float_3dnow JPP((void * dct_table,
+                                         JCOEFPTR coef_block,
+                                         JSAMPARRAY output_buf,
+                                         JDIMENSION output_col));
+
+extern const int jconst_idct_float_sse[];
+EXTERN(void) jsimd_idct_float_sse JPP((void * dct_table,
+                                       JCOEFPTR coef_block,
+                                       JSAMPARRAY output_buf,
+                                       JDIMENSION output_col));
+
+extern const int jconst_idct_float_sse2[];
+EXTERN(void) jsimd_idct_float_sse2 JPP((void * dct_table,
+                                        JCOEFPTR coef_block,
+                                        JSAMPARRAY output_buf,
+                                        JDIMENSION output_col));
+

=== added file 'src/libjpeg-turbo/simd/jsimd_arm.c'
--- src/libjpeg-turbo/simd/jsimd_arm.c	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/simd/jsimd_arm.c	2012-06-27 08:13:27 +0000
@@ -0,0 +1,670 @@ 
+/*
+ * jsimd_arm.c
+ *
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
+ * Copyright 2009-2011 D. R. Commander
+ * 
+ * Based on the x86 SIMD extension for IJG JPEG library,
+ * Copyright (C) 1999-2006, MIYASAKA Masaru.
+ * For conditions of distribution and use, see copyright notice in jsimdext.inc
+ *
+ * This file contains the interface between the "normal" portions
+ * of the library and the SIMD implementations when running on
+ * ARM architecture.
+ *
+ * Based on the stubs from 'jsimd_none.c'
+ */
+
+#define JPEG_INTERNALS
+#include "../jinclude.h"
+#include "../jpeglib.h"
+#include "../jsimd.h"
+#include "../jdct.h"
+#include "../jsimddct.h"
+#include "jsimd.h"
+
+#include <stdio.h>
+#include <string.h>
+#include <ctype.h>
+
+static unsigned int simd_support = ~0;
+
+#if defined(__linux__) || defined(ANDROID) || defined(__ANDROID__)
+
+#define SOMEWHAT_SANE_PROC_CPUINFO_SIZE_LIMIT (1024 * 1024)
+
+LOCAL(int)
+check_feature (char *buffer, char *feature)
+{
+  char *p;
+  if (*feature == 0)
+    return 0;
+  if (strncmp(buffer, "Features", 8) != 0)
+    return 0;
+  buffer += 8;
+  while (isspace(*buffer))
+    buffer++;
+
+  /* Check if 'feature' is present in the buffer as a separate word */
+  while ((p = strstr(buffer, feature))) {
+    if (p > buffer && !isspace(*(p - 1))) {
+      buffer++;
+      continue;
+    }
+    p += strlen(feature);
+    if (*p != 0 && !isspace(*p)) {
+      buffer++;
+      continue;
+    }
+    return 1;
+  }
+  return 0;
+}
+
+LOCAL(int)
+parse_proc_cpuinfo (int bufsize)
+{
+  char *buffer = (char *)malloc(bufsize);
+  FILE *fd;
+  simd_support = 0;
+
+  if (!buffer)
+    return 0;
+
+  fd = fopen("/proc/cpuinfo", "r");
+  if (fd) {
+    while (fgets(buffer, bufsize, fd)) {
+      if (!strchr(buffer, '\n') && !feof(fd)) {
+        /* "impossible" happened - insufficient size of the buffer! */
+        fclose(fd);
+        free(buffer);
+        return 0;
+      }
+      if (check_feature(buffer, "neon"))
+        simd_support |= JSIMD_ARM_NEON;
+    }
+    fclose(fd);
+  }
+  free(buffer);
+  return 1;
+}
+
+#endif
+
+/*
+ * Check what SIMD accelerations are supported.
+ *
+ * FIXME: This code is racy under a multi-threaded environment.
+ */
+LOCAL(void)
+init_simd (void)
+{
+  char *env = NULL;
+#if !defined(__ARM_NEON__) && defined(__linux__) || defined(ANDROID) || defined(__ANDROID__)
+  int bufsize = 1024; /* an initial guess for the line buffer size limit */
+#endif
+
+  if (simd_support != ~0U)
+    return;
+
+  simd_support = 0;
+
+#if defined(__ARM_NEON__)
+  simd_support |= JSIMD_ARM_NEON;
+#elif defined(__linux__) || defined(ANDROID) || defined(__ANDROID__)
+  /* We still have a chance to use NEON regardless of globally used
+   * -mcpu/-mfpu options passed to gcc by performing runtime detection via
+   * /proc/cpuinfo parsing on linux/android */
+  while (!parse_proc_cpuinfo(bufsize)) {
+    bufsize *= 2;
+    if (bufsize > SOMEWHAT_SANE_PROC_CPUINFO_SIZE_LIMIT)
+      break;
+  }
+#endif
+
+  /* Force different settings through environment variables */
+  env = getenv("JSIMD_FORCE_ARM_NEON");
+  if ((env != NULL) && (strcmp(env, "1") == 0))
+    simd_support &= JSIMD_ARM_NEON;
+  env = getenv("JSIMD_FORCE_NO_SIMD");
+  if ((env != NULL) && (strcmp(env, "1") == 0))
+    simd_support = 0;
+}
+
+GLOBAL(int)
+jsimd_can_rgb_ycc (void)
+{
+  init_simd();
+
+  /* The code is optimised for these values only */
+  if (BITS_IN_JSAMPLE != 8)
+    return 0;
+  if (sizeof(JDIMENSION) != 4)
+    return 0;
+  if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4))
+    return 0;
+
+  if (simd_support & JSIMD_ARM_NEON)
+    return 1;
+
+  return 0;
+}
+
+GLOBAL(int)
+jsimd_can_rgb_gray (void)
+{
+  init_simd();
+
+  return 0;
+}
+
+GLOBAL(int)
+jsimd_can_ycc_rgb (void)
+{
+  init_simd();
+
+  /* The code is optimised for these values only */
+  if (BITS_IN_JSAMPLE != 8)
+    return 0;
+  if (sizeof(JDIMENSION) != 4)
+    return 0;
+  if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4))
+    return 0;
+  if (simd_support & JSIMD_ARM_NEON)
+    return 1;
+
+  return 0;
+}
+
+GLOBAL(void)
+jsimd_rgb_ycc_convert (j_compress_ptr cinfo,
+                       JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+                       JDIMENSION output_row, int num_rows)
+{
+  void (*neonfct)(JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int);
+
+  switch(cinfo->in_color_space)
+  {
+    case JCS_EXT_RGB:
+      neonfct=jsimd_extrgb_ycc_convert_neon;
+      break;
+    case JCS_EXT_RGBX:
+    case JCS_EXT_RGBA:
+      neonfct=jsimd_extrgbx_ycc_convert_neon;
+      break;
+    case JCS_EXT_BGR:
+      neonfct=jsimd_extbgr_ycc_convert_neon;
+      break;
+    case JCS_EXT_BGRX:
+    case JCS_EXT_BGRA:
+      neonfct=jsimd_extbgrx_ycc_convert_neon;
+      break;
+    case JCS_EXT_XBGR:
+    case JCS_EXT_ABGR:
+      neonfct=jsimd_extxbgr_ycc_convert_neon;
+      break;
+    case JCS_EXT_XRGB:
+    case JCS_EXT_ARGB:
+      neonfct=jsimd_extxrgb_ycc_convert_neon;
+      break;
+    default:
+      neonfct=jsimd_extrgb_ycc_convert_neon;
+      break;
+  }
+
+  if (simd_support & JSIMD_ARM_NEON)
+    neonfct(cinfo->image_width, input_buf,
+        output_buf, output_row, num_rows);
+}
+
+GLOBAL(void)
+jsimd_rgb_gray_convert (j_compress_ptr cinfo,
+                        JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+                        JDIMENSION output_row, int num_rows)
+{
+}
+
+GLOBAL(void)
+jsimd_ycc_rgb_convert (j_decompress_ptr cinfo,
+                       JSAMPIMAGE input_buf, JDIMENSION input_row,
+                       JSAMPARRAY output_buf, int num_rows)
+{
+  void (*neonfct)(JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int);
+
+  switch(cinfo->out_color_space)
+  {
+    case JCS_EXT_RGB:
+      neonfct=jsimd_ycc_extrgb_convert_neon;
+      break;
+    case JCS_EXT_RGBX:
+    case JCS_EXT_RGBA:
+      neonfct=jsimd_ycc_extrgbx_convert_neon;
+      break;
+    case JCS_EXT_BGR:
+      neonfct=jsimd_ycc_extbgr_convert_neon;
+      break;
+    case JCS_EXT_BGRX:
+    case JCS_EXT_BGRA:
+      neonfct=jsimd_ycc_extbgrx_convert_neon;
+      break;
+    case JCS_EXT_XBGR:
+    case JCS_EXT_ABGR:
+      neonfct=jsimd_ycc_extxbgr_convert_neon;
+      break;
+    case JCS_EXT_XRGB:
+    case JCS_EXT_ARGB:
+      neonfct=jsimd_ycc_extxrgb_convert_neon;
+      break;
+  default:
+      neonfct=jsimd_ycc_extrgb_convert_neon;
+      break;
+  }
+
+  if (simd_support & JSIMD_ARM_NEON)
+    neonfct(cinfo->output_width, input_buf,
+        input_row, output_buf, num_rows);
+}
+
+GLOBAL(int)
+jsimd_can_h2v2_downsample (void)
+{
+  init_simd();
+
+  return 0;
+}
+
+GLOBAL(int)
+jsimd_can_h2v1_downsample (void)
+{
+  init_simd();
+
+  return 0;
+}
+
+GLOBAL(void)
+jsimd_h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+                       JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+}
+
+GLOBAL(void)
+jsimd_h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+                       JSAMPARRAY input_data, JSAMPARRAY output_data)
+{
+}
+
+GLOBAL(int)
+jsimd_can_h2v2_upsample (void)
+{
+  init_simd();
+
+  return 0;
+}
+
+GLOBAL(int)
+jsimd_can_h2v1_upsample (void)
+{
+  init_simd();
+
+  return 0;
+}
+
+GLOBAL(void)
+jsimd_h2v2_upsample (j_decompress_ptr cinfo,
+                     jpeg_component_info * compptr, 
+                     JSAMPARRAY input_data,
+                     JSAMPARRAY * output_data_ptr)
+{
+}
+
+GLOBAL(void)
+jsimd_h2v1_upsample (j_decompress_ptr cinfo,
+                     jpeg_component_info * compptr, 
+                     JSAMPARRAY input_data,
+                     JSAMPARRAY * output_data_ptr)
+{
+}
+
+GLOBAL(int)
+jsimd_can_h2v2_fancy_upsample (void)
+{
+  init_simd();
+
+  return 0;
+}
+
+GLOBAL(int)
+jsimd_can_h2v1_fancy_upsample (void)
+{
+  init_simd();
+
+  return 0;
+}
+
+GLOBAL(void)
+jsimd_h2v2_fancy_upsample (j_decompress_ptr cinfo,
+                           jpeg_component_info * compptr, 
+                           JSAMPARRAY input_data,
+                           JSAMPARRAY * output_data_ptr)
+{
+}
+
+GLOBAL(void)
+jsimd_h2v1_fancy_upsample (j_decompress_ptr cinfo,
+                           jpeg_component_info * compptr, 
+                           JSAMPARRAY input_data,
+                           JSAMPARRAY * output_data_ptr)
+{
+}
+
+GLOBAL(int)
+jsimd_can_h2v2_merged_upsample (void)
+{
+  init_simd();
+
+  return 0;
+}
+
+GLOBAL(int)
+jsimd_can_h2v1_merged_upsample (void)
+{
+  init_simd();
+
+  return 0;
+}
+
+GLOBAL(void)
+jsimd_h2v2_merged_upsample (j_decompress_ptr cinfo,
+                            JSAMPIMAGE input_buf,
+                            JDIMENSION in_row_group_ctr,
+                            JSAMPARRAY output_buf)
+{
+}
+
+GLOBAL(void)
+jsimd_h2v1_merged_upsample (j_decompress_ptr cinfo,
+                            JSAMPIMAGE input_buf,
+                            JDIMENSION in_row_group_ctr,
+                            JSAMPARRAY output_buf)
+{
+}
+
+GLOBAL(int)
+jsimd_can_convsamp (void)
+{
+  init_simd();
+
+  /* The code is optimised for these values only */
+  if (DCTSIZE != 8)
+    return 0;
+  if (BITS_IN_JSAMPLE != 8)
+    return 0;
+  if (sizeof(JDIMENSION) != 4)
+    return 0;
+  if (sizeof(DCTELEM) != 2)
+    return 0;
+
+  if (simd_support & JSIMD_ARM_NEON)
+    return 1;
+
+  return 0;
+}
+
+GLOBAL(int)
+jsimd_can_convsamp_float (void)
+{
+  init_simd();
+
+  return 0;
+}
+
+GLOBAL(void)
+jsimd_convsamp (JSAMPARRAY sample_data, JDIMENSION start_col,
+                DCTELEM * workspace)
+{
+  if (simd_support & JSIMD_ARM_NEON)
+    jsimd_convsamp_neon(sample_data, start_col, workspace);
+}
+
+GLOBAL(void)
+jsimd_convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col,
+                      FAST_FLOAT * workspace)
+{
+}
+
+GLOBAL(int)
+jsimd_can_fdct_islow (void)
+{
+  init_simd();
+
+  return 0;
+}
+
+GLOBAL(int)
+jsimd_can_fdct_ifast (void)
+{
+  init_simd();
+
+  /* The code is optimised for these values only */
+  if (DCTSIZE != 8)
+    return 0;
+  if (sizeof(DCTELEM) != 2)
+    return 0;
+
+  if (simd_support & JSIMD_ARM_NEON)
+    return 1;
+
+  return 0;
+}
+
+GLOBAL(int)
+jsimd_can_fdct_float (void)
+{
+  init_simd();
+
+  return 0;
+}
+
+GLOBAL(void)
+jsimd_fdct_islow (DCTELEM * data)
+{
+}
+
+GLOBAL(void)
+jsimd_fdct_ifast (DCTELEM * data)
+{
+  if (simd_support & JSIMD_ARM_NEON)
+    jsimd_fdct_ifast_neon(data);
+}
+
+GLOBAL(void)
+jsimd_fdct_float (FAST_FLOAT * data)
+{
+}
+
+GLOBAL(int)
+jsimd_can_quantize (void)
+{
+  init_simd();
+
+  /* The code is optimised for these values only */
+  if (DCTSIZE != 8)
+    return 0;
+  if (sizeof(JCOEF) != 2)
+    return 0;
+  if (sizeof(DCTELEM) != 2)
+    return 0;
+
+  if (simd_support & JSIMD_ARM_NEON)
+    return 1;
+
+  return 0;
+}
+
+GLOBAL(int)
+jsimd_can_quantize_float (void)
+{
+  init_simd();
+
+  return 0;
+}
+
+GLOBAL(void)
+jsimd_quantize (JCOEFPTR coef_block, DCTELEM * divisors,
+                DCTELEM * workspace)
+{
+  if (simd_support & JSIMD_ARM_NEON)
+    jsimd_quantize_neon(coef_block, divisors, workspace);
+}
+
+GLOBAL(void)
+jsimd_quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors,
+                      FAST_FLOAT * workspace)
+{
+}
+
+GLOBAL(int)
+jsimd_can_idct_2x2 (void)
+{
+  init_simd();
+
+  /* The code is optimised for these values only */
+  if (DCTSIZE != 8)
+    return 0;
+  if (sizeof(JCOEF) != 2)
+    return 0;
+  if (BITS_IN_JSAMPLE != 8)
+    return 0;
+  if (sizeof(JDIMENSION) != 4)
+    return 0;
+  if (sizeof(ISLOW_MULT_TYPE) != 2)
+    return 0;
+
+  if ((simd_support & JSIMD_ARM_NEON))
+    return 1;
+
+  return 0;
+}
+
+GLOBAL(int)
+jsimd_can_idct_4x4 (void)
+{
+  init_simd();
+
+  /* The code is optimised for these values only */
+  if (DCTSIZE != 8)
+    return 0;
+  if (sizeof(JCOEF) != 2)
+    return 0;
+  if (BITS_IN_JSAMPLE != 8)
+    return 0;
+  if (sizeof(JDIMENSION) != 4)
+    return 0;
+  if (sizeof(ISLOW_MULT_TYPE) != 2)
+    return 0;
+
+  if ((simd_support & JSIMD_ARM_NEON))
+    return 1;
+
+  return 0;
+}
+
+GLOBAL(void)
+jsimd_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+                JCOEFPTR coef_block, JSAMPARRAY output_buf,
+                JDIMENSION output_col)
+{
+  if ((simd_support & JSIMD_ARM_NEON))
+    jsimd_idct_2x2_neon(compptr->dct_table, coef_block, output_buf, output_col);
+}
+
+GLOBAL(void)
+jsimd_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+                JCOEFPTR coef_block, JSAMPARRAY output_buf,
+                JDIMENSION output_col)
+{
+  if ((simd_support & JSIMD_ARM_NEON))
+    jsimd_idct_4x4_neon(compptr->dct_table, coef_block, output_buf, output_col);
+}
+
+GLOBAL(int)
+jsimd_can_idct_islow (void)
+{
+  init_simd();
+
+  /* The code is optimised for these values only */
+  if (DCTSIZE != 8)
+    return 0;
+  if (sizeof(JCOEF) != 2)
+    return 0;
+  if (BITS_IN_JSAMPLE != 8)
+    return 0;
+  if (sizeof(JDIMENSION) != 4)
+    return 0;
+  if (sizeof(ISLOW_MULT_TYPE) != 2)
+    return 0;
+
+  if (simd_support & JSIMD_ARM_NEON)
+    return 1;
+
+  return 0;
+}
+
+GLOBAL(int)
+jsimd_can_idct_ifast (void)
+{
+  init_simd();
+
+  /* The code is optimised for these values only */
+  if (DCTSIZE != 8)
+    return 0;
+  if (sizeof(JCOEF) != 2)
+    return 0;
+  if (BITS_IN_JSAMPLE != 8)
+    return 0;
+  if (sizeof(JDIMENSION) != 4)
+    return 0;
+  if (sizeof(IFAST_MULT_TYPE) != 2)
+    return 0;
+  if (IFAST_SCALE_BITS != 2)
+    return 0;
+
+  if ((simd_support & JSIMD_ARM_NEON))
+    return 1;
+
+  return 0;
+}
+
+GLOBAL(int)
+jsimd_can_idct_float (void)
+{
+  init_simd();
+
+  return 0;
+}
+
+GLOBAL(void)
+jsimd_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+                JCOEFPTR coef_block, JSAMPARRAY output_buf,
+                JDIMENSION output_col)
+{
+  if ((simd_support & JSIMD_ARM_NEON))
+    jsimd_idct_islow_neon(compptr->dct_table, coef_block, output_buf, output_col);
+}
+
+GLOBAL(void)
+jsimd_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+                JCOEFPTR coef_block, JSAMPARRAY output_buf,
+                JDIMENSION output_col)
+{
+  if ((simd_support & JSIMD_ARM_NEON))
+    jsimd_idct_ifast_neon(compptr->dct_table, coef_block, output_buf, output_col);
+}
+
+GLOBAL(void)
+jsimd_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+                JCOEFPTR coef_block, JSAMPARRAY output_buf,
+                JDIMENSION output_col)
+{
+}
+

=== added file 'src/libjpeg-turbo/simd/jsimd_arm_neon.S'
--- src/libjpeg-turbo/simd/jsimd_arm_neon.S	1970-01-01 00:00:00 +0000
+++ src/libjpeg-turbo/simd/jsimd_arm_neon.S	2012-06-27 08:13:27 +0000
@@ -0,0 +1,2159 @@ 
+/*
+ * ARM NEON optimizations for libjpeg-turbo
+ *
+ * Copyright (C) 2009-2011 Nokia Corporation and/or its subsidiary(-ies).
+ * All rights reserved.
+ * Author: Siarhei Siamashka <siarhei.siamashka@nokia.com>
+ *
+ * This software is provided 'as-is', without any express or implied
+ * warranty.  In no event will the authors be held liable for any damages
+ * arising from the use of this software.
+ *
+ * Permission is granted to anyone to use this software for any purpose,
+ * including commercial applications, and to alter it and redistribute it
+ * freely, subject to the following restrictions:
+ *
+ * 1. The origin of this software must not be misrepresented; you must not
+ *    claim that you wrote the original software. If you use this software
+ *    in a product, an acknowledgment in the product documentation would be
+ *    appreciated but is not required.
+ * 2. Altered source versions must be plainly marked as such, and must not be
+ *    misrepresented as being the original software.
+ * 3. This notice may not be removed or altered from any source distribution.
+ */
+
+#if defined(__linux__) && defined(__ELF__)
+.section .note.GNU-stack,"",%progbits /* mark stack as non-executable */
+#endif
+
+.text
+.fpu neon
+.arch armv7a
+.object_arch armv4
+.arm
+
+
+#define RESPECT_STRICT_ALIGNMENT 1
+
+/*****************************************************************************/
+
+/* Supplementary macro for setting function attributes */
+.macro asm_function fname
+#ifdef __APPLE__
+    .func _\fname
+    .globl _\fname
+_\fname:
+#else
+    .func \fname
+    .global \fname
+#ifdef __ELF__
+    .hidden \fname
+    .type \fname, %function
+#endif
+\fname:
+#endif
+.endm
+
+/* Transpose a block of 4x4 coefficients in four 64-bit registers */
+.macro transpose_4x4 x0, x1, x2, x3
+    vtrn.16 \x0, \x1
+    vtrn.16 \x2, \x3
+    vtrn.32 \x0, \x2
+    vtrn.32 \x1, \x3
+.endm
+
+#define CENTERJSAMPLE 128
+
+/*****************************************************************************/
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients.
+ *
+ * GLOBAL(void)
+ * jsimd_idct_islow_neon (void * dct_table, JCOEFPTR coef_block,
+ *                        JSAMPARRAY output_buf, JDIMENSION output_col)
+ */
+
+#define FIX_0_298631336  (2446)
+#define FIX_0_390180644  (3196)
+#define FIX_0_541196100  (4433)
+#define FIX_0_765366865  (6270)
+#define FIX_0_899976223  (7373)
+#define FIX_1_175875602  (9633)
+#define FIX_1_501321110  (12299)
+#define FIX_1_847759065  (15137)
+#define FIX_1_961570560  (16069)
+#define FIX_2_053119869  (16819)
+#define FIX_2_562915447  (20995)
+#define FIX_3_072711026  (25172)
+
+#define FIX_1_175875602_MINUS_1_961570560 (FIX_1_175875602 - FIX_1_961570560)
+#define FIX_1_175875602_MINUS_0_390180644 (FIX_1_175875602 - FIX_0_390180644)
+#define FIX_0_541196100_MINUS_1_847759065 (FIX_0_541196100 - FIX_1_847759065)
+#define FIX_3_072711026_MINUS_2_562915447 (FIX_3_072711026 - FIX_2_562915447)
+#define FIX_0_298631336_MINUS_0_899976223 (FIX_0_298631336 - FIX_0_899976223)
+#define FIX_1_501321110_MINUS_0_899976223 (FIX_1_501321110 - FIX_0_899976223)
+#define FIX_2_053119869_MINUS_2_562915447 (FIX_2_053119869 - FIX_2_562915447)
+#define FIX_0_541196100_PLUS_0_765366865  (FIX_0_541196100 + FIX_0_765366865)
+
+/*
+ * Reference SIMD-friendly 1-D ISLOW iDCT C implementation.
+ * Uses some ideas from the comments in 'simd/jiss2int-64.asm'
+ */
+#define REF_1D_IDCT(xrow0, xrow1, xrow2, xrow3, xrow4, xrow5, xrow6, xrow7)   \
+{                                                                             \
+    DCTELEM row0, row1, row2, row3, row4, row5, row6, row7;                   \
+    INT32   q1, q2, q3, q4, q5, q6, q7;                                       \
+    INT32   tmp11_plus_tmp2, tmp11_minus_tmp2;                                \
+                                                                              \
+    /* 1-D iDCT input data */                                                 \
+    row0 = xrow0;                                                             \
+    row1 = xrow1;                                                             \
+    row2 = xrow2;                                                             \
+    row3 = xrow3;                                                             \
+    row4 = xrow4;                                                             \
+    row5 = xrow5;                                                             \
+    row6 = xrow6;                                                             \
+    row7 = xrow7;                                                             \
+                                                                              \
+    q5 = row7 + row3;                                                         \
+    q4 = row5 + row1;                                                         \
+    q6 = MULTIPLY(q5, FIX_1_175875602_MINUS_1_961570560) +                    \
+         MULTIPLY(q4, FIX_1_175875602);                                       \
+    q7 = MULTIPLY(q5, FIX_1_175875602) +                                      \
+         MULTIPLY(q4, FIX_1_175875602_MINUS_0_390180644);                     \
+    q2 = MULTIPLY(row2, FIX_0_541196100) +                                    \
+         MULTIPLY(row6, FIX_0_541196100_MINUS_1_847759065);                   \
+    q4 = q6;                                                                  \
+    q3 = ((INT32) row0 - (INT32) row4) << 13;                                 \
+    q6 += MULTIPLY(row5, -FIX_2_562915447) +                                  \
+          MULTIPLY(row3, FIX_3_072711026_MINUS_2_562915447);                  \
+    /* now we can use q1 (reloadable constants have been used up) */          \
+    q1 = q3 + q2;                                                             \
+    q4 += MULTIPLY(row7, FIX_0_298631336_MINUS_0_899976223) +                 \
+          MULTIPLY(row1, -FIX_0_899976223);                                   \
+    q5 = q7;                                                                  \
+    q1 = q1 + q6;                                                             \
+    q7 += MULTIPLY(row7, -FIX_0_899976223) +                                  \
+          MULTIPLY(row1, FIX_1_501321110_MINUS_0_899976223);                  \
+                                                                              \
+    /* (tmp11 + tmp2) has been calculated (out_row1 before descale) */        \
+    tmp11_plus_tmp2 = q1;                                                     \
+    row1 = 0;                                                                 \
+                                                                              \
+    q1 = q1 - q6;                                                             \
+    q5 += MULTIPLY(row5, FIX_2_053119869_MINUS_2_562915447) +                 \
+          MULTIPLY(row3, -FIX_2_562915447);                                   \
+    q1 = q1 - q6;                                                             \
+    q6 = MULTIPLY(row2, FIX_0_541196100_PLUS_0_765366865) +                   \
+         MULTIPLY(row6, FIX_0_541196100);                                     \
+    q3 = q3 - q2;                                                             \
+                                                                              \
+    /* (tmp11 - tmp2) has been calculated (out_row6 before descale) */        \
+    tmp11_minus_tmp2 = q1;                                                    \
+                                                                              \
+    q1 = ((INT32) row0 + (INT32) row4) << 13;                                 \
+    q2 = q1 + q6;                                                             \
+    q1 = q1 - q6;                                                             \
+                                                                              \
+    /* pick up the results */                                                 \
+    tmp0  = q4;                                                               \
+    tmp1  = q5;                                                               \
+    tmp2  = (tmp11_plus_tmp2 - tmp11_minus_tmp2) / 2;                         \
+    tmp3  = q7;                                                               \
+    tmp10 = q2;                                                               \
+    tmp11 = (tmp11_plus_tmp2 + tmp11_minus_tmp2) / 2;                         \
+    tmp12 = q3;                                                               \
+    tmp13 = q1;                                                               \
+}
+
+#define XFIX_0_899976223                    d0[0]
+#define XFIX_0_541196100                    d0[1]
+#define XFIX_2_562915447                    d0[2]
+#define XFIX_0_298631336_MINUS_0_899976223  d0[3]
+#define XFIX_1_501321110_MINUS_0_899976223  d1[0]
+#define XFIX_2_053119869_MINUS_2_562915447  d1[1]
+#define XFIX_0_541196100_PLUS_0_765366865   d1[2]
+#define XFIX_1_175875602                    d1[3]
+#define XFIX_1_175875602_MINUS_0_390180644  d2[0]
+#define XFIX_0_541196100_MINUS_1_847759065  d2[1]
+#define XFIX_3_072711026_MINUS_2_562915447  d2[2]
+#define XFIX_1_175875602_MINUS_1_961570560  d2[3]
+
+.balign 16
+jsimd_idct_islow_neon_consts:
+    .short FIX_0_899976223                    /* d0[0] */
+    .short FIX_0_541196100                    /* d0[1] */
+    .short FIX_2_562915447                    /* d0[2] */
+    .short FIX_0_298631336_MINUS_0_899976223  /* d0[3] */
+    .short FIX_1_501321110_MINUS_0_899976223  /* d1[0] */
+    .short FIX_2_053119869_MINUS_2_562915447  /* d1[1] */
+    .short FIX_0_541196100_PLUS_0_765366865   /* d1[2] */
+    .short FIX_1_175875602                    /* d1[3] */
+    /* reloadable constants */
+    .short FIX_1_175875602_MINUS_0_390180644  /* d2[0] */
+    .short FIX_0_541196100_MINUS_1_847759065  /* d2[1] */
+    .short FIX_3_072711026_MINUS_2_562915447  /* d2[2] */
+    .short FIX_1_175875602_MINUS_1_961570560  /* d2[3] */
+
+asm_function jsimd_idct_islow_neon
+
+    DCT_TABLE       .req r0
+    COEF_BLOCK      .req r1
+    OUTPUT_BUF      .req r2
+    OUTPUT_COL      .req r3
+    TMP1            .req r0
+    TMP2            .req r1
+    TMP3            .req r2
+    TMP4            .req ip
+
+    ROW0L           .req d16
+    ROW0R           .req d17
+    ROW1L           .req d18
+    ROW1R           .req d19
+    ROW2L           .req d20
+    ROW2R           .req d21
+    ROW3L           .req d22
+    ROW3R           .req d23
+    ROW4L           .req d24
+    ROW4R           .req d25
+    ROW5L           .req d26
+    ROW5R           .req d27
+    ROW6L           .req d28
+    ROW6R           .req d29
+    ROW7L           .req d30
+    ROW7R           .req d31
+
+    /* Load and dequantize coefficients into NEON registers
+     * with the following allocation:
+     *       0 1 2 3 | 4 5 6 7
+     *      ---------+--------
+     *   0 | d16     | d17     ( q8  )
+     *   1 | d18     | d19     ( q9  )
+     *   2 | d20     | d21     ( q10 )
+     *   3 | d22     | d23     ( q11 )
+     *   4 | d24     | d25     ( q12 )
+     *   5 | d26     | d27     ( q13 )
+     *   6 | d28     | d29     ( q14 )
+     *   7 | d30     | d31     ( q15 )
+     */
+    adr             ip, jsimd_idct_islow_neon_consts
+    vld1.16         {d16, d17, d18, d19}, [COEF_BLOCK, :128]!
+    vld1.16         {d0, d1, d2, d3}, [DCT_TABLE, :128]!
+    vld1.16         {d20, d21, d22, d23}, [COEF_BLOCK, :128]!
+    vmul.s16        q8, q8, q0
+    vld1.16         {d4, d5, d6, d7}, [DCT_TABLE, :128]!
+    vmul.s16        q9, q9, q1
+    vld1.16         {d24, d25, d26, d27}, [COEF_BLOCK, :128]!
+    vmul.s16        q10, q10, q2
+    vld1.16         {d0, d1, d2, d3}, [DCT_TABLE, :128]!
+    vmul.s16        q11, q11, q3
+    vld1.16         {d28, d29, d30, d31}, [COEF_BLOCK, :128]
+    vmul.s16        q12, q12, q0
+    vld1.16         {d4, d5, d6, d7}, [DCT_TABLE, :128]!
+    vmul.s16        q14, q14, q2
+    vmul.s16        q13, q13, q1
+    vld1.16         {d0, d1, d2, d3}, [ip, :128] /* load constants */
+    add             ip, ip, #16
+    vmul.s16        q15, q15, q3
+    vpush           {d8-d15} /* save NEON registers */
+    /* 1-D IDCT, pass 1, left 4x8 half */
+    vadd.s16        d4,    ROW7L, ROW3L
+    vadd.s16        d5,    ROW5L, ROW1L
+    vmull.s16       q6,    d4,    XFIX_1_175875602_MINUS_1_961570560
+    vmlal.s16       q6,    d5,    XFIX_1_175875602
+    vmull.s16       q7,    d4,    XFIX_1_175875602
+      /* Check for the zero coefficients in the right 4x8 half */
+      push            {r4, r5}
+    vmlal.s16       q7,    d5,    XFIX_1_175875602_MINUS_0_390180644
+    vsubl.s16       q3,    ROW0L, ROW4L
+      ldrd            r4,    [COEF_BLOCK, #(-96 + 2 * (4 + 1 * 8))]
+    vmull.s16       q2,    ROW2L, XFIX_0_541196100
+    vmlal.s16       q2,    ROW6L, XFIX_0_541196100_MINUS_1_847759065
+      orr             r0,    r4,    r5
+    vmov            q4,    q6
+    vmlsl.s16       q6,    ROW5L, XFIX_2_562915447
+      ldrd            r4,    [COEF_BLOCK, #(-96 + 2 * (4 + 2 * 8))]
+    vmlal.s16       q6,    ROW3L, XFIX_3_072711026_MINUS_2_562915447
+    vshl.s32        q3,    q3,    #13
+      orr             r0,    r0,    r4
+    vmlsl.s16       q4,    ROW1L, XFIX_0_899976223
+      orr             r0,    r0,    r5
+    vadd.s32        q1,    q3,    q2
+      ldrd            r4,    [COEF_BLOCK, #(-96 + 2 * (4 + 3 * 8))]
+    vmov            q5,    q7
+    vadd.s32        q1,    q1,    q6
+      orr             r0,    r0,    r4
+    vmlsl.s16       q7,    ROW7L, XFIX_0_899976223
+      orr             r0,    r0,    r5
+    vmlal.s16       q7,    ROW1L, XFIX_1_501321110_MINUS_0_899976223
+    vrshrn.s32      ROW1L, q1,    #11
+      ldrd            r4,    [COEF_BLOCK, #(-96 + 2 * (4 + 4 * 8))]
+    vsub.s32        q1,    q1,    q6
+    vmlal.s16       q5,    ROW5L, XFIX_2_053119869_MINUS_2_562915447
+      orr             r0,    r0,    r4
+    vmlsl.s16       q5,    ROW3L, XFIX_2_562915447
+      orr             r0,    r0,    r5
+    vsub.s32        q1,    q1,    q6
+    vmull.s16       q6,    ROW2L, XFIX_0_541196100_PLUS_0_765366865
+      ldrd            r4,    [COEF_BLOCK, #(-96 + 2 * (4 + 5 * 8))]
+    vmlal.s16       q6,    ROW6L, XFIX_0_541196100
+    vsub.s32        q3,    q3,    q2
+      orr             r0,    r0,    r4
+    vrshrn.s32      ROW6L, q1,    #11
+      orr             r0,    r0,    r5
+    vadd.s32        q1,    q3,    q5
+      ldrd            r4,    [COEF_BLOCK, #(-96 + 2 * (4 + 6 * 8))]
+    vsub.s32        q3,    q3,    q5
+    vaddl.s16       q5,    ROW0L, ROW4L
+      orr             r0,    r0,    r4
+    vrshrn.s32      ROW2L, q1,    #11
+      orr             r0,    r0,    r5
+    vrshrn.s32      ROW5L, q3,    #11
+      ldrd            r4,    [COEF_BLOCK, #(-96 + 2 * (4 + 7 * 8))]
+    vshl.s32        q5,    q5,    #13
+    vmlal.s16       q4,    ROW7L, XFIX_0_298631336_MINUS_0_899976223
+      orr             r0,    r0,    r4
+    vadd.s32        q2,    q5,    q6
+      orrs            r0,    r0,    r5
+    vsub.s32        q1,    q5,    q6
+    vadd.s32        q6,    q2,    q7
+      ldrd            r4,    [COEF_BLOCK, #(-96 + 2 * (4 + 0 * 8))]
+    vsub.s32        q2,    q2,    q7
+    vadd.s32        q5,    q1,    q4
+      orr             r0,    r4,    r5
+    vsub.s32        q3,    q1,    q4
+      pop             {r4, r5}
+    vrshrn.s32      ROW7L, q2,    #11
+    vrshrn.s32      ROW3L, q5,    #11
+    vrshrn.s32      ROW0L, q6,    #11
+    vrshrn.s32      ROW4L, q3,    #11
+
+      beq             3f /* Go to do some special handling for the sparse right 4x8 half */
+
+    /* 1-D IDCT, pass 1, right 4x8 half */
+    vld1.s16        {d2},  [ip, :64]    /* reload constants */
+    vadd.s16        d10,   ROW7R, ROW3R
+    vadd.s16        d8,    ROW5R, ROW1R
+      /* Transpose left 4x8 half */
+      vtrn.16         ROW6L, ROW7L
+    vmull.s16       q6,    d10,   XFIX_1_175875602_MINUS_1_961570560
+    vmlal.s16       q6,    d8,    XFIX_1_175875602
+      vtrn.16         ROW2L, ROW3L
+    vmull.s16       q7,    d10,   XFIX_1_175875602
+    vmlal.s16       q7,    d8,    XFIX_1_175875602_MINUS_0_390180644
+      vtrn.16         ROW0L, ROW1L
+    vsubl.s16       q3,    ROW0R, ROW4R
+    vmull.s16       q2,    ROW2R, XFIX_0_541196100
+    vmlal.s16       q2,    ROW6R, XFIX_0_541196100_MINUS_1_847759065
+      vtrn.16         ROW4L, ROW5L
+    vmov            q4,    q6
+    vmlsl.s16       q6,    ROW5R, XFIX_2_562915447
+    vmlal.s16       q6,    ROW3R, XFIX_3_072711026_MINUS_2_562915447
+      vtrn.32         ROW1L, ROW3L
+    vshl.s32        q3,    q3,    #13
+    vmlsl.s16       q4,    ROW1R, XFIX_0_899976223
+      vtrn.32         ROW4L, ROW6L
+    vadd.s32        q1,    q3,    q2
+    vmov            q5,    q7
+    vadd.s32        q1,    q1,    q6
+      vtrn.32         ROW0L, ROW2L
+    vmlsl.s16       q7,    ROW7R, XFIX_0_899976223
+    vmlal.s16       q7,    ROW1R, XFIX_1_501321110_MINUS_0_899976223
+    vrshrn.s32      ROW1R, q1,    #11
+      vtrn.32         ROW5L, ROW7L
+    vsub.s32        q1,    q1,    q6
+    vmlal.s16       q5,    ROW5R, XFIX_2_053119869_MINUS_2_562915447
+    vmlsl.s16       q5,    ROW3R, XFIX_2_562915447
+    vsub.s32        q1,    q1,    q6
+    vmull.s16       q6,    ROW2R, XFIX_0_541196100_PLUS_0_765366865
+    vmlal.s16       q6,    ROW6R, XFIX_0_541196100
+    vsub.s32        q3,    q3,    q2
+    vrshrn.s32      ROW6R, q1,    #11
+    vadd.s32        q1,    q3,    q5
+    vsub.s32        q3,    q3,    q5
+    vaddl.s16       q5,    ROW0R, ROW4R
+    vrshrn.s32      ROW2R, q1,    #11
+    vrshrn.s32      ROW5R, q3,    #11
+    vshl.s32        q5,    q5,    #13
+    vmlal.s16       q4,    ROW7R, XFIX_0_298631336_MINUS_0_899976223
+    vadd.s32        q2,    q5,    q6
+    vsub.s32        q1,    q5,    q6
+    vadd.s32        q6,    q2,    q7
+    vsub.s32        q2,    q2,    q7
+    vadd.s32        q5,    q1,    q4
+    vsub.s32        q3,    q1,    q4
+    vrshrn.s32      ROW7R, q2,    #11
+    vrshrn.s32      ROW3R, q5,    #11
+    vrshrn.s32      ROW0R, q6,    #11
+    vrshrn.s32      ROW4R, q3,    #11
+    /* Transpose right 4x8 half */
+    vtrn.16         ROW6R, ROW7R
+    vtrn.16         ROW2R, ROW3R
+    vtrn.16         ROW0R, ROW1R
+    vtrn.16         ROW4R, ROW5R
+    vtrn.32         ROW1R, ROW3R
+    vtrn.32         ROW4R, ROW6R
+    vtrn.32         ROW0R, ROW2R
+    vtrn.32         ROW5R, ROW7R
+
+1:  /* 1-D IDCT, pass 2 (normal variant), left 4x8 half */
+    vld1.s16        {d2},  [ip, :64]    /* reload constants */
+    vmull.s16       q6,    ROW1R, XFIX_1_175875602 /* ROW5L <-> ROW1R */
+    vmlal.s16       q6,    ROW1L, XFIX_1_175875602
+    vmlal.s16       q6,    ROW3R, XFIX_1_175875602_MINUS_1_961570560 /* ROW7L <-> ROW3R */
+    vmlal.s16       q6,    ROW3L, XFIX_1_175875602_MINUS_1_961570560
+    vmull.s16       q7,    ROW3R, XFIX_1_175875602 /* ROW7L <-> ROW3R */
+    vmlal.s16       q7,    ROW3L, XFIX_1_175875602
+    vmlal.s16       q7,    ROW1R, XFIX_1_175875602_MINUS_0_390180644 /* ROW5L <-> ROW1R */
+    vmlal.s16       q7,    ROW1L, XFIX_1_175875602_MINUS_0_390180644
+    vsubl.s16       q3,    ROW0L, ROW0R /* ROW4L <-> ROW0R */
+    vmull.s16       q2,    ROW2L, XFIX_0_541196100
+    vmlal.s16       q2,    ROW2R, XFIX_0_541196100_MINUS_1_847759065 /* ROW6L <-> ROW2R */
+    vmov            q4,    q6
+    vmlsl.s16       q6,    ROW1R, XFIX_2_562915447 /* ROW5L <-> ROW1R */
+    vmlal.s16       q6,    ROW3L, XFIX_3_072711026_MINUS_2_562915447
+    vshl.s32        q3,    q3,    #13
+    vmlsl.s16       q4,    ROW1L, XFIX_0_899976223
+    vadd.s32        q1,    q3,    q2
+    vmov            q5,    q7
+    vadd.s32        q1,    q1,    q6
+    vmlsl.s16       q7,    ROW3R, XFIX_0_899976223 /* ROW7L <-> ROW3R */
+    vmlal.s16       q7,    ROW1L, XFIX_1_501321110_MINUS_0_899976223
+    vshrn.s32       ROW1L, q1,    #16
+    vsub.s32        q1,    q1,    q6
+    vmlal.s16       q5,    ROW1R, XFIX_2_053119869_MINUS_2_562915447 /* ROW5L <-> ROW1R */
+    vmlsl.s16       q5,    ROW3L, XFIX_2_562915447
+    vsub.s32        q1,    q1,    q6
+    vmull.s16       q6,    ROW2L, XFIX_0_541196100_PLUS_0_765366865
+    vmlal.s16       q6,    ROW2R, XFIX_0_541196100 /* ROW6L <-> ROW2R */
+    vsub.s32        q3,    q3,    q2
+    vshrn.s32       ROW2R, q1,    #16 /* ROW6L <-> ROW2R */
+    vadd.s32        q1,    q3,    q5
+    vsub.s32        q3,    q3,    q5
+    vaddl.s16       q5,    ROW0L, ROW0R /* ROW4L <-> ROW0R */
+    vshrn.s32       ROW2L, q1,    #16
+    vshrn.s32       ROW1R, q3,    #16 /* ROW5L <-> ROW1R */
+    vshl.s32        q5,    q5,    #13
+    vmlal.s16       q4,    ROW3R, XFIX_0_298631336_MINUS_0_899976223 /* ROW7L <-> ROW3R */
+    vadd.s32        q2,    q5,    q6
+    vsub.s32        q1,    q5,    q6
+    vadd.s32        q6,    q2,    q7
+    vsub.s32        q2,    q2,    q7
+    vadd.s32        q5,    q1,    q4
+    vsub.s32        q3,    q1,    q4
+    vshrn.s32       ROW3R, q2,    #16 /* ROW7L <-> ROW3R */
+    vshrn.s32       ROW3L, q5,    #16
+    vshrn.s32       ROW0L, q6,    #16
+    vshrn.s32       ROW0R, q3,    #16 /* ROW4L <-> ROW0R */
+    /* 1-D IDCT, pass 2, right 4x8 half */
+    vld1.s16        {d2},  [ip, :64]    /* reload constants */
+    vmull.s16       q6,    ROW5R, XFIX_1_175875602
+    vmlal.s16       q6,    ROW5L, XFIX_1_175875602 /* ROW5L <-> ROW1R */
+    vmlal.s16       q6,    ROW7R, XFIX_1_175875602_MINUS_1_961570560
+    vmlal.s16       q6,    ROW7L, XFIX_1_175875602_MINUS_1_961570560 /* ROW7L <-> ROW3R */
+    vmull.s16       q7,    ROW7R, XFIX_1_175875602
+    vmlal.s16       q7,    ROW7L, XFIX_1_175875602 /* ROW7L <-> ROW3R */
+    vmlal.s16       q7,    ROW5R, XFIX_1_175875602_MINUS_0_390180644
+    vmlal.s16       q7,    ROW5L, XFIX_1_175875602_MINUS_0_390180644 /* ROW5L <-> ROW1R */
+    vsubl.s16       q3,    ROW4L, ROW4R /* ROW4L <-> ROW0R */
+    vmull.s16       q2,    ROW6L, XFIX_0_541196100 /* ROW6L <-> ROW2R */
+    vmlal.s16       q2,    ROW6R, XFIX_0_541196100_MINUS_1_847759065
+    vmov            q4,    q6
+    vmlsl.s16       q6,    ROW5R, XFIX_2_562915447
+    vmlal.s16       q6,    ROW7L, XFIX_3_072711026_MINUS_2_562915447 /* ROW7L <-> ROW3R */
+    vshl.s32        q3,    q3,    #13
+    vmlsl.s16       q4,    ROW5L, XFIX_0_899976223 /* ROW5L <-> ROW1R */
+    vadd.s32        q1,    q3,    q2
+    vmov            q5,    q7
+    vadd.s32        q1,    q1,    q6
+    vmlsl.s16       q7,    ROW7R, XFIX_0_899976223
+    vmlal.s16       q7,    ROW5L, XFIX_1_501321110_MINUS_0_899976223 /* ROW5L <-> ROW1R */
+    vshrn.s32       ROW5L, q1,    #16 /* ROW5L <-> ROW1R */
+    vsub.s32        q1,    q1,    q6
+    vmlal.s16       q5,    ROW5R, XFIX_2_053119869_MINUS_2_562915447
+    vmlsl.s16       q5,    ROW7L, XFIX_2_562915447 /* ROW7L <-> ROW3R */
+    vsub.s32        q1,    q1,    q6
+    vmull.s16       q6,    ROW6L, XFIX_0_541196100_PLUS_0_765366865 /* ROW6L <-> ROW2R */
+    vmlal.s16       q6,    ROW6R, XFIX_0_541196100
+    vsub.s32        q3,    q3,    q2
+    vshrn.s32       ROW6R, q1,    #16
+    vadd.s32        q1,    q3,    q5
+    vsub.s32        q3,    q3,    q5
+    vaddl.s16       q5,    ROW4L, ROW4R /* ROW4L <-> ROW0R */
+    vshrn.s32       ROW6L, q1,    #16 /* ROW6L <-> ROW2R */
+    vshrn.s32       ROW5R, q3,    #16
+    vshl.s32        q5,    q5,    #13
+    vmlal.s16       q4,    ROW7R, XFIX_0_298631336_MINUS_0_899976223
+    vadd.s32        q2,    q5,    q6
+    vsub.s32        q1,    q5,    q6
+    vadd.s32        q6,    q2,    q7
+    vsub.s32        q2,    q2,    q7
+    vadd.s32        q5,    q1,    q4
+    vsub.s32        q3,    q1,    q4
+    vshrn.s32       ROW7R, q2,    #16
+    vshrn.s32       ROW7L, q5,    #16 /* ROW7L <-> ROW3R */
+    vshrn.s32       ROW4L, q6,    #16 /* ROW4L <-> ROW0R */
+    vshrn.s32       ROW4R, q3,    #16
+
+2:  /* Descale to 8-bit and range limit */
+    vqrshrn.s16     d16,   q8,    #2
+    vqrshrn.s16     d17,   q9,    #2
+    vqrshrn.s16     d18,   q10,   #2
+    vqrshrn.s16     d19,   q11,   #2
+    vpop            {d8-d15} /* restore NEON registers */
+    vqrshrn.s16     d20,   q12,   #2
+      /* Transpose the final 8-bit samples and do signed->unsigned conversion */
+      vtrn.16         q8,    q9
+    vqrshrn.s16     d21,   q13,   #2
+    vqrshrn.s16     d22,   q14,   #2
+      vmov.u8         q0,    #(CENTERJSAMPLE)
+    vqrshrn.s16     d23,   q15,   #2
+      vtrn.8          d16,   d17
+      vtrn.8          d18,   d19
+      vadd.u8         q8,    q8,    q0
+      vadd.u8         q9,    q9,    q0
+      vtrn.16         q10,   q11
+        /* Store results to the output buffer */
+        ldmia           OUTPUT_BUF!, {TMP1, TMP2}
+        add             TMP1, TMP1, OUTPUT_COL
+        add             TMP2, TMP2, OUTPUT_COL
+        vst1.8          {d16}, [TMP1]
+      vtrn.8          d20, d21
+        vst1.8          {d17}, [TMP2]
+        ldmia           OUTPUT_BUF!, {TMP1, TMP2}
+        add             TMP1, TMP1, OUTPUT_COL
+        add             TMP2, TMP2, OUTPUT_COL
+        vst1.8          {d18}, [TMP1]
+      vadd.u8         q10,   q10,   q0
+        vst1.8          {d19}, [TMP2]
+        ldmia           OUTPUT_BUF, {TMP1, TMP2, TMP3, TMP4}
+        add             TMP1, TMP1, OUTPUT_COL
+        add             TMP2, TMP2, OUTPUT_COL
+        add             TMP3, TMP3, OUTPUT_COL
+        add             TMP4, TMP4, OUTPUT_COL
+      vtrn.8          d22, d23
+        vst1.8          {d20}, [TMP1]
+      vadd.u8         q11,   q11,   q0
+        vst1.8          {d21}, [TMP2]
+        vst1.8          {d22}, [TMP3]
+        vst1.8          {d23}, [TMP4]
+    bx              lr
+
+3:  /* Left 4x8 half is done, right 4x8 half contains mostly zeros */
+
+    /* Transpose left 4x8 half */
+    vtrn.16         ROW6L, ROW7L
+    vtrn.16         ROW2L, ROW3L
+    vtrn.16         ROW0L, ROW1L
+    vtrn.16         ROW4L, ROW5L
+    vshl.s16        ROW0R, ROW0R, #2 /* PASS1_BITS */
+    vtrn.32         ROW1L, ROW3L
+    vtrn.32         ROW4L, ROW6L
+    vtrn.32         ROW0L, ROW2L
+    vtrn.32         ROW5L, ROW7L
+
+    cmp             r0, #0
+    beq             4f /* Right 4x8 half has all zeros, go to 'sparse' second pass */
+
+    /* Only row 0 is non-zero for the right 4x8 half  */
+    vdup.s16        ROW1R, ROW0R[1]
+    vdup.s16        ROW2R, ROW0R[2]
+    vdup.s16        ROW3R, ROW0R[3]
+    vdup.s16        ROW4R, ROW0R[0]
+    vdup.s16        ROW5R, ROW0R[1]
+    vdup.s16        ROW6R, ROW0R[2]
+    vdup.s16        ROW7R, ROW0R[3]
+    vdup.s16        ROW0R, ROW0R[0]
+    b               1b /* Go to 'normal' second pass */
+
+4:  /* 1-D IDCT, pass 2 (sparse variant with zero rows 4-7), left 4x8 half */
+    vld1.s16        {d2},  [ip, :64]    /* reload constants */
+    vmull.s16       q6,    ROW1L, XFIX_1_175875602
+    vmlal.s16       q6,    ROW3L, XFIX_1_175875602_MINUS_1_961570560
+    vmull.s16       q7,    ROW3L, XFIX_1_175875602
+    vmlal.s16       q7,    ROW1L, XFIX_1_175875602_MINUS_0_390180644
+    vmull.s16       q2,    ROW2L, XFIX_0_541196100
+    vshll.s16       q3,    ROW0L, #13
+    vmov            q4,    q6
+    vmlal.s16       q6,    ROW3L, XFIX_3_072711026_MINUS_2_562915447
+    vmlsl.s16       q4,    ROW1L, XFIX_0_899976223
+    vadd.s32        q1,    q3,    q2
+    vmov            q5,    q7
+    vmlal.s16       q7,    ROW1L, XFIX_1_501321110_MINUS_0_899976223
+    vadd.s32        q1,    q1,    q6
+    vadd.s32        q6,    q6,    q6
+    vmlsl.s16       q5,    ROW3L, XFIX_2_562915447
+    vshrn.s32       ROW1L, q1,    #16
+    vsub.s32        q1,    q1,    q6
+    vmull.s16       q6,    ROW2L, XFIX_0_541196100_PLUS_0_765366865
+    vsub.s32        q3,    q3,    q2
+    vshrn.s32       ROW2R, q1,    #16 /* ROW6L <-> ROW2R */
+    vadd.s32        q1,    q3,    q5
+    vsub.s32        q3,    q3,    q5
+    vshll.s16       q5,    ROW0L, #13
+    vshrn.s32       ROW2L, q1,    #16
+    vshrn.s32       ROW1R, q3,    #16 /* ROW5L <-> ROW1R */
+    vadd.s32        q2,    q5,    q6
+    vsub.s32        q1,    q5,    q6
+    vadd.s32        q6,    q2,    q7
+    vsub.s32        q2,    q2,    q7
+    vadd.s32        q5,    q1,    q4
+    vsub.s32        q3,    q1,    q4
+    vshrn.s32       ROW3R, q2,    #16 /* ROW7L <-> ROW3R */
+    vshrn.s32       ROW3L, q5,    #16
+    vshrn.s32       ROW0L, q6,    #16
+    vshrn.s32       ROW0R, q3,    #16 /* ROW4L <-> ROW0R */
+    /* 1-D IDCT, pass 2 (sparse variant with zero rows 4-7), right 4x8 half */
+    vld1.s16        {d2},  [ip, :64]    /* reload constants */
+    vmull.s16       q6,    ROW5L, XFIX_1_175875602
+    vmlal.s16       q6,    ROW7L, XFIX_1_175875602_MINUS_1_961570560
+    vmull.s16       q7,    ROW7L, XFIX_1_175875602
+    vmlal.s16       q7,    ROW5L, XFIX_1_175875602_MINUS_0_390180644
+    vmull.s16       q2,    ROW6L, XFIX_0_541196100
+    vshll.s16       q3,    ROW4L, #13
+    vmov            q4,    q6
+    vmlal.s16       q6,    ROW7L, XFIX_3_072711026_MINUS_2_562915447
+    vmlsl.s16       q4,    ROW5L, XFIX_0_899976223
+    vadd.s32        q1,    q3,    q2
+    vmov            q5,    q7
+    vmlal.s16       q7,    ROW5L, XFIX_1_501321110_MINUS_0_899976223
+    vadd.s32        q1,    q1,    q6
+    vadd.s32        q6,    q6,    q6
+    vmlsl.s16       q5,    ROW7L, XFIX_2_562915447
+    vshrn.s32       ROW5L, q1,    #16 /* ROW5L <-> ROW1R */
+    vsub.s32        q1,    q1,    q6
+    vmull.s16       q6,    ROW6L, XFIX_0_541196100_PLUS_0_765366865
+    vsub.s32        q3,    q3,    q2
+    vshrn.s32       ROW6R, q1,    #16
+    vadd.s32        q1,    q3,    q5
+    vsub.s32        q3,    q3,    q5
+    vshll.s16       q5,    ROW4L, #13
+    vshrn.s32       ROW6L, q1,    #16 /* ROW6L <-> ROW2R */
+    vshrn.s32       ROW5R, q3,    #16
+    vadd.s32        q2,    q5,    q6
+    vsub.s32        q1,    q5,    q6
+    vadd.s32        q6,    q2,    q7
+    vsub.s32        q2,    q2,    q7
+    vadd.s32        q5,    q1,    q4
+    vsub.s32        q3,    q1,    q4
+    vshrn.s32       ROW7R, q2,    #16
+    vshrn.s32       ROW7L, q5,    #16 /* ROW7L <-> ROW3R */
+    vshrn.s32       ROW4L, q6,    #16 /* ROW4L <-> ROW0R */
+    vshrn.s32       ROW4R, q3,    #16
+    b               2b /* Go to epilogue */
+
+    .unreq          DCT_TABLE
+    .unreq          COEF_BLOCK
+    .unreq          OUTPUT_BUF
+    .unreq          OUTPUT_COL
+    .unreq          TMP1
+    .unreq          TMP2
+    .unreq          TMP3
+    .unreq          TMP4
+
+    .unreq          ROW0L
+    .unreq          ROW0R
+    .unreq          ROW1L
+    .unreq          ROW1R
+    .unreq          ROW2L
+    .unreq          ROW2R
+    .unreq          ROW3L
+    .unreq          ROW3R
+    .unreq          ROW4L
+    .unreq          ROW4R
+    .unreq          ROW5L
+    .unreq          ROW5R
+    .unreq          ROW6L
+    .unreq          ROW6R
+    .unreq          ROW7L
+    .unreq          ROW7R
+.endfunc
+
+/*****************************************************************************/
+
+/*
+ * jsimd_idct_ifast_neon
+ *
+ * This function contains a fast, not so accurate integer implementation of
+ * the inverse DCT (Discrete Cosine Transform). It uses the same calculations
+ * and produces exactly the same output as IJG's original 'jpeg_idct_ifast'
+ * function from jidctfst.c
+ *
+ * Normally 1-D AAN DCT needs 5 multiplications and 29 additions.
+ * But in ARM NEON case some extra additions are required because VQDMULH
+ * instruction can't handle the constants larger than 1. So the expressions
+ * like "x * 1.082392200" have to be converted to "x * 0.082392200 + x",
+ * which introduces an extra addition. Overall, there are 6 extra additions
+ * per 1-D IDCT pass, totalling to 5 VQDMULH and 35 VADD/VSUB instructions.
+ */
+
+#define XFIX_1_082392200 d0[0]
+#define XFIX_1_414213562 d0[1]
+#define XFIX_1_847759065 d0[2]
+#define XFIX_2_613125930 d0[3]
+
+.balign 16
+jsimd_idct_ifast_neon_consts:
+    .short (277 * 128 - 256 * 128) /* XFIX_1_082392200 */
+    .short (362 * 128 - 256 * 128) /* XFIX_1_414213562 */
+    .short (473 * 128 - 256 * 128) /* XFIX_1_847759065 */
+    .short (669 * 128 - 512 * 128) /* XFIX_2_613125930 */
+
+asm_function jsimd_idct_ifast_neon
+
+    DCT_TABLE       .req r0
+    COEF_BLOCK      .req r1
+    OUTPUT_BUF      .req r2
+    OUTPUT_COL      .req r3
+    TMP1            .req r0
+    TMP2            .req r1
+    TMP3            .req r2
+    TMP4            .req ip
+
+    /* Load and dequantize coefficients into NEON registers
+     * with the following allocation:
+     *       0 1 2 3 | 4 5 6 7
+     *      ---------+--------
+     *   0 | d16     | d17     ( q8  )
+     *   1 | d18     | d19     ( q9  )
+     *   2 | d20     | d21     ( q10 )
+     *   3 | d22     | d23     ( q11 )
+     *   4 | d24     | d25     ( q12 )
+     *   5 | d26     | d27     ( q13 )
+     *   6 | d28     | d29     ( q14 )
+     *   7 | d30     | d31     ( q15 )
+     */
+    adr             ip, jsimd_idct_ifast_neon_consts
+    vld1.16         {d16, d17, d18, d19}, [COEF_BLOCK, :128]!
+    vld1.16         {d0, d1, d2, d3}, [DCT_TABLE, :128]!
+    vld1.16         {d20, d21, d22, d23}, [COEF_BLOCK, :128]!
+    vmul.s16        q8,  q8,  q0
+    vld1.16         {d4, d5, d6, d7}, [DCT_TABLE, :128]!
+    vmul.s16        q9,  q9,  q1
+    vld1.16         {d24, d25, d26, d27}, [COEF_BLOCK, :128]!
+    vmul.s16        q10, q10, q2
+    vld1.16         {d0, d1, d2, d3}, [DCT_TABLE, :128]!
+    vmul.s16        q11, q11, q3
+    vld1.16         {d28, d29, d30, d31}, [COEF_BLOCK, :128]
+    vmul.s16        q12, q12, q0
+    vld1.16         {d4, d5, d6, d7}, [DCT_TABLE, :128]!
+    vmul.s16        q14, q14, q2
+    vmul.s16        q13, q13, q1
+    vld1.16         {d0}, [ip, :64] /* load constants */
+    vmul.s16        q15, q15, q3
+    vpush           {d8-d13}        /* save NEON registers */
+    /* 1-D IDCT, pass 1 */
+    vsub.s16        q2,  q10, q14
+    vadd.s16        q14, q10, q14
+    vsub.s16        q1,  q11, q13
+    vadd.s16        q13, q11, q13
+    vsub.s16        q5,  q9,  q15
+    vadd.s16        q15, q9,  q15
+    vqdmulh.s16     q4,  q2,  XFIX_1_414213562
+    vqdmulh.s16     q6,  q1,  XFIX_2_613125930
+    vadd.s16        q3,  q1,  q1
+    vsub.s16        q1,  q5,  q1
+    vadd.s16        q10, q2,  q4
+    vqdmulh.s16     q4,  q1,  XFIX_1_847759065
+    vsub.s16        q2,  q15, q13
+    vadd.s16        q3,  q3,  q6
+    vqdmulh.s16     q6,  q2,  XFIX_1_414213562
+    vadd.s16        q1,  q1,  q4
+    vqdmulh.s16     q4,  q5,  XFIX_1_082392200
+    vsub.s16        q10, q10, q14
+    vadd.s16        q2,  q2,  q6
+    vsub.s16        q6,  q8,  q12
+    vadd.s16        q12, q8,  q12
+    vadd.s16        q9,  q5,  q4
+    vadd.s16        q5,  q6,  q10
+    vsub.s16        q10, q6,  q10
+    vadd.s16        q6,  q15, q13
+    vadd.s16        q8,  q12, q14
+    vsub.s16        q3,  q6,  q3
+    vsub.s16        q12, q12, q14
+    vsub.s16        q3,  q3,  q1
+    vsub.s16        q1,  q9,  q1
+    vadd.s16        q2,  q3,  q2
+    vsub.s16        q15, q8,  q6
+    vadd.s16        q1,  q1,  q2
+    vadd.s16        q8,  q8,  q6
+    vadd.s16        q14, q5,  q3
+    vsub.s16        q9,  q5,  q3
+    vsub.s16        q13, q10, q2
+    vadd.s16        q10, q10, q2
+      /* Transpose */
+      vtrn.16         q8,  q9
+    vsub.s16        q11, q12, q1
+      vtrn.16         q14, q15
+    vadd.s16        q12, q12, q1
+      vtrn.16         q10, q11
+      vtrn.16         q12, q13
+      vtrn.32         q9,  q11
+      vtrn.32         q12, q14
+      vtrn.32         q8,  q10
+      vtrn.32         q13, q15
+      vswp            d28, d21
+      vswp            d26, d19
+    /* 1-D IDCT, pass 2 */
+    vsub.s16        q2,  q10, q14
+      vswp            d30, d23
+    vadd.s16        q14, q10, q14
+      vswp            d24, d17
+    vsub.s16        q1,  q11, q13
+    vadd.s16        q13, q11, q13
+    vsub.s16        q5,  q9,  q15
+    vadd.s16        q15, q9,  q15
+    vqdmulh.s16     q4,  q2,  XFIX_1_414213562
+    vqdmulh.s16     q6,  q1,  XFIX_2_613125930
+    vadd.s16        q3,  q1,  q1
+    vsub.s16        q1,  q5,  q1
+    vadd.s16        q10, q2,  q4
+    vqdmulh.s16     q4,  q1,  XFIX_1_847759065
+    vsub.s16        q2,  q15, q13
+    vadd.s16        q3,  q3,  q6
+    vqdmulh.s16     q6,  q2,  XFIX_1_414213562
+    vadd.s16        q1,  q1,  q4
+    vqdmulh.s16     q4,  q5,  XFIX_1_082392200
+    vsub.s16        q10, q10, q14
+    vadd.s16        q2,  q2,  q6
+    vsub.s16        q6,  q8,  q12
+    vadd.s16        q12, q8,  q12
+    vadd.s16        q9,  q5,  q4
+    vadd.s16        q5,  q6,  q10
+    vsub.s16        q10, q6,  q10
+    vadd.s16        q6,  q15, q13
+    vadd.s16        q8,  q12, q14
+    vsub.s16        q3,  q6,  q3
+    vsub.s16        q12, q12, q14
+    vsub.s16        q3,  q3,  q1
+    vsub.s16        q1,  q9,  q1
+    vadd.s16        q2,  q3,  q2
+    vsub.s16        q15, q8,  q6
+    vadd.s16        q1,  q1,  q2
+    vadd.s16        q8,  q8,  q6
+    vadd.s16        q14, q5,  q3
+    vsub.s16        q9,  q5,  q3
+    vsub.s16        q13, q10, q2
+    vpop            {d8-d13}        /* restore NEON registers */
+    vadd.s16        q10, q10, q2
+    vsub.s16        q11, q12, q1
+    vadd.s16        q12, q12, q1
+    /* Descale to 8-bit and range limit */
+    vmov.u8         q0,  #0x80
+    vqshrn.s16      d16, q8,  #5
+    vqshrn.s16      d17, q9,  #5
+    vqshrn.s16      d18, q10, #5
+    vqshrn.s16      d19, q11, #5
+    vqshrn.s16      d20, q12, #5
+    vqshrn.s16      d21, q13, #5
+    vqshrn.s16      d22, q14, #5
+    vqshrn.s16      d23, q15, #5
+    vadd.u8         q8,  q8,  q0
+    vadd.u8         q9,  q9,  q0
+    vadd.u8         q10, q10, q0
+    vadd.u8         q11, q11, q0
+    /* Transpose the final 8-bit samples */
+    vtrn.16         q8,  q9
+    vtrn.16         q10, q11
+    vtrn.32         q8,  q10
+    vtrn.32         q9,  q11
+    vtrn.8          d16, d17
+    vtrn.8          d18, d19
+      /* Store results to the output buffer */
+      ldmia           OUTPUT_BUF!, {TMP1, TMP2}
+      add             TMP1, TMP1, OUTPUT_COL
+      add             TMP2, TMP2, OUTPUT_COL
+      vst1.8          {d16}, [TMP1]
+      vst1.8          {d17}, [TMP2]
+      ldmia           OUTPUT_BUF!, {TMP1, TMP2}
+      add             TMP1, TMP1, OUTPUT_COL
+      add             TMP2, TMP2, OUTPUT_COL
+      vst1.8          {d18}, [TMP1]
+    vtrn.8          d20, d21
+      vst1.8          {d19}, [TMP2]
+      ldmia           OUTPUT_BUF, {TMP1, TMP2, TMP3, TMP4}
+      add             TMP1, TMP1, OUTPUT_COL
+      add             TMP2, TMP2, OUTPUT_COL
+      add             TMP3, TMP3, OUTPUT_COL
+      add             TMP4, TMP4, OUTPUT_COL
+      vst1.8          {d20}, [TMP1]
+    vtrn.8          d22, d23
+      vst1.8          {d21}, [TMP2]
+      vst1.8          {d22}, [TMP3]
+      vst1.8          {d23}, [TMP4]
+    bx              lr
+
+    .unreq          DCT_TABLE
+    .unreq          COEF_BLOCK
+    .unreq          OUTPUT_BUF
+    .unreq          OUTPUT_COL
+    .unreq          TMP1
+    .unreq          TMP2
+    .unreq          TMP3
+    .unreq          TMP4
+.endfunc
+
+/*****************************************************************************/
+
+/*
+ * jsimd_idct_4x4_neon
+ *
+ * This function contains inverse-DCT code for getting reduced-size
+ * 4x4 pixels output from an 8x8 DCT block. It uses the same  calculations
+ * and produces exactly the same output as IJG's original 'jpeg_idct_4x4'
+ * function from jpeg-6b (jidctred.c).
+ *
+ * NOTE: jpeg-8 has an improved implementation of 4x4 inverse-DCT, which
+ *       requires much less arithmetic operations and hence should be faster.
+ *       The primary purpose of this particular NEON optimized function is
+ *       bit exact compatibility with jpeg-6b.
+ *
+ * TODO: a bit better instructions scheduling can be achieved by expanding
+ *       idct_helper/transpose_4x4 macros and reordering instructions,
+ *       but readability will suffer somewhat.
+ */
+
+#define CONST_BITS  13
+
+#define FIX_0_211164243  (1730)  /* FIX(0.211164243) */
+#define FIX_0_509795579  (4176)  /* FIX(0.509795579) */
+#define FIX_0_601344887  (4926)  /* FIX(0.601344887) */
+#define FIX_0_720959822  (5906)  /* FIX(0.720959822) */
+#define FIX_0_765366865  (6270)  /* FIX(0.765366865) */
+#define FIX_0_850430095  (6967)  /* FIX(0.850430095) */
+#define FIX_0_899976223  (7373)  /* FIX(0.899976223) */
+#define FIX_1_061594337  (8697)  /* FIX(1.061594337) */
+#define FIX_1_272758580  (10426) /* FIX(1.272758580) */
+#define FIX_1_451774981  (11893) /* FIX(1.451774981) */
+#define FIX_1_847759065  (15137) /* FIX(1.847759065) */
+#define FIX_2_172734803  (17799) /* FIX(2.172734803) */
+#define FIX_2_562915447  (20995) /* FIX(2.562915447) */
+#define FIX_3_624509785  (29692) /* FIX(3.624509785) */
+
+.balign 16
+jsimd_idct_4x4_neon_consts:
+    .short     FIX_1_847759065     /* d0[0] */
+    .short     -FIX_0_765366865    /* d0[1] */
+    .short     -FIX_0_211164243    /* d0[2] */
+    .short     FIX_1_451774981     /* d0[3] */
+    .short     -FIX_2_172734803    /* d1[0] */
+    .short     FIX_1_061594337     /* d1[1] */
+    .short     -FIX_0_509795579    /* d1[2] */
+    .short     -FIX_0_601344887    /* d1[3] */
+    .short     FIX_0_899976223     /* d2[0] */
+    .short     FIX_2_562915447     /* d2[1] */
+    .short     1 << (CONST_BITS+1) /* d2[2] */
+    .short     0                   /* d2[3] */
+
+.macro idct_helper x4, x6, x8, x10, x12, x14, x16, shift, y26, y27, y28, y29
+    vmull.s16       q14, \x4,  d2[2]
+    vmlal.s16       q14, \x8,  d0[0]
+    vmlal.s16       q14, \x14, d0[1]
+
+    vmull.s16       q13, \x16, d1[2]
+    vmlal.s16       q13, \x12, d1[3]
+    vmlal.s16       q13, \x10, d2[0]
+    vmlal.s16       q13, \x6,  d2[1]
+
+    vmull.s16       q15, \x4,  d2[2]
+    vmlsl.s16       q15, \x8,  d0[0]
+    vmlsl.s16       q15, \x14, d0[1]
+
+    vmull.s16       q12, \x16, d0[2]
+    vmlal.s16       q12, \x12, d0[3]
+    vmlal.s16       q12, \x10, d1[0]
+    vmlal.s16       q12, \x6,  d1[1]
+
+    vadd.s32        q10, q14, q13
+    vsub.s32        q14, q14, q13
+
+.if \shift > 16
+    vrshr.s32       q10,  q10, #\shift
+    vrshr.s32       q14,  q14, #\shift
+    vmovn.s32       \y26, q10
+    vmovn.s32       \y29, q14
+.else
+    vrshrn.s32      \y26, q10, #\shift
+    vrshrn.s32      \y29, q14, #\shift
+.endif
+
+    vadd.s32        q10, q15, q12
+    vsub.s32        q15, q15, q12
+
+.if \shift > 16
+    vrshr.s32       q10,  q10, #\shift
+    vrshr.s32       q15,  q15, #\shift
+    vmovn.s32       \y27, q10
+    vmovn.s32       \y28, q15
+.else
+    vrshrn.s32      \y27, q10, #\shift
+    vrshrn.s32      \y28, q15, #\shift
+.endif
+
+.endm
+
+asm_function jsimd_idct_4x4_neon
+
+    DCT_TABLE       .req r0
+    COEF_BLOCK      .req r1
+    OUTPUT_BUF      .req r2
+    OUTPUT_COL      .req r3
+    TMP1            .req r0
+    TMP2            .req r1
+    TMP3            .req r2
+    TMP4            .req ip
+
+    vpush           {d8-d15}
+
+    /* Load constants (d3 is just used for padding) */
+    adr             TMP4, jsimd_idct_4x4_neon_consts
+    vld1.16         {d0, d1, d2, d3}, [TMP4, :128]
+
+    /* Load all COEF_BLOCK into NEON registers with the following allocation:
+     *       0 1 2 3 | 4 5 6 7
+     *      ---------+--------
+     *   0 | d4      | d5
+     *   1 | d6      | d7
+     *   2 | d8      | d9
+     *   3 | d10     | d11
+     *   4 | -       | -
+     *   5 | d12     | d13
+     *   6 | d14     | d15
+     *   7 | d16     | d17
+     */
+    vld1.16         {d4, d5, d6, d7}, [COEF_BLOCK, :128]!
+    vld1.16         {d8, d9, d10, d11}, [COEF_BLOCK, :128]!
+    add COEF_BLOCK, COEF_BLOCK, #16
+    vld1.16         {d12, d13, d14, d15}, [COEF_BLOCK, :128]!
+    vld1.16         {d16, d17}, [COEF_BLOCK, :128]!
+    /* dequantize */
+    vld1.16         {d18, d19, d20, d21}, [DCT_TABLE, :128]!
+    vmul.s16        q2, q2, q9
+    vld1.16         {d22, d23, d24, d25}, [DCT_TABLE, :128]!
+    vmul.s16        q3, q3, q10
+    vmul.s16        q4, q4, q11
+    add             DCT_TABLE, DCT_TABLE, #16
+    vld1.16         {d26, d27, d28, d29}, [DCT_TABLE, :128]!
+    vmul.s16        q5, q5, q12
+    vmul.s16        q6, q6, q13
+    vld1.16         {d30, d31}, [DCT_TABLE, :128]!
+    vmul.s16        q7, q7, q14
+    vmul.s16        q8, q8, q15
+
+    /* Pass 1 */
+    idct_helper     d4, d6, d8, d10, d12, d14, d16, 12, d4, d6, d8, d10
+    transpose_4x4   d4, d6, d8, d10
+    idct_helper     d5, d7, d9, d11, d13, d15, d17, 12, d5, d7, d9, d11
+    transpose_4x4   d5, d7, d9, d11
+
+    /* Pass 2 */
+    idct_helper     d4, d6, d8, d10, d7, d9, d11, 19, d26, d27, d28, d29
+    transpose_4x4   d26, d27, d28, d29
+
+    /* Range limit */
+    vmov.u16        q15, #0x80
+    vadd.s16        q13, q13, q15
+    vadd.s16        q14, q14, q15
+    vqmovun.s16     d26, q13
+    vqmovun.s16     d27, q14
+
+    /* Store results to the output buffer */
+    ldmia           OUTPUT_BUF, {TMP1, TMP2, TMP3, TMP4}
+    add             TMP1, TMP1, OUTPUT_COL
+    add             TMP2, TMP2, OUTPUT_COL
+    add             TMP3, TMP3, OUTPUT_COL
+    add             TMP4, TMP4, OUTPUT_COL
+
+#if defined(__ARMEL__) && !RESPECT_STRICT_ALIGNMENT
+    /* We can use much less instructions on little endian systems if the
+     * OS kernel is not configured to trap unaligned memory accesses
+     */
+    vst1.32         {d26[0]}, [TMP1]!
+    vst1.32         {d27[0]}, [TMP3]!
+    vst1.32         {d26[1]}, [TMP2]!
+    vst1.32         {d27[1]}, [TMP4]!
+#else
+    vst1.8          {d26[0]}, [TMP1]!
+    vst1.8          {d27[0]}, [TMP3]!
+    vst1.8          {d26[1]}, [TMP1]!
+    vst1.8          {d27[1]}, [TMP3]!
+    vst1.8          {d26[2]}, [TMP1]!
+    vst1.8          {d27[2]}, [TMP3]!
+    vst1.8          {d26[3]}, [TMP1]!
+    vst1.8          {d27[3]}, [TMP3]!
+
+    vst1.8          {d26[4]}, [TMP2]!
+    vst1.8          {d27[4]}, [TMP4]!
+    vst1.8          {d26[5]}, [TMP2]!
+    vst1.8          {d27[5]}, [TMP4]!
+    vst1.8          {d26[6]}, [TMP2]!
+    vst1.8          {d27[6]}, [TMP4]!
+    vst1.8          {d26[7]}, [TMP2]!
+    vst1.8          {d27[7]}, [TMP4]!
+#endif
+
+    vpop            {d8-d15}
+    bx              lr
+
+    .unreq          DCT_TABLE
+    .unreq          COEF_BLOCK
+    .unreq          OUTPUT_BUF
+    .unreq          OUTPUT_COL
+    .unreq          TMP1
+    .unreq          TMP2
+    .unreq          TMP3
+    .unreq          TMP4
+.endfunc
+
+.purgem idct_helper
+
+/*****************************************************************************/
+
+/*
+ * jsimd_idct_2x2_neon
+ *
+ * This function contains inverse-DCT code for getting reduced-size
+ * 2x2 pixels output from an 8x8 DCT block. It uses the same  calculations
+ * and produces exactly the same output as IJG's original 'jpeg_idct_2x2'
+ * function from jpeg-6b (jidctred.c).
+ *
+ * NOTE: jpeg-8 has an improved implementation of 2x2 inverse-DCT, which
+ *       requires much less arithmetic operations and hence should be faster.
+ *       The primary purpose of this particular NEON optimized function is
+ *       bit exact compatibility with jpeg-6b.
+ */
+
+.balign 8
+jsimd_idct_2x2_neon_consts:
+    .short     -FIX_0_720959822    /* d0[0] */
+    .short     FIX_0_850430095     /* d0[1] */
+    .short     -FIX_1_272758580    /* d0[2] */
+    .short     FIX_3_624509785     /* d0[3] */
+
+.macro idct_helper x4, x6, x10, x12, x16, shift, y26, y27
+    vshll.s16  q14,  \x4,  #15
+    vmull.s16  q13,  \x6,  d0[3]
+    vmlal.s16  q13,  \x10, d0[2]
+    vmlal.s16  q13,  \x12, d0[1]
+    vmlal.s16  q13,  \x16, d0[0]
+
+    vadd.s32   q10,  q14,  q13
+    vsub.s32   q14,  q14,  q13
+
+.if \shift > 16
+    vrshr.s32  q10,  q10,  #\shift
+    vrshr.s32  q14,  q14,  #\shift
+    vmovn.s32  \y26, q10
+    vmovn.s32  \y27, q14
+.else
+    vrshrn.s32 \y26, q10,  #\shift
+    vrshrn.s32 \y27, q14,  #\shift
+.endif
+
+.endm
+
+asm_function jsimd_idct_2x2_neon
+
+    DCT_TABLE       .req r0
+    COEF_BLOCK      .req r1
+    OUTPUT_BUF      .req r2
+    OUTPUT_COL      .req r3
+    TMP1            .req r0
+    TMP2            .req ip
+
+    vpush           {d8-d15}
+
+    /* Load constants */
+    adr             TMP2, jsimd_idct_2x2_neon_consts
+    vld1.16         {d0}, [TMP2, :64]
+
+    /* Load all COEF_BLOCK into NEON registers with the following allocation:
+     *       0 1 2 3 | 4 5 6 7
+     *      ---------+--------
+     *   0 | d4      | d5
+     *   1 | d6      | d7
+     *   2 | -       | -
+     *   3 | d10     | d11
+     *   4 | -       | -
+     *   5 | d12     | d13
+     *   6 | -       | -
+     *   7 | d16     | d17
+     */
+    vld1.16         {d4, d5, d6, d7}, [COEF_BLOCK, :128]!
+    add             COEF_BLOCK, COEF_BLOCK, #16
+    vld1.16         {d10, d11}, [COEF_BLOCK, :128]!
+    add             COEF_BLOCK, COEF_BLOCK, #16
+    vld1.16         {d12, d13}, [COEF_BLOCK, :128]!
+    add             COEF_BLOCK, COEF_BLOCK, #16
+    vld1.16         {d16, d17}, [COEF_BLOCK, :128]!
+    /* Dequantize */
+    vld1.16         {d18, d19, d20, d21}, [DCT_TABLE, :128]!
+    vmul.s16        q2, q2, q9
+    vmul.s16        q3, q3, q10
+    add             DCT_TABLE, DCT_TABLE, #16
+    vld1.16         {d24, d25}, [DCT_TABLE, :128]!
+    vmul.s16        q5, q5, q12
+    add             DCT_TABLE, DCT_TABLE, #16
+    vld1.16         {d26, d27}, [DCT_TABLE, :128]!
+    vmul.s16        q6, q6, q13
+    add             DCT_TABLE, DCT_TABLE, #16
+    vld1.16         {d30, d31}, [DCT_TABLE, :128]!
+    vmul.s16        q8, q8, q15
+
+    /* Pass 1 */
+#if 0
+    idct_helper     d4, d6, d10, d12, d16, 13, d4, d6
+    transpose_4x4   d4, d6, d8,  d10
+    idct_helper     d5, d7, d11, d13, d17, 13, d5, d7
+    transpose_4x4   d5, d7, d9,  d11
+#else
+    vmull.s16       q13, d6,  d0[3]
+    vmlal.s16       q13, d10, d0[2]
+    vmlal.s16       q13, d12, d0[1]
+    vmlal.s16       q13, d16, d0[0]
+    vmull.s16       q12, d7,  d0[3]
+    vmlal.s16       q12, d11, d0[2]
+    vmlal.s16       q12, d13, d0[1]
+    vmlal.s16       q12, d17, d0[0]
+    vshll.s16       q14, d4,  #15
+    vshll.s16       q15, d5,  #15
+    vadd.s32        q10, q14, q13
+    vsub.s32        q14, q14, q13
+    vrshrn.s32      d4,  q10, #13
+    vrshrn.s32      d6,  q14, #13
+    vadd.s32        q10, q15, q12
+    vsub.s32        q14, q15, q12
+    vrshrn.s32      d5,  q10, #13
+    vrshrn.s32      d7,  q14, #13
+    vtrn.16         q2,  q3
+    vtrn.32         q3,  q5
+#endif
+
+    /* Pass 2 */
+    idct_helper     d4, d6, d10, d7, d11, 20, d26, d27
+
+    /* Range limit */
+    vmov.u16        q15, #0x80
+    vadd.s16        q13, q13, q15
+    vqmovun.s16     d26, q13
+    vqmovun.s16     d27, q13
+
+    /* Store results to the output buffer */
+    ldmia           OUTPUT_BUF, {TMP1, TMP2}
+    add             TMP1, TMP1, OUTPUT_COL
+    add             TMP2, TMP2, OUTPUT_COL
+
+    vst1.8          {d26[0]}, [TMP1]!
+    vst1.8          {d27[4]}, [TMP1]!
+    vst1.8          {d26[1]}, [TMP2]!
+    vst1.8          {d27[5]}, [TMP2]!
+
+    vpop            {d8-d15}
+    bx              lr
+
+    .unreq          DCT_TABLE
+    .unreq          COEF_BLOCK
+    .unreq          OUTPUT_BUF
+    .unreq          OUTPUT_COL
+    .unreq          TMP1
+    .unreq          TMP2
+.endfunc
+
+.purgem idct_helper
+
+/*****************************************************************************/
+
+/*
+ * jsimd_ycc_extrgb_convert_neon
+ * jsimd_ycc_extbgr_convert_neon
+ * jsimd_ycc_extrgbx_convert_neon
+ * jsimd_ycc_extbgrx_convert_neon
+ * jsimd_ycc_extxbgr_convert_neon
+ * jsimd_ycc_extxrgb_convert_neon
+ *
+ * Colorspace conversion YCbCr -> RGB
+ */
+
+
+.macro do_load size
+    .if \size == 8
+        vld1.8  {d4}, [U, :64]!
+        vld1.8  {d5}, [V, :64]!
+        vld1.8  {d0}, [Y, :64]!
+        pld     [U, #64]
+        pld     [V, #64]
+        pld     [Y, #64]
+    .elseif \size == 4
+        vld1.8  {d4[0]}, [U]!
+        vld1.8  {d4[1]}, [U]!
+        vld1.8  {d4[2]}, [U]!
+        vld1.8  {d4[3]}, [U]!
+        vld1.8  {d5[0]}, [V]!
+        vld1.8  {d5[1]}, [V]!
+        vld1.8  {d5[2]}, [V]!
+        vld1.8  {d5[3]}, [V]!
+        vld1.8  {d0[0]}, [Y]!
+        vld1.8  {d0[1]}, [Y]!
+        vld1.8  {d0[2]}, [Y]!
+        vld1.8  {d0[3]}, [Y]!
+    .elseif \size == 2
+        vld1.8  {d4[4]}, [U]!
+        vld1.8  {d4[5]}, [U]!
+        vld1.8  {d5[4]}, [V]!
+        vld1.8  {d5[5]}, [V]!
+        vld1.8  {d0[4]}, [Y]!
+        vld1.8  {d0[5]}, [Y]!
+    .elseif \size == 1
+        vld1.8  {d4[6]}, [U]!
+        vld1.8  {d5[6]}, [V]!
+        vld1.8  {d0[6]}, [Y]!
+    .else
+        .error unsupported macroblock size
+    .endif
+.endm
+
+.macro do_store bpp, size
+    .if \bpp == 24
+        .if \size == 8
+            vst3.8  {d10, d11, d12}, [RGB]!
+        .elseif \size == 4
+            vst3.8  {d10[0], d11[0], d12[0]}, [RGB]!
+            vst3.8  {d10[1], d11[1], d12[1]}, [RGB]!
+            vst3.8  {d10[2], d11[2], d12[2]}, [RGB]!
+            vst3.8  {d10[3], d11[3], d12[3]}, [RGB]!
+        .elseif \size == 2
+            vst3.8  {d10[4], d11[4], d12[4]}, [RGB]!
+            vst3.8  {d10[5], d11[5], d12[5]}, [RGB]!
+        .elseif \size == 1
+            vst3.8  {d10[6], d11[6], d12[6]}, [RGB]!
+        .else
+            .error unsupported macroblock size
+        .endif
+    .elseif \bpp == 32
+        .if \size == 8
+            vst4.8  {d10, d11, d12, d13}, [RGB]!
+        .elseif \size == 4
+            vst4.8  {d10[0], d11[0], d12[0], d13[0]}, [RGB]!
+            vst4.8  {d10[1], d11[1], d12[1], d13[1]}, [RGB]!
+            vst4.8  {d10[2], d11[2], d12[2], d13[2]}, [RGB]!
+            vst4.8  {d10[3], d11[3], d12[3], d13[3]}, [RGB]!
+        .elseif \size == 2
+            vst4.8  {d10[4], d11[4], d12[4], d13[4]}, [RGB]!
+            vst4.8  {d10[5], d11[5], d12[5], d13[5]}, [RGB]!
+        .elseif \size == 1
+            vst4.8  {d10[6], d11[6], d12[6], d13[6]}, [RGB]!
+        .else
+            .error unsupported macroblock size
+        .endif
+    .else
+        .error unsupported bpp
+    .endif
+.endm
+
+.macro generate_jsimd_ycc_rgb_convert_neon colorid, bpp, r_offs, g_offs, b_offs
+
+/*
+ * 2 stage pipelined YCbCr->RGB conversion
+ */
+
+.macro do_yuv_to_rgb_stage1
+    vaddw.u8        q3, q1, d4     /* q3 = u - 128 */
+    vaddw.u8        q4, q1, d5     /* q2 = v - 128 */
+    vmull.s16       q10, d6, d1[1] /* multiply by -11277 */
+    vmlal.s16       q10, d8, d1[2] /* multiply by -23401 */
+    vmull.s16       q11, d7, d1[1] /* multiply by -11277 */
+    vmlal.s16       q11, d9, d1[2] /* multiply by -23401 */
+    vmull.s16       q12, d8, d1[0] /* multiply by 22971 */
+    vmull.s16       q13, d9, d1[0] /* multiply by 22971 */
+    vmull.s16       q14, d6, d1[3] /* multiply by 29033 */
+    vmull.s16       q15, d7, d1[3] /* multiply by 29033 */
+.endm
+
+.macro do_yuv_to_rgb_stage2
+    vrshrn.s32      d20, q10, #15
+    vrshrn.s32      d21, q11, #15
+    vrshrn.s32      d24, q12, #14
+    vrshrn.s32      d25, q13, #14
+    vrshrn.s32      d28, q14, #14
+    vrshrn.s32      d29, q15, #14
+    vaddw.u8        q10, q10, d0
+    vaddw.u8        q12, q12, d0
+    vaddw.u8        q14, q14, d0
+    vqmovun.s16     d1\g_offs, q10
+    vqmovun.s16     d1\r_offs, q12
+    vqmovun.s16     d1\b_offs, q14
+.endm
+
+.macro do_yuv_to_rgb_stage2_store_load_stage1
+    vld1.8          {d4}, [U, :64]!
+      vrshrn.s32      d20, q10, #15
+      vrshrn.s32      d21, q11, #15
+      vrshrn.s32      d24, q12, #14
+      vrshrn.s32      d25, q13, #14
+      vrshrn.s32      d28, q14, #14
+    vld1.8          {d5}, [V, :64]!
+      vrshrn.s32      d29, q15, #14
+      vaddw.u8        q10, q10, d0
+      vaddw.u8        q12, q12, d0
+      vaddw.u8        q14, q14, d0
+      vqmovun.s16     d1\g_offs, q10
+    vld1.8          {d0}, [Y, :64]!
+      vqmovun.s16     d1\r_offs, q12
+    pld             [U, #64]
+    pld             [V, #64]
+    pld             [Y, #64]
+      vqmovun.s16     d1\b_offs, q14
+    vaddw.u8        q3, q1, d4     /* q3 = u - 128 */
+    vaddw.u8        q4, q1, d5     /* q2 = v - 128 */
+      do_store        \bpp, 8
+    vmull.s16       q10, d6, d1[1] /* multiply by -11277 */
+    vmlal.s16       q10, d8, d1[2] /* multiply by -23401 */
+    vmull.s16       q11, d7, d1[1] /* multiply by -11277 */
+    vmlal.s16       q11, d9, d1[2] /* multiply by -23401 */
+    vmull.s16       q12, d8, d1[0] /* multiply by 22971 */
+    vmull.s16       q13, d9, d1[0] /* multiply by 22971 */
+    vmull.s16       q14, d6, d1[3] /* multiply by 29033 */
+    vmull.s16       q15, d7, d1[3] /* multiply by 29033 */
+.endm
+
+.macro do_yuv_to_rgb
+    do_yuv_to_rgb_stage1
+    do_yuv_to_rgb_stage2
+.endm
+
+/* Apple gas crashes on adrl, work around that by using adr.
+ * But this requires a copy of these constants for each function.
+ */
+
+.balign 16
+jsimd_ycc_\colorid\()_neon_consts:
+    .short          0,      0,     0,      0
+    .short          22971, -11277, -23401, 29033
+    .short          -128,  -128,   -128,   -128
+    .short          -128,  -128,   -128,   -128
+
+asm_function jsimd_ycc_\colorid\()_convert_neon
+    OUTPUT_WIDTH    .req r0
+    INPUT_BUF       .req r1
+    INPUT_ROW       .req r2
+    OUTPUT_BUF      .req r3
+    NUM_ROWS        .req r4
+
+    INPUT_BUF0      .req r5
+    INPUT_BUF1      .req r6
+    INPUT_BUF2      .req INPUT_BUF
+
+    RGB             .req r7
+    Y               .req r8
+    U               .req r9
+    V               .req r10
+    N               .req ip
+
+    /* Load constants to d1, d2, d3 (d0 is just used for padding) */
+    adr             ip, jsimd_ycc_\colorid\()_neon_consts
+    vld1.16         {d0, d1, d2, d3}, [ip, :128]
+
+    /* Save ARM registers and handle input arguments */
+    push            {r4, r5, r6, r7, r8, r9, r10, lr}
+    ldr             NUM_ROWS, [sp, #(4 * 8)]
+    ldr             INPUT_BUF0, [INPUT_BUF]
+    ldr             INPUT_BUF1, [INPUT_BUF, #4]
+    ldr             INPUT_BUF2, [INPUT_BUF, #8]
+    .unreq          INPUT_BUF
+
+    /* Save NEON registers */
+    vpush           {d8-d15}
+
+    /* Initially set d10, d11, d12, d13 to 0xFF */
+    vmov.u8         q5, #255
+    vmov.u8         q6, #255
+
+    /* Outer loop over scanlines */
+    cmp             NUM_ROWS, #1
+    blt             9f
+0:
+    ldr             Y, [INPUT_BUF0, INPUT_ROW, lsl #2]
+    ldr             U, [INPUT_BUF1, INPUT_ROW, lsl #2]
+    mov             N, OUTPUT_WIDTH
+    ldr             V, [INPUT_BUF2, INPUT_ROW, lsl #2]
+    add             INPUT_ROW, INPUT_ROW, #1
+    ldr             RGB, [OUTPUT_BUF], #4
+
+    /* Inner loop over pixels */
+    subs            N, N, #8
+    blt             3f
+    do_load         8
+    do_yuv_to_rgb_stage1
+    subs            N, N, #8
+    blt             2f
+1:
+    do_yuv_to_rgb_stage2_store_load_stage1
+    subs            N, N, #8
+    bge             1b
+2:
+    do_yuv_to_rgb_stage2
+    do_store        \bpp, 8
+    tst             N, #7
+    beq             8f
+3:
+    tst             N, #4
+    beq             3f
+    do_load         4
+3:
+    tst             N, #2
+    beq             4f
+    do_load         2
+4:
+    tst             N, #1
+    beq             5f
+    do_load         1
+5:
+    do_yuv_to_rgb
+    tst             N, #4
+    beq             6f
+    do_store        \bpp, 4
+6:
+    tst             N, #2
+    beq             7f
+    do_store        \bpp, 2
+7:
+    tst             N, #1
+    beq             8f
+    do_store        \bpp, 1
+8:
+    subs            NUM_ROWS, NUM_ROWS, #1
+    bgt             0b
+9:
+    /* Restore all registers and return */
+    vpop            {d8-d15}
+    pop             {r4, r5, r6, r7, r8, r9, r10, pc}
+
+    .unreq          OUTPUT_WIDTH
+    .unreq          INPUT_ROW
+    .unreq          OUTPUT_BUF
+    .unreq          NUM_ROWS
+    .unreq          INPUT_BUF0
+    .unreq          INPUT_BUF1
+    .unreq          INPUT_BUF2
+    .unreq          RGB
+    .unreq          Y
+    .unreq          U
+    .unreq          V
+    .unreq          N
+.endfunc
+
+.purgem do_yuv_to_rgb
+.purgem do_yuv_to_rgb_stage1
+.purgem do_yuv_to_rgb_stage2
+.purgem do_yuv_to_rgb_stage2_store_load_stage1
+
+.endm
+
+/*--------------------------------- id ----- bpp R  G  B */
+generate_jsimd_ycc_rgb_convert_neon extrgb,  24, 0, 1, 2
+generate_jsimd_ycc_rgb_convert_neon extbgr,  24, 2, 1, 0
+generate_jsimd_ycc_rgb_convert_neon extrgbx, 32, 0, 1, 2
+generate_jsimd_ycc_rgb_convert_neon extbgrx, 32, 2, 1, 0
+generate_jsimd_ycc_rgb_convert_neon extxbgr, 32, 3, 2, 1
+generate_jsimd_ycc_rgb_convert_neon extxrgb, 32, 1, 2, 3
+
+.purgem do_load
+.purgem do_store
+
+/*****************************************************************************/
+
+/*
+ * jsimd_extrgb_ycc_convert_neon
+ * jsimd_extbgr_ycc_convert_neon
+ * jsimd_extrgbx_ycc_convert_neon
+ * jsimd_extbgrx_ycc_convert_neon
+ * jsimd_extxbgr_ycc_convert_neon
+ * jsimd_extxrgb_ycc_convert_neon
+ *
+ * Colorspace conversion RGB -> YCbCr
+ */
+
+.macro do_store size
+    .if \size == 8
+        vst1.8  {d20}, [Y]!
+        vst1.8  {d21}, [U]!
+        vst1.8  {d22}, [V]!
+    .elseif \size == 4
+        vst1.8  {d20[0]}, [Y]!
+        vst1.8  {d20[1]}, [Y]!
+        vst1.8  {d20[2]}, [Y]!
+        vst1.8  {d20[3]}, [Y]!
+        vst1.8  {d21[0]}, [U]!
+        vst1.8  {d21[1]}, [U]!
+        vst1.8  {d21[2]}, [U]!
+        vst1.8  {d21[3]}, [U]!
+        vst1.8  {d22[0]}, [V]!
+        vst1.8  {d22[1]}, [V]!
+        vst1.8  {d22[2]}, [V]!
+        vst1.8  {d22[3]}, [V]!
+    .elseif \size == 2
+        vst1.8  {d20[4]}, [Y]!
+        vst1.8  {d20[5]}, [Y]!
+        vst1.8  {d21[4]}, [U]!
+        vst1.8  {d21[5]}, [U]!
+        vst1.8  {d22[4]}, [V]!
+        vst1.8  {d22[5]}, [V]!
+    .elseif \size == 1
+        vst1.8  {d20[6]}, [Y]!
+        vst1.8  {d21[6]}, [U]!
+        vst1.8  {d22[6]}, [V]!
+    .else
+        .error unsupported macroblock size
+    .endif
+.endm
+
+.macro do_load bpp, size
+    .if \bpp == 24
+        .if \size == 8
+            vld3.8  {d10, d11, d12}, [RGB]!
+            pld     [RGB, #128]
+        .elseif \size == 4
+            vld3.8  {d10[0], d11[0], d12[0]}, [RGB]!
+            vld3.8  {d10[1], d11[1], d12[1]}, [RGB]!
+            vld3.8  {d10[2], d11[2], d12[2]}, [RGB]!
+            vld3.8  {d10[3], d11[3], d12[3]}, [RGB]!
+        .elseif \size == 2
+            vld3.8  {d10[4], d11[4], d12[4]}, [RGB]!
+            vld3.8  {d10[5], d11[5], d12[5]}, [RGB]!
+        .elseif \size == 1
+            vld3.8  {d10[6], d11[6], d12[6]}, [RGB]!
+        .else
+            .error unsupported macroblock size
+        .endif
+    .elseif \bpp == 32
+        .if \size == 8
+            vld4.8  {d10, d11, d12, d13}, [RGB]!
+            pld     [RGB, #128]
+        .elseif \size == 4
+            vld4.8  {d10[0], d11[0], d12[0], d13[0]}, [RGB]!
+            vld4.8  {d10[1], d11[1], d12[1], d13[1]}, [RGB]!
+            vld4.8  {d10[2], d11[2], d12[2], d13[2]}, [RGB]!
+            vld4.8  {d10[3], d11[3], d12[3], d13[3]}, [RGB]!
+        .elseif \size == 2
+            vld4.8  {d10[4], d11[4], d12[4], d13[4]}, [RGB]!
+            vld4.8  {d10[5], d11[5], d12[5], d13[5]}, [RGB]!
+        .elseif \size == 1
+            vld4.8  {d10[6], d11[6], d12[6], d13[6]}, [RGB]!
+        .else
+            .error unsupported macroblock size
+        .endif
+    .else
+        .error unsupported bpp
+    .endif
+.endm
+
+.macro generate_jsimd_rgb_ycc_convert_neon colorid, bpp, r_offs, g_offs, b_offs
+
+/*
+ * 2 stage pipelined RGB->YCbCr conversion
+ */
+
+.macro do_rgb_to_yuv_stage1
+    vmovl.u8    q2, d1\r_offs /* r = { d4, d5 } */
+    vmovl.u8    q3, d1\g_offs /* g = { d6, d7 } */
+    vmovl.u8    q4, d1\b_offs /* b = { d8, d9 } */
+    vmull.u16   q7, d4, d0[0]
+    vmlal.u16   q7, d6, d0[1]
+    vmlal.u16   q7, d8, d0[2]
+    vmull.u16   q8, d5, d0[0]
+    vmlal.u16   q8, d7, d0[1]
+    vmlal.u16   q8, d9, d0[2]
+    vrev64.32   q9,  q1
+    vrev64.32   q13, q1
+    vmlsl.u16   q9,  d4, d0[3]
+    vmlsl.u16   q9,  d6, d1[0]
+    vmlal.u16   q9,  d8, d1[1]
+    vmlsl.u16   q13, d5, d0[3]
+    vmlsl.u16   q13, d7, d1[0]
+    vmlal.u16   q13, d9, d1[1]
+    vrev64.32   q14, q1
+    vrev64.32   q15, q1
+    vmlal.u16   q14, d4, d1[1]
+    vmlsl.u16   q14, d6, d1[2]
+    vmlsl.u16   q14, d8, d1[3]
+    vmlal.u16   q15, d5, d1[1]
+    vmlsl.u16   q15, d7, d1[2]
+    vmlsl.u16   q15, d9, d1[3]
+.endm
+
+.macro do_rgb_to_yuv_stage2
+    vrshrn.u32  d20, q7,  #16
+    vrshrn.u32  d21, q8,  #16
+    vshrn.u32   d22, q9,  #16
+    vshrn.u32   d23, q13, #16
+    vshrn.u32   d24, q14, #16
+    vshrn.u32   d25, q15, #16
+    vmovn.u16   d20, q10      /* d20 = y */
+    vmovn.u16   d21, q11      /* d21 = u */
+    vmovn.u16   d22, q12      /* d22 = v */
+.endm
+
+.macro do_rgb_to_yuv
+    do_rgb_to_yuv_stage1
+    do_rgb_to_yuv_stage2
+.endm
+
+.macro do_rgb_to_yuv_stage2_store_load_stage1
+      vrshrn.u32  d20, q7,  #16
+      vrshrn.u32  d21, q8,  #16
+      vshrn.u32   d22, q9,  #16
+    vrev64.32   q9,  q1
+      vshrn.u32   d23, q13, #16
+    vrev64.32   q13, q1
+      vshrn.u32   d24, q14, #16
+      vshrn.u32   d25, q15, #16
+    do_load     \bpp, 8
+      vmovn.u16   d20, q10      /* d20 = y */
+    vmovl.u8    q2, d1\r_offs   /* r = { d4, d5 } */
+      vmovn.u16   d21, q11      /* d21 = u */
+    vmovl.u8    q3, d1\g_offs   /* g = { d6, d7 } */
+      vmovn.u16   d22, q12      /* d22 = v */
+    vmovl.u8    q4, d1\b_offs   /* b = { d8, d9 } */
+    vmull.u16   q7, d4, d0[0]
+    vmlal.u16   q7, d6, d0[1]
+    vmlal.u16   q7, d8, d0[2]
+      vst1.8      {d20}, [Y]!
+    vmull.u16   q8, d5, d0[0]
+    vmlal.u16   q8, d7, d0[1]
+    vmlal.u16   q8, d9, d0[2]
+    vmlsl.u16   q9,  d4, d0[3]
+    vmlsl.u16   q9,  d6, d1[0]
+    vmlal.u16   q9,  d8, d1[1]
+      vst1.8      {d21}, [U]!
+    vmlsl.u16   q13, d5, d0[3]
+    vmlsl.u16   q13, d7, d1[0]
+    vmlal.u16   q13, d9, d1[1]
+    vrev64.32   q14, q1
+    vrev64.32   q15, q1
+    vmlal.u16   q14, d4, d1[1]
+    vmlsl.u16   q14, d6, d1[2]
+    vmlsl.u16   q14, d8, d1[3]
+      vst1.8      {d22}, [V]!
+    vmlal.u16   q15, d5, d1[1]
+    vmlsl.u16   q15, d7, d1[2]
+    vmlsl.u16   q15, d9, d1[3]
+.endm
+
+.balign 16
+jsimd_\colorid\()_ycc_neon_consts:
+    .short          19595, 38470, 7471,  11059
+    .short          21709, 32768, 27439, 5329
+    .short          32767, 128,   32767, 128
+    .short          32767, 128,   32767, 128
+
+asm_function jsimd_\colorid\()_ycc_convert_neon
+    OUTPUT_WIDTH    .req r0
+    INPUT_BUF       .req r1
+    OUTPUT_BUF      .req r2
+    OUTPUT_ROW      .req r3
+    NUM_ROWS        .req r4
+
+    OUTPUT_BUF0     .req r5
+    OUTPUT_BUF1     .req r6
+    OUTPUT_BUF2     .req OUTPUT_BUF
+
+    RGB             .req r7
+    Y               .req r8
+    U               .req r9
+    V               .req r10
+    N               .req ip
+
+    /* Load constants to d0, d1, d2, d3 */
+    adr             ip, jsimd_\colorid\()_ycc_neon_consts
+    vld1.16         {d0, d1, d2, d3}, [ip, :128]
+
+    /* Save ARM registers and handle input arguments */
+    push            {r4, r5, r6, r7, r8, r9, r10, lr}
+    ldr             NUM_ROWS, [sp, #(4 * 8)]
+    ldr             OUTPUT_BUF0, [OUTPUT_BUF]
+    ldr             OUTPUT_BUF1, [OUTPUT_BUF, #4]
+    ldr             OUTPUT_BUF2, [OUTPUT_BUF, #8]
+    .unreq          OUTPUT_BUF
+
+    /* Save NEON registers */
+    vpush           {d8-d15}
+
+    /* Outer loop over scanlines */
+    cmp             NUM_ROWS, #1
+    blt             9f
+0:
+    ldr             Y, [OUTPUT_BUF0, OUTPUT_ROW, lsl #2]
+    ldr             U, [OUTPUT_BUF1, OUTPUT_ROW, lsl #2]
+    mov             N, OUTPUT_WIDTH
+    ldr             V, [OUTPUT_BUF2, OUTPUT_ROW, lsl #2]
+    add             OUTPUT_ROW, OUTPUT_ROW, #1
+    ldr             RGB, [INPUT_BUF], #4
+
+    /* Inner loop over pixels */
+    subs            N, N, #8
+    blt             3f
+    do_load         \bpp, 8
+    do_rgb_to_yuv_stage1
+    subs            N, N, #8
+    blt             2f
+1:
+    do_rgb_to_yuv_stage2_store_load_stage1
+    subs            N, N, #8
+    bge             1b
+2:
+    do_rgb_to_yuv_stage2
+    do_store        8
+    tst             N, #7
+    beq             8f
+3:
+    tst             N, #4
+    beq             3f
+    do_load         \bpp, 4
+3:
+    tst             N, #2
+    beq             4f
+    do_load         \bpp, 2
+4:
+    tst             N, #1
+    beq             5f
+    do_load         \bpp, 1
+5:
+    do_rgb_to_yuv
+    tst             N, #4
+    beq             6f
+    do_store        4
+6:
+    tst             N, #2
+    beq             7f
+    do_store        2
+7:
+    tst             N, #1
+    beq             8f
+    do_store        1
+8:
+    subs            NUM_ROWS, NUM_ROWS, #1
+    bgt             0b
+9:
+    /* Restore all registers and return */
+    vpop            {d8-d15}
+    pop             {r4, r5, r6, r7, r8, r9, r10, pc}
+
+    .unreq          OUTPUT_WIDTH
+    .unreq          OUTPUT_ROW
+    .unreq          INPUT_BUF
+    .unreq          NUM_ROWS
+    .unreq          OUTPUT_BUF0
+    .unreq          OUTPUT_BUF1
+    .unreq          OUTPUT_BUF2
+    .unreq          RGB
+    .unreq          Y
+    .unreq          U
+    .unreq          V
+    .unreq          N
+.endfunc
+
+.purgem do_rgb_to_yuv
+.purgem do_rgb_to_yuv_stage1
+.purgem do_rgb_to_yuv_stage2
+.purgem do_rgb_to_yuv_stage2_store_load_stage1
+
+.endm
+
+/*--------------------------------- id ----- bpp R  G  B */
+generate_jsimd_rgb_ycc_convert_neon extrgb,  24, 0, 1, 2
+generate_jsimd_rgb_ycc_convert_neon extbgr,  24, 2, 1, 0
+generate_jsimd_rgb_ycc_convert_neon extrgbx, 32, 0, 1, 2
+generate_jsimd_rgb_ycc_convert_neon extbgrx, 32, 2, 1, 0
+generate_jsimd_rgb_ycc_convert_neon extxbgr, 32, 3, 2, 1
+generate_jsimd_rgb_ycc_convert_neon extxrgb, 32, 1, 2, 3
+
+.purgem do_load
+.purgem do_store
+
+/*****************************************************************************/
+
+/*
+ * Load data into workspace, applying unsigned->signed conversion
+ *
+ * TODO: can be combined with 'jsimd_fdct_ifast_neon' to get
+ *       rid of VST1.16 instructions
+ */
+
+asm_function jsimd_convsamp_neon
+    SAMPLE_DATA     .req r0
+    START_COL       .req r1
+    WORKSPACE       .req r2
+    TMP1            .req r3
+    TMP2            .req r4
+    TMP3            .req r5
+    TMP4            .req ip
+
+    push            {r4, r5}
+    vmov.u8         d0, #128
+
+    ldmia           SAMPLE_DATA!, {TMP1, TMP2, TMP3, TMP4}
+    add             TMP1, TMP1, START_COL
+    add             TMP2, TMP2, START_COL
+    add             TMP3, TMP3, START_COL
+    add             TMP4, TMP4, START_COL
+    vld1.8          {d16}, [TMP1]
+    vsubl.u8        q8, d16, d0
+    vld1.8          {d18}, [TMP2]
+    vsubl.u8        q9, d18, d0
+    vld1.8          {d20}, [TMP3]
+    vsubl.u8        q10, d20, d0
+    vld1.8          {d22}, [TMP4]
+    ldmia           SAMPLE_DATA!, {TMP1, TMP2, TMP3, TMP4}
+    vsubl.u8        q11, d22, d0
+    vst1.16         {d16, d17, d18, d19}, [WORKSPACE, :128]!
+    add             TMP1, TMP1, START_COL
+    add             TMP2, TMP2, START_COL
+    vst1.16         {d20, d21, d22, d23}, [WORKSPACE, :128]!
+    add             TMP3, TMP3, START_COL
+    add             TMP4, TMP4, START_COL
+    vld1.8          {d24}, [TMP1]
+    vsubl.u8        q12, d24, d0
+    vld1.8          {d26}, [TMP2]
+    vsubl.u8        q13, d26, d0
+    vld1.8          {d28}, [TMP3]
+    vsubl.u8        q14, d28, d0
+    vld1.8          {d30}, [TMP4]
+    vsubl.u8        q15, d30, d0
+    vst1.16         {d24, d25, d26, d27}, [WORKSPACE, :128]!
+    vst1.16         {d28, d29, d30, d31}, [WORKSPACE, :128]!
+    pop             {r4, r5}
+    bx              lr
+
+    .unreq          SAMPLE_DATA
+    .unreq          START_COL
+    .unreq          WORKSPACE
+    .unreq          TMP1
+    .unreq          TMP2
+    .unreq          TMP3
+    .unreq          TMP4
+.endfunc
+
+/*****************************************************************************/
+
+/*
+ * jsimd_fdct_ifast_neon
+ *
+ * This function contains a fast, not so accurate integer implementation of
+ * the forward DCT (Discrete Cosine Transform). It uses the same calculations
+ * and produces exactly the same output as IJG's original 'jpeg_fdct_ifast'
+ * function from jfdctfst.c
+ *
+ * TODO: can be combined with 'jsimd_convsamp_neon' to get
+ *       rid of a bunch of VLD1.16 instructions
+ */
+
+#define XFIX_0_382683433 d0[0]
+#define XFIX_0_541196100 d0[1]
+#define XFIX_0_707106781 d0[2]
+#define XFIX_1_306562965 d0[3]
+
+.balign 16
+jsimd_fdct_ifast_neon_consts:
+    .short (98 * 128)              /* XFIX_0_382683433 */
+    .short (139 * 128)             /* XFIX_0_541196100 */
+    .short (181 * 128)             /* XFIX_0_707106781 */
+    .short (334 * 128 - 256 * 128) /* XFIX_1_306562965 */
+
+asm_function jsimd_fdct_ifast_neon
+
+    DATA            .req r0
+    TMP             .req ip
+
+    vpush           {d8-d15}
+
+    /* Load constants */
+    adr             TMP, jsimd_fdct_ifast_neon_consts
+    vld1.16         {d0}, [TMP, :64]
+
+    /* Load all DATA into NEON registers with the following allocation:
+     *       0 1 2 3 | 4 5 6 7
+     *      ---------+--------
+     *   0 | d16     | d17    | q8
+     *   1 | d18     | d19    | q9
+     *   2 | d20     | d21    | q10
+     *   3 | d22     | d23    | q11
+     *   4 | d24     | d25    | q12
+     *   5 | d26     | d27    | q13
+     *   6 | d28     | d29    | q14
+     *   7 | d30     | d31    | q15
+     */
+
+    vld1.16         {d16, d17, d18, d19}, [DATA, :128]!
+    vld1.16         {d20, d21, d22, d23}, [DATA, :128]!
+    vld1.16         {d24, d25, d26, d27}, [DATA, :128]!
+    vld1.16         {d28, d29, d30, d31}, [DATA, :128]
+    sub             DATA, DATA, #(128 - 32)
+
+    mov             TMP, #2
+1:
+    /* Transpose */
+    vtrn.16         q12, q13
+    vtrn.16         q10, q11
+    vtrn.16         q8,  q9
+    vtrn.16         q14, q15
+    vtrn.32         q9,  q11
+    vtrn.32         q13, q15
+    vtrn.32         q8,  q10
+    vtrn.32         q12, q14
+    vswp            d30, d23
+    vswp            d24, d17
+    vswp            d26, d19
+      /* 1-D FDCT */
+      vadd.s16        q2,  q11, q12
+    vswp            d28, d21
+      vsub.s16        q12, q11, q12
+      vsub.s16        q6,  q10, q13
+      vadd.s16        q10, q10, q13
+      vsub.s16        q7,  q9,  q14
+      vadd.s16        q9,  q9,  q14
+      vsub.s16        q1,  q8,  q15
+      vadd.s16        q8,  q8,  q15
+      vsub.s16        q4,  q9,  q10
+      vsub.s16        q5,  q8,  q2
+      vadd.s16        q3,  q9,  q10
+      vadd.s16        q4,  q4,  q5
+      vadd.s16        q2,  q8,  q2
+      vqdmulh.s16     q4,  q4,  XFIX_0_707106781
+      vadd.s16        q11, q12, q6
+      vadd.s16        q8,  q2,  q3
+      vsub.s16        q12, q2,  q3
+      vadd.s16        q3,  q6,  q7
+      vadd.s16        q7,  q7,  q1
+      vqdmulh.s16     q3,  q3,  XFIX_0_707106781
+      vsub.s16        q6,  q11, q7
+      vadd.s16        q10, q5,  q4
+      vqdmulh.s16     q6,  q6,  XFIX_0_382683433
+      vsub.s16        q14, q5,  q4
+      vqdmulh.s16     q11, q11, XFIX_0_541196100
+      vqdmulh.s16     q5,  q7,  XFIX_1_306562965
+      vadd.s16        q4,  q1,  q3
+      vsub.s16        q3,  q1,  q3
+      vadd.s16        q7,  q7,  q6
+      vadd.s16        q11, q11, q6
+      vadd.s16        q7,  q7,  q5
+      vadd.s16        q13, q3,  q11
+      vsub.s16        q11, q3,  q11
+      vadd.s16        q9,  q4,  q7
+      vsub.s16        q15, q4,  q7
+    subs            TMP, TMP, #1
+    bne             1b
+
+    /* store results */
+    vst1.16         {d16, d17, d18, d19}, [DATA, :128]!
+    vst1.16         {d20, d21, d22, d23}, [DATA, :128]!
+    vst1.16         {d24, d25, d26, d27}, [DATA, :128]!
+    vst1.16         {d28, d29, d30, d31}, [DATA, :128]
+
+    vpop            {d8-d15}
+    bx              lr
+
+    .unreq          DATA
+    .unreq          TMP
+.endfunc
+
+/*****************************************************************************/
+
+/*
+ * GLOBAL(void)
+ * jsimd_quantize_neon (JCOEFPTR coef_block, DCTELEM * divisors,
+ *                      DCTELEM * workspace);
+ *
+ * Note: the code uses 2 stage pipelining in order to improve instructions
+ *       scheduling and eliminate stalls (this provides ~15% better
+ *       performance for this function on both ARM Cortex-A8 and
+ *       ARM Cortex-A9 when compared to the non-pipelined variant).
+ *       The instructions which belong to the second stage use different
+ *       indentation for better readiability.
+ */
+asm_function jsimd_quantize_neon
+
+    COEF_BLOCK      .req r0
+    DIVISORS        .req r1
+    WORKSPACE       .req r2
+
+    RECIPROCAL      .req DIVISORS
+    CORRECTION      .req r3
+    SHIFT           .req ip
+    LOOP_COUNT      .req r4
+
+    vld1.16         {d0, d1, d2, d3}, [WORKSPACE, :128]!
+    vabs.s16        q12, q0
+    add             CORRECTION, DIVISORS, #(64 * 2)
+    add             SHIFT, DIVISORS, #(64 * 6)
+    vld1.16         {d20, d21, d22, d23}, [CORRECTION, :128]!
+    vabs.s16        q13, q1
+    vld1.16         {d16, d17, d18, d19}, [RECIPROCAL, :128]!
+    vadd.u16        q12, q12, q10 /* add correction */
+    vadd.u16        q13, q13, q11
+    vmull.u16       q10, d24, d16 /* multiply by reciprocal */
+    vmull.u16       q11, d25, d17
+    vmull.u16       q8,  d26, d18
+    vmull.u16       q9,  d27, d19
+    vld1.16         {d24, d25, d26, d27}, [SHIFT, :128]!
+    vshrn.u32       d20, q10, #16
+    vshrn.u32       d21, q11, #16
+    vshrn.u32       d22, q8,  #16
+    vshrn.u32       d23, q9,  #16
+    vneg.s16        q12, q12
+    vneg.s16        q13, q13
+    vshr.s16        q2,  q0,  #15 /* extract sign */
+    vshr.s16        q3,  q1,  #15
+    vshl.u16        q14, q10, q12 /* shift */
+    vshl.u16        q15, q11, q13
+
+    push            {r4, r5}
+    mov             LOOP_COUNT, #3
+1:
+    vld1.16         {d0, d1, d2, d3}, [WORKSPACE, :128]!
+      veor.u16        q14, q14, q2  /* restore sign */
+    vabs.s16        q12, q0
+    vld1.16         {d20, d21, d22, d23}, [CORRECTION, :128]!
+    vabs.s16        q13, q1
+      veor.u16        q15, q15, q3
+    vld1.16         {d16, d17, d18, d19}, [RECIPROCAL, :128]!
+    vadd.u16        q12, q12, q10 /* add correction */
+    vadd.u16        q13, q13, q11
+    vmull.u16       q10, d24, d16 /* multiply by reciprocal */
+    vmull.u16       q11, d25, d17
+    vmull.u16       q8,  d26, d18
+    vmull.u16       q9,  d27, d19
+      vsub.u16        q14, q14, q2
+    vld1.16         {d24, d25, d26, d27}, [SHIFT, :128]!
+      vsub.u16        q15, q15, q3
+    vshrn.u32       d20, q10, #16
+    vshrn.u32       d21, q11, #16
+      vst1.16         {d28, d29, d30, d31}, [COEF_BLOCK, :128]!
+    vshrn.u32       d22, q8,  #16
+    vshrn.u32       d23, q9,  #16
+    vneg.s16        q12, q12
+    vneg.s16        q13, q13
+    vshr.s16        q2,  q0,  #15 /* extract sign */
+    vshr.s16        q3,  q1,  #15
+    vshl.u16        q14, q10, q12 /* shift */
+    vshl.u16        q15, q11, q13
+    subs            LOOP_COUNT, LOOP_COUNT, #1
+    bne             1b
+    pop             {r4, r5}
+
+      veor.u16        q14, q14, q2  /* restore sign */
+      veor.u16        q15, q15, q3
+      vsub.u16        q14, q14, q2
+      vsub.u16        q15, q15, q3
+      vst1.16         {d28, d29, d30, d31}, [COEF_BLOCK, :128]!
+
+    bx              lr /* return */
+
+    .unreq          COEF_BLOCK
+    .unreq          DIVISORS
+    .unreq          WORKSPACE
+    .unreq          RECIPROCAL
+    .unreq          CORRECTION
+    .unreq          SHIFT
+    .unreq          LOOP_COUNT
+.endfunc

=== modified file 'src/texture.cpp'
--- src/texture.cpp	2012-05-15 18:38:47 +0000
+++ src/texture.cpp	2012-06-25 16:32:49 +0000
@@ -24,91 +24,11 @@ 
 #include "texture.h"
 #include "log.h"
 #include "util.h"
+#include "image-reader.h"
 
 #include <cstdarg>
-#include <png.h>
-#include <memory>
 #include <vector>
 
-class PNGState
-{
-public:
-    PNGState() :
-        png_(0),
-        info_(0),
-        rows_(0) {}
-    ~PNGState()
-    {
-        if (png_)
-        {
-            png_destroy_read_struct(&png_, &info_, 0);
-        }
-    }
-    bool gotData(const std::string& filename)
-    {
-        static const int png_transforms = PNG_TRANSFORM_STRIP_16 |
-                                          PNG_TRANSFORM_GRAY_TO_RGB |
-                                          PNG_TRANSFORM_PACKING |
-                                          PNG_TRANSFORM_EXPAND;
-
-        Log::debug("Reading PNG file %s\n", filename.c_str());
-
-        const std::auto_ptr<std::istream> is_ptr(Util::get_resource(filename));
-        if (!(*is_ptr)) {
-            Log::error("Cannot open file %s!\n", filename.c_str());
-            return false;
-        }
-
-        /* Set up all the libpng structs we need */
-        png_ = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, 0, 0);
-        if (!png_) {
-            Log::error("Couldn't create libpng read struct\n");
-            return false;
-        }
-
-        info_ = png_create_info_struct(png_);
-        if (!info_) {
-            Log::error("Couldn't create libpng info struct\n");
-            return false;
-        }
-
-        /* Set up libpng error handling */
-        if (setjmp(png_jmpbuf(png_))) {
-            Log::error("libpng error while reading file %s\n", filename.c_str());
-            return false;
-        }
-
-        /* Read the image information and data */
-        png_set_read_fn(png_, reinterpret_cast<voidp>(is_ptr.get()), png_read_fn);
-
-        png_read_png(png_, info_, png_transforms, 0);
-
-        rows_ = png_get_rows(png_, info_);
-
-        return true;
-    }
-    unsigned int width() const { return png_get_image_width(png_, info_); }
-    unsigned int height() const { return png_get_image_height(png_, info_); }
-    unsigned int pixelBytes() const
-    {
-        if (png_get_color_type(png_, info_) == PNG_COLOR_TYPE_RGB)
-        {
-            return 3;
-        }
-        return 4;
-    }
-    const unsigned char* row(unsigned int idx) const { return rows_[idx]; }
-private:
-    static void png_read_fn(png_structp png_ptr, png_bytep data, png_size_t length)
-    {
-        std::istream *is = reinterpret_cast<std::istream*>(png_get_io_ptr(png_ptr));
-        is->read(reinterpret_cast<char *>(data), length);
-    }
-    png_structp png_;
-    png_infop info_;
-    png_bytepp rows_;
-};
-
 class ImageData {
     void resize(unsigned int w, unsigned int h, unsigned int b)
     {
@@ -122,7 +42,7 @@ 
 public:
     ImageData() : pixels(0), width(0), height(0), bpp(0) {}
     ~ImageData() { delete [] pixels; }
-    bool load_png(const std::string &filename);
+    bool load(ImageReader &reader);
 
     unsigned char *pixels;
     unsigned int width;
@@ -131,30 +51,25 @@ 
 };
 
 bool
-ImageData::load_png(const std::string &filename)
+ImageData::load(ImageReader &reader)
 {
-    PNGState png;
-    bool ret = png.gotData(filename);
-    if (!ret)
-    {
-        return ret;
-    }
+    if (reader.error())
+        return false;
 
-    resize(png.width(), png.height(), png.pixelBytes());
+    resize(reader.width(), reader.height(), reader.pixelBytes());
 
     Log::debug("    Height: %d Width: %d Bpp: %d\n", width, height, bpp);
 
-    /*
-     * Copy the image data to a contiguous memory area suitable for texture
-     * upload.
+    /* 
+     * Copy the row data to the image buffer in reverse Y order, suitable
+     * for texture upload.
      */
-    for (unsigned int i = 0; i < height; i++) {
-        memcpy(&pixels[bpp * width * i],
-               png.row(height - i - 1),
-               width * bpp);
-    }
-
-    return ret;
+    unsigned char *ptr = &pixels[bpp * width * (height - 1)];
+
+    while (reader.nextRow(ptr))
+        ptr -= bpp * width;
+
+    return !reader.error();
 }
 
 static void
@@ -198,8 +113,16 @@ 
     const std::string& filename = desc->pathname();
     ImageData image;
 
-    if (!image.load_png(filename))
-        return false;
+    if (desc->filetype() == TextureDescriptor::FileTypePNG) {
+        PNGReader reader(filename);
+        if (!image.load(reader))
+            return false;
+    }
+    else if (desc->filetype() == TextureDescriptor::FileTypeJPEG) {
+        JPEGReader reader(filename);
+        if (!image.load(reader))
+            return false;
+    }
 
     va_list ap;
     va_start(ap, pTexture);
@@ -228,7 +151,7 @@ 
     vector<string> pathVec;
     string dataDir(GLMARK_DATA_PATH"/textures");
     Util::list_files(dataDir, pathVec);
-    // Now that we have a list of all of the model files available to us,
+    // Now that we have a list of all of the image files available to us,
     // let's go through and pull out the names and what format they're in
     // so the scene can decide which ones to use.
     for(vector<string>::const_iterator pathIt = pathVec.begin();
@@ -244,15 +167,44 @@ 
             namePos = slashPos + 1;
         }
 
-        string::size_type extPos = curPath.rfind(".png");
+        // Find the position of the extension
+        string::size_type pngExtPos = curPath.rfind(".png");
+        string::size_type jpgExtPos = curPath.rfind(".jpg");
+        string::size_type extPos(string::npos);
+
+        // Select the extension that's closer to the end of the file name
+        if (pngExtPos == string::npos)
+        {
+            extPos = jpgExtPos;
+        }
+        else if (jpgExtPos == string::npos)
+        {
+            extPos = pngExtPos;
+        }
+        else
+        {
+            extPos = std::max(pngExtPos, jpgExtPos);
+        }
+
         if (extPos == string::npos)
         {
-            // We can't trivially determine it's a PNG file so skip it...
+            // We can't trivially determine it's an image file so skip it...
             continue;
         }
 
+        // Set the file type based on the extension
+        TextureDescriptor::FileType type(TextureDescriptor::FileTypeUnknown);
+        if (extPos == pngExtPos)
+        {
+            type = TextureDescriptor::FileTypePNG;
+        }
+        else if (extPos == jpgExtPos)
+        {
+            type = TextureDescriptor::FileTypeJPEG;
+        }
+
         string name(curPath, namePos, extPos - namePos);
-        TextureDescriptor* desc = new TextureDescriptor(name, curPath);
+        TextureDescriptor* desc = new TextureDescriptor(name, curPath, type);
         TexturePrivate::textureMap.insert(std::make_pair(name, desc));
     }
 

=== modified file 'src/texture.h'
--- src/texture.h	2012-05-15 18:38:47 +0000
+++ src/texture.h	2012-06-25 11:45:01 +0000
@@ -34,15 +34,26 @@ 
  */
 class TextureDescriptor
 {
+public:
+    enum FileType {
+        FileTypeUnknown,
+        FileTypePNG,
+        FileTypeJPEG,
+    };
+
+    TextureDescriptor(const std::string& name, const std::string& pathname,
+                      FileType filetype) :
+        name_(name),
+        pathname_(pathname),
+        filetype_(filetype) {}
+    ~TextureDescriptor() {}
+    const std::string& pathname() const { return pathname_; }
+    FileType filetype() const { return filetype_; }
+private:
     std::string name_;
     std::string pathname_;
+    FileType filetype_;
     TextureDescriptor();
-public:
-    TextureDescriptor(const std::string& name, const std::string& pathname) :
-        name_(name),
-        pathname_(pathname) {}
-    ~TextureDescriptor() {}
-    const std::string& pathname() const { return pathname_; }
 };
 
 typedef std::map<std::string, TextureDescriptor*> TextureMap;

=== modified file 'src/wscript_build'
--- src/wscript_build	2012-04-27 18:00:45 +0000
+++ src/wscript_build	2012-06-25 11:40:03 +0000
@@ -22,7 +22,7 @@ 
         source       = ideas_sources + common_sources + gl_sources,
         target       = 'glmark2',
         use          = ['x11', 'gl', 'matrix', 'libpng12'],
-        lib          = ['m'],
+        lib          = ['m', 'jpeg'],
         includes     = ['.', 'scene-ideas'],
         defines      = ['USE_GL', 'USE_EXCEPTIONS']
         )
@@ -42,7 +42,7 @@ 
         source       = ideas_sources + common_sources + glesv2_sources,
         target       = 'glmark2-es2',
         use          = ['x11', 'egl', 'glesv2', 'matrix-es2', 'libpng12'],
-        lib          = ['m', 'dl'],
+        lib          = ['m', 'dl', 'jpeg'],
         includes     = ['.', 'scene-ideas'],
         defines      = ['USE_GLESv2', 'USE_EXCEPTIONS']
         )

=== modified file 'wscript'
--- wscript	2012-06-21 12:57:43 +0000
+++ wscript	2012-06-25 11:40:03 +0000
@@ -36,12 +36,12 @@ 
     ctx.check_tool('compiler_cxx')
 
     # Check required headers
-    req_headers = ['stdlib.h', 'string.h', 'unistd.h', 'fcntl.h']
+    req_headers = ['stdlib.h', 'string.h', 'unistd.h', 'fcntl.h', 'stdio.h', 'jpeglib.h']
     for header in req_headers:
-        ctx.check_cxx(header_name = header, mandatory = True)
+        ctx.check_cxx(header_name = header, auto_add_header_name = True, mandatory = True)
 
     # Check for required libs
-    req_libs = [('m', 'm')]
+    req_libs = [('m', 'm'), ('jpeg', 'jpeg')]
     for (lib, uselib) in req_libs:
         ctx.check_cxx(lib = lib, uselib_store = uselib)